×
20.12.2013
216.012.8e33

УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ЭНЕРГИИ ЭЛЕКТРОНОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Предложено устройство для определения максимальной энергии электронов. Устройство содержит фильтр из электропроводящего материала с малым атомным весом и известной зависимостью пробега электронов от их энергии и детектор для регистрации электронов. Устройство выполнено в виде монолитного объемного тела с плоским участком для ввода пучка электронов. В теле под углом по отношению к плоскому участку выполнен сквозной боковой паз. Клиновидный участок, образованный поверхностями плоского участка и паза, является фильтром переменной толщины. В пазу установлен детектор для регистрации электронов в виде пленочного визуального индикатора поглощенной дозы электронов. Техническими результатами являются упрощение конструкции устройства при наличии высокого ресурса, обеспечение простоты стыковки устройства с источником электронов, снижение времени регистрации электронов и обработки результатов. 3 ил.
Основные результаты: Устройство для определения максимальной энергии электронов, содержащее фильтр из электропроводящего материала с малым атомным весом и известной зависимостью пробега электронов от их энергии, а также детектор для регистрации электронов, отличающееся тем, что устройство выполнено в виде монолитного объемного тела с плоским участком для ввода пучка электронов, в теле под углом по отношению к плоскому участку выполнен сквозной боковой паз, при этом клиновидный участок, образованный поверхностями плоского участка и паза, является фильтром переменной толщины, в пазу установлен детектор для регистрации электронов в виде пленочного визуального индикатора поглощенной дозы электронов.
Реферат Свернуть Развернуть

Изобретение относится к технике регистрации параметров электронных пучков и может быть использовано при оперативной оценке максимальной энергии электронов.

Измерение максимальной энергии электронов позволяет определить требуемую толщину биологической защиты персонала, режимы облучения промышленных и биологических объектов, провести оценку амплитуды напряжения на ускорительных трубках без использования сложной аппаратуры и т.д. Для снижения стоимости таких работ устройство должно обладать простотой изготовления и высоким ресурсом.

Максимальную энергию электронов можно определять при помощи полукругового магнитного спектрометра (А.И.Герасимов, Е.Г.Дубинов, Б.Г.Кудасов. Спектрометр импульсного пучка электронов. ПТЭ №3, 1971, стр.31-34) непосредственно по измеренному спектру электронов. Спектрометр содержит вакуумную камеру, в которую через щелевую диафрагму поступает тестируемый пучок электронов. Камера расположена в поперечном однородном магнитном поле, в котором электроны двигаются по круговой траектории. При этом радиус траектории зависит от энергии электронов, поэтому после прохождения через магнитное поле электронный пучок растягивается в радиальном направлении, и распределение заряда электронов вдоль радиуса соответствует энергетическому спектру электронов.

Магнитный спектрометр позволяет проводить измерения энергии электронов многократно и с наибольшей точностью, но отличается высокой сложностью и стоимостью изготовления, а также необходимостью вакуумно-плотной стыковки входного узла камеры спектрометра и источника электронов, что требует изготовления дополнительных деталей. Поэтому об оперативной оценке максимальной энергии электронов при помощи магнитного спектрометра не может быть и речи.

Известны устройства, в которых максимальная энергия электронов определяется по полному пробегу электронов в веществе (А.А.Воробьев, Б.А.Кононов. Прохождение электронов через вещество. Изд. Томского университета: Томск, 1966, стр.145). Полный пробег измеряют в ядерных эмульсиях, пузырьковой камере или в другом подобного рода приборе, позволяющем наблюдать весь трек частицы. Недостатком этих устройств также является высокая стоимость и большие затраты времени на определение искомого параметра.

Наиболее близким к заявляемому является устройство, в котором используется прохождение электронов через фильтр в виде 10 слоев графитизированного полипропилена (ППГ), между слоями проложены детекторы электронов в виде пленочных дозиметров ЦДП-Ф2-3 (А.В.Грунин и др. Исследование характеристик электронного излучения ускорителя СТРАУС-2. Метод поглощающих фильтров. VII Межотраслевая конференция по радиационной стойкости. Сборник докладов. Снежинок: Изд-во РФЯЦ-ВНИИЭФ, 2006, с.412-419). После определения поглощенной дозы в каждом дозиметре и обработке полученной информации с помощью расчетов методом Монте-Карло определяется кривая поглощения электронов в материале ППГ. По кривой поглощения можно определить максимальную энергию электронов.

Это устройство позволяет более оперативно проводить измерение максимальной энергии электронов, однако формирование одноразовой сборки из слоев ППГ и дозиметров ЦДП-Ф2-3 требует достаточно больших трудозатрат и материалов, а измерение поглощенной дозы электронов в пленочных дозиметрах может производиться только при помощи спектрофотометра, который сам по себе является дорогостоящим оборудованием.

При создании данного изобретения решалась задача снижения времени, стоимости и трудозатрат для определения максимальной энергии электронов.

Техническим результатом является упрощение конструкции устройства при наличии высокого ресурса, обеспечение простоты стыковки устройства с источником электронов, снижение времени регистрации электронов и обработки результатов.

Указанный технический результат достигается тем, что по сравнению с известным устройством для определения максимальной энергии электронов, содержащим фильтр из электропроводящего материала с малым атомным весом и известной зависимостью пробега электронов от их энергии, а также детектор для регистрации электронов, новым является то, что устройство выполнено в виде монолитного объемного тела с плоским участком для ввода пучка электронов, в теле под углом по отношению к плоскому участку выполнен сквозной боковой паз, при этом клиновидный участок, образованный поверхностями плоского участка и паза, является фильтром переменной толщины, в пазу установлен детектор для регистрации электронов в виде пленочного визуального индикатора поглощенной дозы электронов.

Заявляемое устройство имеет предельно простую конструкцию и может быть легко изготовлено в любой механической мастерской. При фрезеровании паза под углом к плоскому торцу в теле устройства формируется клиновидный участок (клин), который является фильтром с линейно изменяющейся толщиной. Выполнить клин в составе предлагаемого устройства значительно проще, чем изготавливать тонкий клин отдельно. Кроме того, тело устройства служит для поглощения рассеянных электронов и зажима индикаторной пленки.

В паз, с плотным прилеганием к поверхности клиновидного участка, вставляется пленочный визуальный индикатор, и устройство устанавливается на источнике электронов (при вертикальной ориентации пучка электронов оно просто ставится на источник, при боковом направлении пучка закрепляется подручными средствами). Затем в устройство нормально к поверхности клиновидного фильтра вводится тестируемый пучок электронов. При этом под воздействием электронов, проходящих сквозь клин, на прилегающей к нему поверхности индикатора появляется картина изменения цвета, соответствующая поглощенной дозе. Граница минимального изменения цвета будет соответствовать участку клина с толщиной, равной пробегу электронов с максимальной энергией в веществе клина. Зная эту толщину, можно определить максимальную энергию электронов в пучке по графику зависимости максимального пробега электронов в веществе от энергии электронов (А.А.Воробьев, Б.А.Кононов. Прохождение электронов через вещество. Изд. Томского университета: Томск, 1966, стр.150). Индикатор не требует дополнительной обработки на спектрофотометре или другом подобном устройстве; граница минимального изменения цвета определяется чисто визуально, и поэтому результаты можно получать в течение нескольких минут.

Таким образом, в данном изобретении реализуется указанный технический результат, поскольку конструкция устройства значительно проще, чем в устройствах по аналогу и прототипу, максимально упрощена процедура стыковки устройства с источником электронов, и существенно уменьшено время регистрации электронов и обработки результатов.

На фиг.1 показана конструкция устройства, где:

1 - объемное тело;

2 - пленочный визуальный индикатор поглощенной дозы электронов;

А - направление взгляда на сквозной паз;

Б - направление потока электронов.

На фиг.2 показана типичная фотография полоски визуального индикатора после облучения устройства электронами, где:

В - граница, соответствующая тонкому краю клина;

Г - граница участка прохождения сквозь клин электронов с максимальной энергией;

Д - граница, соответствующая толстому краю клина.

На фиг.3 показана фотография изготовленного устройства.

Устройство (фиг.1) содержит объемное тело 1, в котором под углом α к плоскому основанию выполнен сквозной узкий паз. Глубина паза d выбирается таковой, чтобы оставалась прочная перемычка, соединяющая клиновидный участок с остальной частью устройства. В паз до упора и заподлицо с тонким краем клина вставлена полоска 2 индикатора поглощенной дозы электронов. Устройство устанавливается на источник электронов и облучается электронами в направлении Б. После облучения полоска индикатора извлекается из устройства и анализируется. Типичная фотография облученной полоски приведена на фиг.2. На ней можно выделить три основных участка, расположенных между границами В, Г и Д.

Граница В совпадает с тонким краем клина. Участок В-Г прилегает к более тонкому участку клина, сквозь который проходят электроны с достаточной для этого энергией, поэтому на данном участке наблюдается заметное изменение цвета индикатора. На границе Г наблюдается минимальное изменение цвета, поскольку здесь проходят только электроны с максимальной энергией. Участок Г-Д соответствует более толстому участку клина, сквозь который не проходят даже электроны с максимальной энергией, поэтому изменения цвета индикатора здесь не наблюдается. Участок индикатора правее границы В расположен вне устройства, служит только для извлечения индикатора, поэтому не несет никакой информации и в данном примере на фиг.2 полностью засвечен рассеянными электронами.

Толщина клина на границе Г прохождения электронов с максимальной энергией рассчитывалась исходя из расстояния L между границами В и Г (фиг.2) по формуле t=t0+L·sin(α), где t0 - толщина тонкого края клина, α - угол между плоским участком устройства и пазом (фиг.1). Далее по графику зависимости максимального пробега электронов в веществе клина от энергии электронов определялась максимальная энергия электронов в пучке.

На фиг.3 приведена фотография изготовленного устройства. Оно было выполнено в виде кубика из алюминиевого сплава АМг6 с габаритами 20×20×20 мм. Чтобы расширить диапазон измеряемых энергий электронов и при этом не увеличивать габариты, в теле устройства был выполнен не один, а два косых паза глубиной 15 мм и шириной 1 мм таким образом, чтобы получить два клиновидных участка с толщинами тонкого края 0.5 мм и 1.5 мм. Соответственно, у данного устройства имеется две плоскости для ввода электронного пучка. Со стороны более тонкого клина вводится пучок электронов с меньшей энергией, со стороны утолщенного клина - с большей энергией. Пазы были выполнены под углом α=4° к плоскому участку для ввода пучка. Ширина полосок индикатора поглощенной дозы электронов составляла 8-10 мм. Максимальная энергия электронов определялась при помощи заявляемого устройства на импульсном частотном ускорителе электронов АРСА на 1 MB (Эльяш С.Л., Профе Л.П. Применение малогабаритного ускорителя АРСА для оперативного контроля показателей стойкости элементной базы к воздействию импульсного ионизирующего излучения. // ВАНТ Физика радиационного воздействия на РЭА, выпуск 3, 2002 г. - С.132-136). Величина поглощенной дозы на входе заявляемого устройства, полученная за 30 пусков ускорителя, была равна 1.5 МГр, в качестве детектора использовался визуальный индикатор ЦВИД-3. Сравнение полученных результатов с данными магнитного спектрометра показало, что расхождение величин энергии, определенной при помощи заявляемого устройства и спектрометра, не превышает 50 кВ. На одно измерение расходуется не более 5 мин, ресурс устройства практически неограничен.

Таким образом, применение заявляемого устройства обеспечивает решение задачи данного изобретения, поскольку оно позволяет существенно сократить время и стоимость определения максимальной энергии электронов. Устройство весьма доступно, имеет простую конструкцию, легко изготавливается и может быть оперативно установлено на любом источнике электронов, например на окне ускорительной трубки сильноточного ускорителя.

Устройство для определения максимальной энергии электронов, содержащее фильтр из электропроводящего материала с малым атомным весом и известной зависимостью пробега электронов от их энергии, а также детектор для регистрации электронов, отличающееся тем, что устройство выполнено в виде монолитного объемного тела с плоским участком для ввода пучка электронов, в теле под углом по отношению к плоскому участку выполнен сквозной боковой паз, при этом клиновидный участок, образованный поверхностями плоского участка и паза, является фильтром переменной толщины, в пазу установлен детектор для регистрации электронов в виде пленочного визуального индикатора поглощенной дозы электронов.
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ЭНЕРГИИ ЭЛЕКТРОНОВ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ЭНЕРГИИ ЭЛЕКТРОНОВ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ЭНЕРГИИ ЭЛЕКТРОНОВ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 658.
10.09.2013
№216.012.6781

Способ переработки металлических бериллиевых отходов

Изобретение относится к переработке бериллийсодержащих металлических отходов. Способ включает растворение металлических бериллиевых отходов в щелочном растворе в присутствии нитрата натрия или калия. Вводят в процесс азотную кислоту в количестве 2,09-2,26 моль/моль бериллия. Азотная кислота...
Тип: Изобретение
Номер охранного документа: 0002492144
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.680a

Способ нанесения защитного покрытия на изделия из стали или титана

Изобретение относится к области машиностроения, а именно к химико-термической обработке изделий из стали или титана, и может быть использовано для нанесения защитного покрытия на детали, работающие в условиях воздействия агрессивных сред, высоких температур. Осуществляют подготовку защищаемой...
Тип: Изобретение
Номер охранного документа: 0002492281
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.68b1

Устройство для контроля процесса деградации защитных покрытий

Изобретение относится к испытательной технике, а именно к устройствам для контроля процесса деградации защитных гальванических и лакокрасочных покрытий, находящихся в эксплуатационных условиях под действием внешней агрессивной среды. Устройство содержит нижнее основание, установленную на нем...
Тип: Изобретение
Номер охранного документа: 0002492448
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6b3e

Способ разделения циркония и гафния

Изобретение относится к технологии редких металлов, в частности к гидрометаллургии циркония и гафния. Способ разделения циркония и гафния включает получение гидроксидов циркония и гафния при температуре, не превышающей 30-35°С, обезвоживание полученных гидроксидов циркония и гафния, растворение...
Тип: Изобретение
Номер охранного документа: 0002493105
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d05

Система контроля кислорода и водорода в газовых средах

Изобретение относится к устройствам для контроля параметров газовых сред, в частности к контролю газовых смесей, содержащих кислород и водород, и может быть использовано в атомной энергетике, транспортном, химическом машиностроении и других отраслях техники, например, для контроля водородной...
Тип: Изобретение
Номер охранного документа: 0002493560
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d5a

Генератор акустических шумов

Изобретение относится к электронным устройствам и может быть использовано для защиты информации по акустическим каналам. Достигаемым техническим результатом является возможность формирования низкочастотного сигнала с расширенным частотным диапазоном и улучшенными характеристиками...
Тип: Изобретение
Номер охранного документа: 0002493645
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.70a8

Лазерный источник ионов с активной системой инжекции

Изобретение относится к источникам ионов, предназначенным для ускорителей заряженных частиц. Заявленное изобретение характеризуется подачей на ускоряющий электрод ионно-оптической системы, размещенный между выходом пролетного канала и другим ускоряющим электродом, установленным в системе...
Тип: Изобретение
Номер охранного документа: 0002494491
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.71fc

Способ очистки порошка титана от примеси кислорода

Изобретение относится к области порошковой металлургии металлов IVB подгруппы, в частности к способам очистки порошков металлов от примеси кислорода. Способ очистки порошка титана от примеси кислорода включает насыщение порошка титана водородом с получением порошкообразного гидрида титана и...
Тип: Изобретение
Номер охранного документа: 0002494837
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.727b

Способ получения фторида бериллия

Изобретение может быть использовано в химической промышленности. Фторид бериллия получают растворением материалов, содержащих бериллий, в плавиковой кислоте. В исходный раствор перед выпариванием вносят фторид аммония в количестве, обеспечивающем мольное отношение фтора к бериллию в пределах...
Тип: Изобретение
Номер охранного документа: 0002494964
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.729f

Плавленолитой хромсодержащий огнеупорный материал

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления хромсодержащих огнеупорных материалов для футеровки стекловаренных печей при утилизации радиоактивных отходов. Плавленолитой хромсодержащий огнеупорный материал содержит компоненты в следующем...
Тип: Изобретение
Номер охранного документа: 0002495000
Дата охранного документа: 10.10.2013
Показаны записи 61-70 из 478.
10.09.2013
№216.012.6781

Способ переработки металлических бериллиевых отходов

Изобретение относится к переработке бериллийсодержащих металлических отходов. Способ включает растворение металлических бериллиевых отходов в щелочном растворе в присутствии нитрата натрия или калия. Вводят в процесс азотную кислоту в количестве 2,09-2,26 моль/моль бериллия. Азотная кислота...
Тип: Изобретение
Номер охранного документа: 0002492144
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.680a

Способ нанесения защитного покрытия на изделия из стали или титана

Изобретение относится к области машиностроения, а именно к химико-термической обработке изделий из стали или титана, и может быть использовано для нанесения защитного покрытия на детали, работающие в условиях воздействия агрессивных сред, высоких температур. Осуществляют подготовку защищаемой...
Тип: Изобретение
Номер охранного документа: 0002492281
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.68b1

Устройство для контроля процесса деградации защитных покрытий

Изобретение относится к испытательной технике, а именно к устройствам для контроля процесса деградации защитных гальванических и лакокрасочных покрытий, находящихся в эксплуатационных условиях под действием внешней агрессивной среды. Устройство содержит нижнее основание, установленную на нем...
Тип: Изобретение
Номер охранного документа: 0002492448
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6b3e

Способ разделения циркония и гафния

Изобретение относится к технологии редких металлов, в частности к гидрометаллургии циркония и гафния. Способ разделения циркония и гафния включает получение гидроксидов циркония и гафния при температуре, не превышающей 30-35°С, обезвоживание полученных гидроксидов циркония и гафния, растворение...
Тип: Изобретение
Номер охранного документа: 0002493105
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d05

Система контроля кислорода и водорода в газовых средах

Изобретение относится к устройствам для контроля параметров газовых сред, в частности к контролю газовых смесей, содержащих кислород и водород, и может быть использовано в атомной энергетике, транспортном, химическом машиностроении и других отраслях техники, например, для контроля водородной...
Тип: Изобретение
Номер охранного документа: 0002493560
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d5a

Генератор акустических шумов

Изобретение относится к электронным устройствам и может быть использовано для защиты информации по акустическим каналам. Достигаемым техническим результатом является возможность формирования низкочастотного сигнала с расширенным частотным диапазоном и улучшенными характеристиками...
Тип: Изобретение
Номер охранного документа: 0002493645
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.70a8

Лазерный источник ионов с активной системой инжекции

Изобретение относится к источникам ионов, предназначенным для ускорителей заряженных частиц. Заявленное изобретение характеризуется подачей на ускоряющий электрод ионно-оптической системы, размещенный между выходом пролетного канала и другим ускоряющим электродом, установленным в системе...
Тип: Изобретение
Номер охранного документа: 0002494491
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.71fc

Способ очистки порошка титана от примеси кислорода

Изобретение относится к области порошковой металлургии металлов IVB подгруппы, в частности к способам очистки порошков металлов от примеси кислорода. Способ очистки порошка титана от примеси кислорода включает насыщение порошка титана водородом с получением порошкообразного гидрида титана и...
Тип: Изобретение
Номер охранного документа: 0002494837
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.727b

Способ получения фторида бериллия

Изобретение может быть использовано в химической промышленности. Фторид бериллия получают растворением материалов, содержащих бериллий, в плавиковой кислоте. В исходный раствор перед выпариванием вносят фторид аммония в количестве, обеспечивающем мольное отношение фтора к бериллию в пределах...
Тип: Изобретение
Номер охранного документа: 0002494964
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.729f

Плавленолитой хромсодержащий огнеупорный материал

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления хромсодержащих огнеупорных материалов для футеровки стекловаренных печей при утилизации радиоактивных отходов. Плавленолитой хромсодержащий огнеупорный материал содержит компоненты в следующем...
Тип: Изобретение
Номер охранного документа: 0002495000
Дата охранного документа: 10.10.2013
+ добавить свой РИД