×
20.01.2014
216.012.9887

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ДАТЧИКА ДАВЛЕНИЯ, СОДЕРЖАЩЕГО УГЛЕРОДНЫЕ НАНОТРУБКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам изготовления датчиков давления и может быть использовано в микро- и наноэлектронике для изготовлении систем для измерения давления окружающей среды. Способ изготовления датчика давления включает нанесение первого диэлектрического слоя на поверхность подложки, формирование электрической разводки, нанесение второго диэлектрического слоя, формирование области роста массива углеродных нанотрубок в виде углубления в подложке с использованием литографии, формирование буферного слоя, формирование над буферным слоем функционального слоя, содержащего катализатор роста углеродных нанотрубок, удаление маски резиста, нанесенной в процессе литографии, проведение синтеза углеродных нанотрубок с плазменной стимуляцией процесса роста углеродных нанотрубок. В последующем может быть сформирован верхний герметизирующий слой, по меньшей мере, над массивом углеродных нанотрубок. Техническим результатом является повышение надежности функционирования чувствительного элемента датчика давления, повышение чувствительности датчика давления, достижение стабильности функционирования датчика вне зависимости от изменений параметров рабочей среды. 17 з.п. ф-лы, 4 ил.

Изобретение относится к способам изготовления датчиков давления. Изобретение может быть использовано в микро- и наноэлектронике для изготовлении систем для измерения давления окружающей среды.

В настоящее время известно техническое решение «Carbon nanotube temperature and pressure sensors» по заявке США на изобретение №2011/0051775 (МПК G01L 9/00, G01K 7/02, опубликовано 03.03.2011 г.). В изобретении описан способ изготовления датчика давления, соде ржащего массив углеродных нанотрубок. Способ изготовления датчика включает осаждение из суспензии на поверхность подложки слоя углеродных нанотрубок (УНТ), формирование электрической разводки, формирование над слоем углеродных нанотрубок гибкой мембраны, деформирующейся при оказании давления на поверхность массива. Недостатком данного технического решения являются ограниченные минимальные размеры функционального элемента из углеродных нанотрубок в виду использования способа изготовления слоя углеродных нанотрубок методом осаждения из суспензии, соответственно, невысокая чувствительность датчика; отсутствие защиты от экстремальных механических воздействий на массив углеродных нанотрубок.

Наиболее близким по совокупности существенных признаков (прототипом) изобретения является способ изготовления датчика давления, описанный в диссертации Kun Guo «Synthesis and Applications of Carbon Nanotubes in Nano-Electro-Mechanical System» (The University of Toledo, August 2008). В данной работе описан способ изготовления датчика давления на основе вертикально ориентированных массивов углеродных нанорубок. Согласно данной публикации, для формирования функционального элемента датчика давления изготавливается мембрана из нитрида кремния, на поверхность мембраны наносят каталитический слой кобальта для роста углеродных нанотрубок, выращивают массив углеродных нанотрубок методом химического газофазного осаждения в потоке метана при температуре 600°C, формируют электрические контакты к массиву УНТ из золота и закрепляют полученную структуру на стеклянной подложке.

Недостатками данного технического решения являются: невысокая чувствительность датчика давления из-за использования мембраны, жесткость которой определяет чувствительность датчика давления; зависимость точности измерений от состояния окружающей среды, т.к. при изменении состояния рабочей среды, например при увеличении влажности, из-за высокой сорбционной способности массива углеродных нанотрубок изменяются электрофизические характеристики массива углеродных нанотрубок в виду того, что существует непосредственный контакт массива углеродных нанотрубок с рабочей средой; отмечается ограниченная сфера использования датчика давления в виду отсутствия защиты от экстремальных механических воздействий на массив углеродных нанотрубок.

Задачей настоящего изобретения является разработка способа изготовления датчика давления на основе массивов углеродных нанотрубок с высокой степенью надежности работы датчика.

Технический результат заключается в обеспечении повышенной надежности функционирования чувствительного элемента датчика давления, повышенной чувствительности датчика давления, достижении стабильности функционирования датчика вне зависимости от изменений параметров рабочей среды.

Для достижения вышеуказанного технического результата способ изготовления датчика давления, содержащего углеродные нанотрубки, включает: нанесение первого диэлектрического слоя на поверхность подложки, формирование электрической разводки, формирование второго диэлектрического слоя, формирование области роста массива углеродных нанотрубок в виде углубления в подложке литографией, формирование буферного слоя, формирование над буферным слоем функционального слоя, содержащего катализатор роста углеродных нанотрубок, удаление маски резиста, нанесенной в процессе фотолитографии, проведение синтеза углеродных нанотрубок с плазменной стимуляцией процесса роста углеродных нанотрубок.

От прототипа датчик отличается тем, что фотолитографией формируют область роста массива углеродных нанотрубок в виде углубления в подложке, проводят формирование буферного слоя и формирование над буферным слоем функционального слоя, содержащего катализатор роста углеродных нанотрубок.

Формирование углубления на подложке, последующее формирование в углублении функционального слоя, содержащего содержащего катализатор роста углеродных нанотрубок, и последующее проведение синтеза углеродных нанотрубок, обеспечивают размещение массива углеродных нанотрубок в углублении подложки. Таким образом, формируется датчик давления с чувствительным элементом, размещенным в полузакрытой полости, что обеспечивает надежную защиту его от механических повреждений. Формирование электрической разводки между диэлектрическими слоями, последовательно сформированными на подложке, обеспечивает надежный контакт.

В частных случаях выполнения изобретения проведение синтеза углеродных нанотрубок осуществляют путем введения подложки в объем рабочей камеры и помещения ее на поверхность нагретого рабочего стола, подачу газа-носителя, введение в нагретый реактор углеродсодержащего газа, стабилизацию давления, поджиг плазмы.

В частных случаях выполнения изобретения в качестве газа-носителя используют аргон и/или аммиак, и/или водород, и/или гелий, и/или азот.

В частных случаях выполнения изобретения в качестве углеродсодержащего газа используют метан и/или этилен, и/или ацетилен, и/или окись углерода.

В частных случаях выполнения изобретения давление в рабочей камере задается в диапазоне от 50 Па до 700 Па.

В частных случаях выполнения изобретения температура рабочего стола задается в диапазоне от 400°C до 800°C.

В частных случаях выполнения изобретения для поджига плазмы в рабочую камеру подается от генератора электромагнитное излучение с частотой 13,56 МГц и мощностью в диапазоне от 10 Вт до 200 Вт.

В частных случаях выполнения изобретения углубление в подложке выполняют в виде меандра или прямоугольника или овала.

В частных случаях выполнения изобретения электрическую разводку выполняют из титана, и/или молибдена, и/или золота, и/или платины, и/или алюминия, и/или меди, и/или хрома, и/или легированного поликремния толщиной от 0,1 мкм до 5 мкм.

В частных случаях выполнения изобретения используют подложку из кварца, и/или кремния, и/или оксида кремния, и/или оксида алюминия, и/или нитрида кремния.

В частных случаях выполнения изобретения первый и/или второй диэлектрический слой выполняют из оксида кремния, оксида алюминия, нитрида кремния, поликремния или их композиции толщиной от 10 нм до 5 мкм.

В частных случаях выполнения изобретения углубление в подложке выполняют глубиной от 0,5 мкм до 100 мкм.

В частных случаях выполнения изобретения буферный слой выполняют из алюминия, и/или оксида алюминия, и/или оксида кремния толщиной от 1 нм до 200 нм.

В частных случаях выполнения изобретения функциональный слой, содержащий катализатор роста углеродных нанотрубок, содержит железо или кобальт или никель или их сплавы.

В частных случаях выполнения изобретения дополнительно формируют верхний герметизирующий слой, по меньшей мере, над массивом углеродных нанотрубок.

Верхний слой, расположенный, по меньшей мере, над массивом углеродных нанотрубок, герметизирует массив углеродных нанотрубок, что позволяет исключить влияние рабочей среды на электрофизические свойства углеродных нанотрубок.

В частных случаях выполнения изобретения верхний герметизирующий слой выполняют из оксида кремния, и/или оксида алюминия, и/или нитрида кремния, и/или поликремния толщиной от 0,5 мкм до 200 мкм.

В частных случаях выполнения изобретения верхний слой соединяют с поверхностью методом сращивания.

В частных случаях выполнения изобретения верхний слой формируют методом осаждения.

Совокупность признаков, характеризующих изобретение, позволяет изготовить датчик давления с повышенной надежностью функционирования и повышенной чувствительностью датчика давления.

Изобретение поясняется чертежами, где

на фиг.1 - подложка с первым диэлектрическим слоем, сформированной электрической разводкой и вторым диэлектрическим слоем: а) - вид спереди, разрез; б) - вид сверху,

на фиг.2 - формирование области роста массива углеродных нанотрубок в виде углубления в подложке фотолитографией: а) - вид спереди, разрез; б) - вид сверху,

на фиг.3 - формирование буферного слоя, формирование над буферным слоем функционального слоя, содержащего активатор распада металлорганического соединения,

на фиг.4 - схема сформированного датчика давления.

Способ изготовления датчика давления, содержащего углеродные нанотрубки, включает: нанесение на поверхность подложки 1 первого диэлектрического слоя 2, формирование электрической разводки 3, формирование второго диэлектрического слоя 4 (фиг.1). Формирование области роста массива углеродных нанотрубок в виде углубления 5 (фиг.2) в подложке 1 проводят фотолитографией следующим образом: изделие покрывают маской фоторезиста 6, производят сушку фоторезиста, экспонирование фоторезиста излучением через фотошаблон в виде меандра или прямоугольника или овала, проявление скрытого изображения путем удаления фоторезиста с облученного участка, дубление, травление облученного участка с образованием углубления 5 в подложке 1 глубиной от 0,5 мкм до 100 мкм. Далее проводят формирование буферного слоя 7 и формирование над буферным слоем 7 функционального слоя 8 (фиг.3), содержащего содержащий катализатор роста углеродных нанотрубок. Буферный слой 7 выполняют из алюминия и/или оксида алюминия, и/или оксида кремния толщиной от 1 нм до 200 нм. Затем проводят удаление маски фоторезиста 6, нанесенной в процессе фотолитографии, при этом удаляются буферный слой 7 и функциональный слой 8 со всей поверхности, за исключением области углубления 5. Далее проводят синтез углеродных нанотрубок 9. Проведение синтеза углеродных нанотрубок осуществляют путем введения подложки в объем рабочей камеры и помещения ее на поверхность нагретого рабочего стола, подачу газа-носителя, введение в нагретый реактор углеродсодержащего газа, стабилизацию давления, поджиг плазмы. В качестве газа-носителя используют аргон и/или аммиак, и/или водород, и/или гелий, и/или азот. В качестве углеродсодержащего газа используют метан, и/или этилен, и/или ацетилен, и/или окись углерода.

Для проведения синтеза может быть использована установка «Plasmalab System 100» фирмы «Oxford Instruments». Для этого образцы со сформированной структурой размещают на держателе образцов в загрузочной камере, производится откачка загрузочной камеры, затем с помощью загрузочного устройства образцы вводятся в рабочую камеру и помещаются на поверхность рабочего стола, нагретого до температуры от 400 до 800°C. Производится откачка рабочей камеры до давления ниже 7,5×10-3 Па. После чего через рабочую камеру обеспечивается проток газа-носителя (5÷500 см3/мин) и углеродсодержащего газа со скоростью подачи 10÷100 см3/мин. Непосредственно перед проведением синтеза стабилизируют давление до требуемого значения (50-700 Па) в объеме рабочей камеры с помощью системы контроля и регулирования давления в камере. Производят поджиг высокочастотной плазмы при помощи генератора работающего на частоте 13,56 МГц с подачей заданной мощности электромагнитного излучения (10÷200 Вт). По окончании процесса синтеза УНТ прекращается подача электромагнитного излучения от генератора, затем прекращается подача газа-носителя и углеродсодержащего газа, происходит откачка рабочей камеры до давления ниже 7,5×10-3 Па, после чего образцы извлекаются с помощью загрузочного устройства в загрузочную камеру, откуда их можно извлечь для дальнейшего использования.

В процессе синтеза углеродных нанотрубок функциональный слой 7, содержащий катализатор роста углеродных нанотрубок расходуется. В последующем может быть сформирован верхний герметизирующий слой 10, по меньшей мере, над массивом углеродных нанотрубок 9. Верхний герметизирующий слой 10 выполняют из оксида кремния, и/или оксида алюминия, и/или нитрида кремния, и/или поликремния толщиной от 0,5 мкм до 200 мкм. Верхний слой 10 соединяют с поверхностью методом сращивания или формируют методом осаждения (фиг.4).

Пример

Для формирования датчика давления на подложку из кремния осажден первый диэлектрический слой из нитрида кремния толщиной 50 нм. Для формирования электрической разводки 3 осажден слой титана толщиной 200 нм и литографией сформирован топологический рисунок электрической разводки. Далее в качестве второго диэлектрического слоя сформирован методом осаждения слой нитрида кремния толщиной 100 нм. На второй диэлектрический слой осажден слой фоторезиста толщиной 1,5 мкм. Затем методом литографии сформировано углубление 7 в подложке 1 глубиной 5 мкм. Далее наносится буферный слой из нитрида титана толщиной 20 нм, поверх которого осажден слой, содержащий катализатор для роста углеродных нанотрубок - слой никеля толщиной 5 нм. После чего был удален фоторезист.

Далее образцы со сформированной структурой размещают на держателе образцов в загрузочной камере, производится откачка загрузочной камеры, затем с помощью загрузочного устройства образцы вводятся в рабочую камеру и помещаются на поверхность рабочего стола, нагретого до температуры 680°C. Производится откачка рабочей камеры до давления 5×10-4 Па. После чего через рабочую камеру обеспечивается проток аргона со скоростью подачи 100 см3/мин и этилена со скоростью подачи 25 см3/мин. Непосредственно перед проведением синтеза стабилизируют давление до 150 Па в объеме рабочей камеры с помощью системы контроля и регулирования давления в камере. Производят поджиг высокочастотной плазмы с подачей электромагнитного излучения мощностью 100 Вт от генератора. По окончании процесса синтеза УНТ прекращается подача электромагнитного излучения от генератора, затем прекращается подача аргона и этилена, происходит откачка рабочей камеры до давления 5×10-4 Па, после чего образцы извлекаются. После синтеза массива углеродных нанотрубок было проведено осаждение верхнего слоя из оксида кремния толщиной 1,5 мкм.

Таким образом, сформирован датчик давления, в котором массив углеродных нанотрубок защищен от механических воздействий с пяти сторон: со стороны дна подложкой, с боковых сторон подложкой, а также двумя диэлектрическими слоями по верхнему краю. Сверху массив углеродных нанотрубок закрыт верхним слоем, что обеспечивает его герметизацию и защиту от внешней среды.


СПОСОБ ИЗГОТОВЛЕНИЯ ДАТЧИКА ДАВЛЕНИЯ, СОДЕРЖАЩЕГО УГЛЕРОДНЫЕ НАНОТРУБКИ
СПОСОБ ИЗГОТОВЛЕНИЯ ДАТЧИКА ДАВЛЕНИЯ, СОДЕРЖАЩЕГО УГЛЕРОДНЫЕ НАНОТРУБКИ
СПОСОБ ИЗГОТОВЛЕНИЯ ДАТЧИКА ДАВЛЕНИЯ, СОДЕРЖАЩЕГО УГЛЕРОДНЫЕ НАНОТРУБКИ
СПОСОБ ИЗГОТОВЛЕНИЯ ДАТЧИКА ДАВЛЕНИЯ, СОДЕРЖАЩЕГО УГЛЕРОДНЫЕ НАНОТРУБКИ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 49.
12.04.2023
№223.018.4286

Облицовочная панель для отделки фасадов и кровель

Изобретение относится к области промышленного и гражданского строительства, а именно к строительным металлическим конструкциям, состоящим из длинномерных несущих металлических элементов, и в частности к профилям, применяемым при возведении металлических конструкций для реализации облицовки...
Тип: Изобретение
Номер охранного документа: 0002761789
Дата охранного документа: 13.12.2021
20.04.2023
№223.018.4de0

Строительный блок-модуль

Изобретение относится к малым строениям хозяйственного назначения. Техническим результатом заявляемого изобретения является простота изготовления и сборки, экономия металла, достижение жесткости, прочности и высокой геометрической точности изделия, исключение коррозии. Строительный блок-модуль...
Тип: Изобретение
Номер охранного документа: 0002793227
Дата охранного документа: 30.03.2023
14.05.2023
№223.018.556d

Каркас модульного здания

Изобретение относится к области строительства быстровозводимых зданий из легких стальных тонкостенных конструкций (ЛСТК), а именно к возведению модульных зданий с облегченным каркасом. Технический результат: обеспечение прочности каркаса модульного здания, простота изготовления элементов...
Тип: Изобретение
Номер охранного документа: 0002736147
Дата охранного документа: 11.11.2020
14.05.2023
№223.018.5599

Способ формирования поверхностей и объемных форм при изготовлении металлической мебели и объемных конструкций из металлического профиля

Изобретение относится к способам изготовления металлической мебели и объемных конструкций из холодногнутых металлических оцинкованных П-, С- и ОМЕГА-профилей, в том числе с полимерным покрытием. Техническим результатом заявленного изобретения является обеспечение каркасных свойств изделий,...
Тип: Изобретение
Номер охранного документа: 0002738229
Дата охранного документа: 09.12.2020
15.05.2023
№223.018.57a0

Способ сборки каркаса для ограждений, заборов, панелей и перегородок

Изобретение относится к области строительства металлических конструкций из холодногнутых металлических оцинкованных профилей, в том числе с полимерным покрытием, а именно к способам изготовления металлических каркасов для ограждений, заборов, панелей и перегородок. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002766967
Дата охранного документа: 16.03.2022
15.05.2023
№223.018.597b

Раскатной стол для теплицы

Изобретение относится к области сельскохозяйственных сооружений, в частности к устройствам для выполнения агротехнических работ, например, для выращивания посадочного материала, в теплицах промышленного назначения и может быть использовано при изготовлении раскатных, рассадных и вегетационных...
Тип: Изобретение
Номер охранного документа: 0002762092
Дата охранного документа: 15.12.2021
15.05.2023
№223.018.5a64

Способ сборки составных и многослойных термоколонн и термобалок перекрытий

Изобретение относится к области, а именно к способу сборки составных металлических термобалок и термоколонн. Технический результат изобретения – упрощение сборки конструкции. Способ сборки составных и многослойных термоколонн и термобалок выполняют из набора профильных элементов, изготовленных...
Тип: Изобретение
Номер охранного документа: 0002769001
Дата охранного документа: 28.03.2022
15.05.2023
№223.018.5be0

Металлическая ламель

Изобретение относится к области промышленного и гражданского строительства и может быть использовано при оформлении фасадной солнцезащиты производственных зданий, паркингов, для организации солнцезащитных панелей и перегородок на балконах и террасах, в соляриях, в местах массового отдыха людей:...
Тип: Изобретение
Номер охранного документа: 0002752457
Дата охранного документа: 28.07.2021
15.05.2023
№223.018.5be1

Металлическая ламель

Изобретение относится к области промышленного и гражданского строительства и может быть использовано при оформлении фасадной солнцезащиты производственных зданий, паркингов, для организации солнцезащитных панелей и перегородок на балконах и террасах, в соляриях, в местах массового отдыха людей:...
Тип: Изобретение
Номер охранного документа: 0002752457
Дата охранного документа: 28.07.2021
15.05.2023
№223.018.5bed

Облицовочный омега-профиль

Изобретение относится к области промышленного и гражданского строительства, а именно к строительным металлическим конструкциям, состоящим из длинномерных несущих металлических элементов, и в частности к профилям, применяемым при возведении металлических конструкций, для придания им новых...
Тип: Изобретение
Номер охранного документа: 0002752831
Дата охранного документа: 09.08.2021
Показаны записи 31-40 из 83.
02.08.2018
№218.016.77b0

Радиоприёмное устройство

Использование: для создания элементов и приборов радиоприемной аппаратуры. Сущность изобретения заключается в том, что радиоприемное устройство, содержащее подложку с нанесенным на нее, по меньшей мере одним, диэлектрическим слоем, в диэлектрическом слое и подложке выполнено углубление, на...
Тип: Изобретение
Номер охранного документа: 0002662908
Дата охранного документа: 31.07.2018
23.10.2018
№218.016.9511

Электрод суперконденсатора

Изобретение относится к электронной технике, в частности к суперконденсаторам. Изобретение может быть использовано в энергетике, при создании высокоэффективных генераторов и накопителей электрической энергии, в автономных мобильных миниатюрных слаботочных источниках питания, применяемых в...
Тип: Изобретение
Номер охранного документа: 0002670281
Дата охранного документа: 22.10.2018
26.01.2019
№219.016.b45f

Способ изготовления полевого эмиссионного элемента

Изобретение относится к электронной технике, в частности к полевым эмиссионным элементам, содержащим углеродные нанотрубки, используемые в качестве катодов, а также способу их изготовления. Способ изготовления полевого эмиссионного элемента включает формирование на электропроводящей подложке...
Тип: Изобретение
Номер охранного документа: 0002678192
Дата охранного документа: 24.01.2019
01.03.2019
№219.016.cb15

Сталь повышенной коррозионной стойкости

Изобретение относится к металлургии, а именно к производству углеродистых и низколегированных сталей повышенной коррозионной стойкости для производства трубопроводов, транспортирующих агрессивные в коррозионном отношении жидкости. Сталь содержит углерод, марганец, кремний, хром, никель, медь,...
Тип: Изобретение
Номер охранного документа: 0002344194
Дата охранного документа: 20.01.2009
20.03.2019
№219.016.e74b

Циклоконвертор

Изобретение («Циклоконвертор») относится к области электротехники и обеспечивает технический результат - снижение коэффициента нелинейных искажений выходного напряжения и повышение коэффициента мощности известных тиристорных преобразователей частоты с непосредственной связью. Для этого в состав...
Тип: Изобретение
Номер охранного документа: 0002327275
Дата охранного документа: 20.06.2008
10.04.2019
№219.016.ff50

Интегральный преобразователь давления

Изобретение относится к измерительной технике. Технический результат изобретения: уменьшение погрешностей преобразователя давления (ПД), таких как температурный дрейф, температурный гистерезис выходного сигнала тестовой схемы, и повышение точностных и надежностных характеристик ПД. Сущность:...
Тип: Изобретение
Номер охранного документа: 0002278447
Дата охранного документа: 20.06.2006
10.04.2019
№219.017.0076

Способ изготовления самосовмещенного бикмоп прибора

Использование: микроэлектроника, технология изготовления самосовмещенных БиКМОП структур в составе ИМС. Сущность изобретения: в способе изготовления самосовмещенного БиКМОП прибора окна под все области биполярных и МОП транзисторов, а также изолирующих областей вскрывают одновременно в третьем,...
Тип: Изобретение
Номер охранного документа: 0002295800
Дата охранного документа: 20.03.2007
10.04.2019
№219.017.0256

Способ обнаружения взрывчатого вещества в контролируемом предмете

Использование: для обнаружения взрывчатого вещества в контролируемом предмете. Сущность: заключается в том, что облучают контролируемый предмет электромагнитным излучением, вызывающим ядерный квадрупольный резонанс атомов, по меньшей мере, одного химического элемента, входящего в состав...
Тип: Изобретение
Номер охранного документа: 0002343460
Дата охранного документа: 10.01.2009
10.04.2019
№219.017.02ff

Магниторезистивный датчик

Изобретение может быть использовано в тахометрах, устройствах неразрушающего контроля, датчиках перемещения, датчиках для измерения постоянного и переменного магнитного поля, электрического тока. Датчик содержит подложку с диэлектрическим слоем, на котором расположены соединенные в мостовую...
Тип: Изобретение
Номер охранного документа: 0002312429
Дата охранного документа: 10.12.2007
10.04.2019
№219.017.040b

Способ самосовмещенного формирования изоляции элементов интегральных микросхем и поликремниевых контактов к подложке и скрытому слою

Использование: микроэлектроника, технология изготовления интегральных микросхем (ИМС). Сущность изобретения: в способе самосовмещенного формирования изоляции элементов ИМС и поликремниевых контактов к подложке и n+ - скрытому слою на полупроводниковой подложке со сплошным скрытым и...
Тип: Изобретение
Номер охранного документа: 0002356127
Дата охранного документа: 20.05.2009
+ добавить свой РИД