×
27.12.2013
216.012.919a

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ БАЗЫ СПЕКТРАЛЬНЫХ ДАННЫХ ДЛЯ ФУРЬЕ-СПЕКТРОРАДИОМЕТРОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области дистанционного беспробоотборного газоанализа, а именно к способам формирования баз спектральных данных для дистанционных газоанализаторов на основе Фурье-спектрорадиометров. Способ заключается в беспробоотборном определении мгновенных значений концентрации вещества по данным контроля оптической плотности модельного облака на характеристических спектральных линиях в момент регистрации его спектра с использованием лабораторного стенда для создания и контроля концентраций газообразных веществ путем регистрации спектра пропускания модельного облака и расчетом по закону Бугера-Ламберта-Бера на основании значений молярной массы и молекулярного сечения поглощения вещества. Регистрация спектров для базы данных производится при достижении значения оптической плотности облака порядка 1,105÷1,112. Технический результат заключается в обеспечении возможности снижения погрешности при определении спектральных коэффициентов поглощения излучения для веществ из перечня формируемой базы спектральных данных для Фурье-спектрорадиометра. 2 ил.
Основные результаты: Способ формирования базы спектральных данных для Фурье-спектрорадиометров, включающий в себя создание модельных парогазовых облаков веществ с контролируемыми интегральными концентрациями компонентов в объеме газовой камеры, регистрацию Фурье-спектрорадиометром спектров пропускания этими облаками излучения от источника типа «абсолютно черное тело» и расчет спектральных коэффициентов пропускания для подлежащих идентификации веществ, отличающийся тем, что при регистрации Фурье-спектрорадиометром спектров парогазовых облаков веществ создают модельные облака с оптической плотностью D=1,105÷1,112 на характеристических спектральных линиях, регистрацию спектров проводят при максимально достижимой разнице температур источника излучения и модельного облака, одновременно, в реальном масштабе времени, лабораторным Фурье-спектрометром с оптической схемой, включающей оптические элементы и керамический высокотемпературный источник излучения, излучение которого, отражаясь от вогнутых зеркал, проходит через модельное облако, образованное в газовой камере и попадает в приемную систему лабораторного Фурье-спектрометра, контролируют оптическую плотность находящегося непосредственно в поле зрения Фурье-спектрорадиометра модельного парогазового облака на характеристических спектральных линиях и без отбора проб определяют мгновенные значения интегральной по глубине облака концентрации его компонентов через интервалы времени, соизмеримые со временем квазистационарности модельного облака.

Изобретение относится к области дистанционного беспробоотборного газоанализа, а именно, к способам формирования баз спектральных данных для дистанционных газоанализаторов на основе Фурье-спектрорадиометров. База спектральных данных для Фурье-спектрорадиометров представляет собой совокупность данных о спектральных коэффициентах пропускания излучения веществами, подлежащими идентификации. Для расчета спектральных коэффициентов пропускания регистрируется спектр пропускания излучения от источника типа «абсолютно черное тело» модельным облаком загрязняющего вещества с контролируемой в реальном масштабе времени интегральной по его глубине концентрацией, имитирующего реальные облака загрязняющих веществ, и определяется пропускание излучения на характеристических длинах волн. В дальнейшем это позволяет, учитывая линейную зависимость оптической толщины от интегральной концентрации вещества, оценивать концентрацию вещества в поле зрения Фурье-спектрорадиометра на основании зарегистрированных им на открытых трассах спектров.

Известен способ формирования баз спектральных данных, заключающийся в создании модельного облака паров вещества со стабильной на протяжении длительного времени концентрацией, и пробоотборном контроле значений концентраций паров этого вещества при регистрации эталонных для Фурье-спектрорадиометра спектров пропускания методом Фурье-спектрометрии с помощью лабораторного спектрометра. Сущность данного способа заключается в последовательном выполнении следующих операций: регистрация в качестве фонового спектра - спектра проходящего через заполненную атмосферным воздухом газовую камеру излучения источника типа «абсолютно черное тело» (АЧТ) - теплового экрана при температуре около +50°С; регистрация спектра АЧТ с температурой, равной температуре воздуха в газовой камере; создание модельного облака паров анализируемого вещества в замкнутом объеме газовой камеры, определение концентрации вещества посредством отбора проб в кювету лабораторного Фурье-спектрометра, регистрация Фурье-спектрорадиометром спектра пропускания излучения теплового экрана модельным облаком и расчет спектральных коэффициентов для анализируемого вещества. [Мониторинг загрязняющих веществ в атмосфере с помощью Фурье-спектрорадиометра/ С.К. Дворук, В.Н. Корниенко и др. // Оптический журнал. - 2004. - №5, - 10 с]. Схема регистрации спектров пропускания представлена на фиг. 1. Через технологическое отверстие для напуска паров веществ и пробоотбора [5] в газовую камеру [1] вводится анализируемое вещество, вентилятором перемешивания [6] равномерно распределяется по внутреннему объему газовой кюветы. В торце газовой камеры находится оптическое окно [7] для расположения объектива Фурье-спектрорадиометра [8]. Тепловой экран [3] с блоком управления [4] необходим для создания и поддержания температурного контраста, отдув газовой камеры производится посредством открывания ручного клапана [2] с использованием вентилятора вытяжки [9]. Недостатком данного способа является погрешность в расчете спектральных коэффициентов, связанная с погрешностью определения оптической плотности на характеристической длине волны самим Фурье-спектрорадиометром. Кроме этого, погрешность вносит и определение концентраций компонентов модельного облака, проводимое с использованием пробоотборных методов спектрального либо количественного химического анализа. Данные методы не позволяют получить информацию о мгновенном количественном содержании вещества в поле зрения Фурье-спектрорадиометра в момент регистрации им спектра пропускания модельного облака объекта индикации и не позволяют оценить непосредственно измеряемую Фурье-спектрорадиометром величину - мгновенную интегральную концентрацию вещества. Информация о концентрации компонентов в модельном облаке, полученная с использованием данных методов является интегрированной по времени, усредненной за время пробоотбора, что ввиду длительности процесса пробоотбора по сравнению со временем квазистационарности объекта индикации, не отражает реальных мгновенных концентрационных характеристик объекта индикации в момент регистрации его спектра Фурье-спектрорадиометром.

Технический результат, достигаемый в заявленном изобретении, заключается в снижении погрешности при расчете спектральных коэффициентов.

Указанный технический результат достигается тем, что в процессе создания модельного парогазового облака анализируемого вещества производится инструментальный контроль оптической плотности модельного облака, и регистрация спектров осуществляется в момент достижения значения его оптической плотности на самой сильной характеристической спектральной линии порядка 1,105÷-1,112 отн. ед. Данный диапазон обусловлен тем, что Фурье-спектрорадиометр регистрирует спектры с определенной погрешностью, которая обусловлена ошибкой в определении оптической плотности D и зависит от величины оптической плотности. В случае положительного температурного контраста ошибка определения оптической плотности равна:

где η - отношение сигнал/шум в зарегистрированном спектре.

Относительная ошибка определения оптической плотности минимальна в районе D~1, где функция относительной ошибки определения оптической плотности f(D) имеет минимум. Более точно определить оптическую плотность, при которой погрешность ее регистрации минимальна можно решив уравнение (2):

Оптимальная оптическая плотность модельного облака для регистрации эталонных спектров при формировании базы спектральных данных для Фурье-спектрорадиометра может быть вычислена по формуле (3):

На основании рассчитанной оптимальной оптической плотности при регистрации спектров пропускания рассчитан предпочтительный интервал оптической плотности, D∈[1,105; 1,112], в котором погрешность определения пропускания, а следовательно, и расчета спектральных коэффициентов минимальна.

Регистрация спектров анализируемого вещества производится при достижении на характеристических спектральных линиях оптических плотностей из предпочтительного интервала и максимальной технически осуществимой разнице температур источника излучения и модельного облака. Также необходимым условием для корректной регистрации спектра является квазистационарность модельных объектов индикации. Достижению заявленного технического результата способствуют:

1. Исключение пробоотборной стадии из процесса определения концентраций паров веществ, за счет модификации оптической схемы лабораторного Фурье-спектрометра: переноса источника инфракрасного излучения и использованием в качестве кюветного отделения спектрометра внешней газовой кюветы (фиг.2). Проведение контроля оптической плотности и определения концентраций компонентов модельного облака беспробоотборным способом с использованием лабораторного стенда для создания и контроля концентраций газообразных веществ (патент на полезную модель RU №103400, МПК G01N 21/00) путем регистрации спектра пропускания непосредственно модельного облака. Регистрация спектра пропускания модельного облака проводится согласно схеме на фиг.2. Излучение керамического высокотемпературного источника [11] отражаясь от вогнутых зеркал [10], проходит через модельное облако и попадает в приемник лабораторного Фурье-спектрометра [12]. Протяженность линии обзора контрольно-измерительной аппаратуры равна длине статической газовой камеры, что позволяет непосредственно контролировать оптическую плотность находящегося в поле зрения Фурье-спектрорадиометра [8] модельного облака на основании спектров, полученных с помощью лабораторного Фурье-спектрометра и обработанных с использованием ПЭВМ [13]. При этом контроль мгновенных значений интегральной концентрации паров анализируемого вещества Синт [г/м2], производится одновременно с регистрацией спектра для базы данных Фурье-спектрорадиометром на основании показаний лабораторного Фурье-спектрометра по формуле (5):

где τ(v)- значение пропускания излучения веществом на характеристической спектральной линии при длине волны v, отн.ед.;

М - молярная масса вещества, г/моль;

σ(v) - молекулярное сечение поглощения вещества для опорной длины волны v, см2;

NA - число Авогадро, 6,02·1023 моль-1;

10-4- коэффициент перевода размерности, из см2 в м2.

2. Регистрация инфракрасных спектров проводится при достижении на характеристических спектральных линиях предпочтительного интервала оптической плотности, D∈[1,105; 1,112]. Отличительной особенностью изобретения от имеющихся аналогов, является то, что в данном случае контроль оптической плотности модельных объектов индикации используется не только с целью получения информации о концентрациях газовых компонентов в режиме реального времени, но и для минимизации погрешности измерения концентрации, посредством соблюдения установленного ранее предпочтительного интервала.

3. Регистрацию инфракрасных спектров проводят за время, соответствующее времени квазистационарности (условной стабильности) облака, ввиду временной нестабильности объекта индикации за счет динамических процессов массопереноса, протекающих в модельном облаке вследствие турбулентности облака и температурного градиента, обусловленных конструктивными особенностями лабораторного стенда.

Способ формирования базы спектральных данных для Фурье-спектрорадиометров, включающий в себя создание модельных парогазовых облаков веществ с контролируемыми интегральными концентрациями компонентов в объеме газовой камеры, регистрацию Фурье-спектрорадиометром спектров пропускания этими облаками излучения от источника типа «абсолютно черное тело» и расчет спектральных коэффициентов пропускания для подлежащих идентификации веществ, отличающийся тем, что при регистрации Фурье-спектрорадиометром спектров парогазовых облаков веществ создают модельные облака с оптической плотностью D=1,105÷1,112 на характеристических спектральных линиях, регистрацию спектров проводят при максимально достижимой разнице температур источника излучения и модельного облака, одновременно, в реальном масштабе времени, лабораторным Фурье-спектрометром с оптической схемой, включающей оптические элементы и керамический высокотемпературный источник излучения, излучение которого, отражаясь от вогнутых зеркал, проходит через модельное облако, образованное в газовой камере и попадает в приемную систему лабораторного Фурье-спектрометра, контролируют оптическую плотность находящегося непосредственно в поле зрения Фурье-спектрорадиометра модельного парогазового облака на характеристических спектральных линиях и без отбора проб определяют мгновенные значения интегральной по глубине облака концентрации его компонентов через интервалы времени, соизмеримые со временем квазистационарности модельного облака.
СПОСОБ ФОРМИРОВАНИЯ БАЗЫ СПЕКТРАЛЬНЫХ ДАННЫХ ДЛЯ ФУРЬЕ-СПЕКТРОРАДИОМЕТРОВ
СПОСОБ ФОРМИРОВАНИЯ БАЗЫ СПЕКТРАЛЬНЫХ ДАННЫХ ДЛЯ ФУРЬЕ-СПЕКТРОРАДИОМЕТРОВ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 21.
27.05.2015
№216.013.4ea5

Высокочастотный электронно-ионный микроскоп

Изобретение относится к системам электронно-ионной оптики и предназначено для изучения структуры вещества путем просвечивания его мощным потоком заряженных частиц. Высокочастотный электронно-ионный микроскоп состоит из вакуумной камеры и находящихся в ней источника заряженных частиц,...
Тип: Изобретение
Номер охранного документа: 0002551651
Дата охранного документа: 27.05.2015
10.08.2015
№216.013.6c52

Способ аккумуляции энергии потока заряженных частиц

Изобретение относится к области энергетики, а именно к технологии получения заряженных частиц больших энергий, и предназначено для применения в области ядерной физики и технологии. Технический результат - повышение плотности энергии потока заряженных частиц. Способ осуществляется путем...
Тип: Изобретение
Номер охранного документа: 0002559288
Дата охранного документа: 10.08.2015
10.11.2015
№216.013.8ab8

Способ дистанционного беспробоотборного обнаружения и идентификации химических веществ и объектов органического происхождения и устройство для его осуществления

Изобретение относится к области оптико-физических методов измерений и касается способа и устройства для обнаружения и идентификации химических веществ и объектов органического происхождения. Способ включает получение спектров комбинационного рассеяния (КР) и фотолюминесценции (ФЛ) вещества,...
Тип: Изобретение
Номер охранного документа: 0002567119
Дата охранного документа: 10.11.2015
20.03.2016
№216.014.c904

Способ дистанционного контроля размеров тонкодисперсных аэрозолей стойких токсичных химикатов при возникновении запроектных аварий на химически опасных объектах

Изобретение относится к области оптических методов измерения физико-химических характеристик аэрозольных сред и может быть использовано при разработке лидарных комплексов для дистанционного контроля дисперсного состава аэрозольных облаков стойких токсичных химикатов (ТХ) при возникновении...
Тип: Изобретение
Номер охранного документа: 0002578105
Дата охранного документа: 20.03.2016
10.04.2016
№216.015.2d78

Способ обнаружения усталостного повреждения вала турбоагрегата

Изобретение относится к области неразрушающего контроля валов турбоагрегатов, преимущественно турбоагрегатов электростанций, включающих турбину и электрический генератор. Для достижения поставленной цели на работающем турбоагрегате с помощью известных устройств измеряют частоту крутильных...
Тип: Изобретение
Номер охранного документа: 0002579639
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.7c4a

Рецептура самодегазирующего покрытия

Изобретение относится к средствам дегазации объектов по уничтожению химического оружия (ОУХО). Предложена рецептура, при заблаговременном нанесении которой на наружные и внутренние поверхности технологических помещений ОУХО позволяет создать на них защитный слой для обеспечения безопасной...
Тип: Изобретение
Номер охранного документа: 0002600387
Дата охранного документа: 20.10.2016
24.08.2017
№217.015.9558

Применение цис-1,4-полиизопрена в качестве имитатора оптических свойств пинаколилметилфторфосфоната

Изобретение относится к применению цис-1,4-полиизопрена в качестве имитатора оптических свойств пинаколилметилфторфосфоната для проверки работоспособности инфракрасных дистанционных газосигнализаторов и при обучении специалистов работе на них. Предлагаемое техническое решение позволяет...
Тип: Изобретение
Номер охранного документа: 0002608629
Дата охранного документа: 23.01.2017
26.08.2017
№217.015.de9a

Индукционный ускоритель

Изобретение относится к области ядерной физики, а именно к приборам с магнитными управляющими элементами для ускорения и фокусировки заряженных частиц, и предназначено для получения потока электронов больших энергий. Технический результат - увеличение энергии ускорения заряженных частиц с...
Тип: Изобретение
Номер охранного документа: 0002624735
Дата охранного документа: 06.07.2017
19.01.2018
№218.016.0325

Устройство для хранения пеналов с твердыми радиоактивными отходами

Изобретение относится к области обращения с радиоактивными отходами и может быть использовано для перегрузки пеналов с твердыми радиоактивными отходами. Устройство для перегрузки пеналов с твердыми радиоактивными отходами содержит железобетонный корпус с крышкой, преимущественно в форме...
Тип: Изобретение
Номер охранного документа: 0002630217
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.05d6

Способ экспрессного определения защитных свойств воздухопроницаемых защитных материалов по парам химических веществ при различных условиях массообмена

Изобретение относится к области исследований показателей качества материалов и изделий, в частности - к оценке защитных свойств воздухопроницаемых материалов на основе активированных углеродсодержащих сорбентов при воздействии паров химических веществ. Заявленный способ экспрессного определения...
Тип: Изобретение
Номер охранного документа: 0002631013
Дата охранного документа: 15.09.2017
+ добавить свой РИД