Вид РИД
Изобретение
Изобретение относится к технологии редких металлов, в частности к гидрометаллургии циркония и гафния. Для разделения данных элементов и получения их в чистом виде применяли химический метод кристаллизации фторцирконатов [1, 2], сорбционные и экстракционные методы [3, 4]. Широко известный способ отделения циркония от гафния и сопутствующих элементов экстракцией трибутилфосфатом (ТБФ) из нитратных растворов, остается наиболее распространенным в промышленной практике [5]. Этот метод наиболее близок по техническому решению к методу, предлагаемому авторами. В качестве экстрагента используют 70% растворы трибутилфосфата в углеводородном разбавителе. Водные растворы содержат 40-60 г/л циркония и гафния в форме нитратов и 5-7 моль/л азотной кислоты. Для 70% раствора трибутилфосфата рабочая емкость достигает 30-40 г/л по цирконию и гафнию. Разделение проводят в режиме противотока с подачей исходного водного раствора в середину многоступенчатого каскада. С противоположных сторон каскада вводят насыщенный азотной кислотой трибутилфосфат и промывной раствор (азотная кислота, концентрацией 2 моль/л). Цирконий из органического раствора удаляют в форме нитратов обработкой слабым раствором азотной кислоты.
Данный процесс имеет существенный недостаток - емкость органического раствора очень мала, что осложняет создание многотоннажного производства. Для увеличения производительности процесса необходимо повысить емкость органической фазы в 2-3 раза. Достичь такого эффекта можно только увеличив концентрацию циркония и гафния в исходной водной фазе до 150-250 г/л. Однако при высоких концентрациях циркония и гафния в водных растворах наблюдаются эффекты гидролиза и полимеризации, сопровождающиеся выпадением осадков и препятствующие проведению процесса экстракции.
Технический результат предлагаемого изобретения направлен на повышение емкости органической фазы, предотвращение выпадения гидролизных осадков циркония и гафния и повышение стабильности работы каскада.
Для достижения технического результата в способе разделения циркония и гафния, включающем получение гидроксидов циркония и гафния, их растворение в азотной кислоте и последующее извлечение циркония экстракцией трибутилфосфатом из концентрированных растворов, гидроксиды циркония и гафния получают при температуре, не превышающей 30-35°С, затем обезвоживают полученные гидроксиды, после чего растворяют их в азотной кислоте и из полученного раствора извлекают цирконий в противотоке, причем, из ячейки в середине каскада выводят водную фазу, добавляют в нее азотную кислоту и полученный раствор вводят в следующую ступень по движению водной фазы.
В частном случае полученные гидроксиды обезвоживают до содержания циркония и гафния (в расчете на диоксиды) не менее 22-25% (мас.) в осадке.
Кроме того, в частном случае, азотную кислоту вводят в раствор в соотношении (моль): азотная кислота: извлеченный в органическую фазы цирконий, равном 2,0-2,1:1.
Предлагается также в частном случае извлечение циркония осуществлять экстракцией с помощью 90-95% (об.) раствора трибутилфосфата в инертном углеводородном разбавителе.
Азотнокислые растворы циркония и гафния получают растворением их гидроксидов в азотной кислоте. Гидроксиды циркония и гафния получают из любых других неорганических соединений циркония и гафния при температуре, не превышающей 30-35°С. Полученный осадок гидроксидов циркония и гафния обезвоживают до содержания циркония и гафния (в расчете на диоксид) не менее 22-25% (мас.) в осадке. При уменьшении содержания в осадке гидроксидов циркония и гафния менее 22% (мас.) трудно или невозможно получить раствор, содержащий 150-200 г/л по оксидам циркония и гафния в процессе растворения в азотной кислоте (табл.1). Максимальное удаление воды необходимо для получения концентрированного по цирконию раствора указанного состава. Осадки, содержащие более 25% (мас.) циркония и гафния пригодны для растворения, но их можно получить только термическим нагреванием (подсушиванием), что уменьшает степень перехода циркония и гафния в раствор при растворении осадков в азотной кислоте.
После обезвоживания, осадки гидроксидов растворяют в концентрированной азотной кислоте с получением раствора, содержащего 150-200 г/л по диоксиду циркония и гафния и 3-4 моль/л по азотной кислоте. Из полученного раствора извлекают цирконий в противотоке, причем, из ячейки в середине каскада выводят водную фазу, добавляют в нее азотную кислоту и полученный раствор вводят в следующую ступень по движению водной фазы. Азотную кислоту вводят в раствор в соотношении (моль): азотная кислота:извлеченный в органическую фазу цирконий, равном 2,0-2,1:1. Для экстракции используют 90-95% (об.) раствор трибутилфосфата в инертном углеводородном разбавителе, например, в «Эксайде» (торговая марка).
Пример 1.
Гидроксиды циркония и гафния, содержащие 2% гафния, получали обработкой кристаллического оксохлорида циркония гидроксидом натрия при различной температуре. После вскрытия осадки гидроксидов отмывали водой от примесей и растворяли в концентрированной азотной кислоте при температуре 23°С. Результаты приведены в табл.2.
При температуре 11°С уменьшение степени вскрытия связано с уменьшением скорости процесса растворения. Чем выше температура пульпы при обработке гидроксидом натрия оксихлоридов или оксинитратов циркония и гафния в гидроксиды, тем меньше степень извлечения циркония и гафния в раствор при растворении в азотной кислоте. Для дальнейших опытов оксихлорид циркония обрабатывали гидроксидом натрия при температуре 32-33°С, отмывали водой от примеси хлорида аммония и растворяли в азотной кислоте с получением исходного раствора для экстракции. При экстракции в органическую фазу преимущественно извлекается цирконий.
Пример 2.
В табл.3 приведены результаты последовательного извлечения циркония и гафния из одной и той же водной фазы 90% раствором трибутилфосфата в углеводородном разбавителе «Эксайде». Исходный раствор содержал 172 г/л циркония и гафния (в расчете на оксиды) и 4,1 моль/л азотной кислоты. Экстрагент предварительно насыщали азотной кислотой до равновесного состояния с раствором 4,1 моль/л азотной кислоты. Соотношение фаз O:В=1:1. Как видно из табл.3, после извлечения 50% циркония и гафния в органическую фазу, наблюдается образование эмульсии и на последующей стадии образуется сплошная эмульсия в органической и водной фазах, препятствующая проведению процесса экстракции. Эмульсия образуется вследствие уменьшения концентрации азотной кислоты в водной фазе за счет перехода оксонитратов циркония и гафния в тетранитраты циркония и гафния. Для предотвращения образования эмульсии в рафинат экстракции необходимо ввести добавочное количество азотной кислоты.
Пример 3.
Опыт проводили аналогично опыту 2, но с вводом в рафинат после экстракции добавочного количества азотной кислоты. Из 10 мл исходного раствора последовательно извлекали цирконий и гафний обработкой 10 мл экстрагента (90% раствор трибутилфосфата). Исходный раствор содержал 172 г/л циркония и гафния (в расчете на оксиды) и 4,1 моль/л азотной кислоты. Экстрагент предварительно насыщали азотной кислотой до равновесного состояния с раствором 4,1 моль/л азотной кислоты. Соотношение фаз O:В=1:1. Как видно из табл.4, при введении азотной кислоты в рафинат после экстракции, последующая стадия экстракции протекает без образования эмульсии. Эмульсия образуется вследствие снижения концентрации азотной кислоты в водном растворе за счет образования экстрагируемой формы циркония или гафния:
Zr(OH)2(NO3)2+2HNO3=Zr(NO3)4+2H2O
Снижение концентрации азотной кислоты вызывает гидролиз нитратной соли циркония и гафния, выпадение осадков дигидроксооксоциркония или гафния и последующее образование сплошной эмульсии. Рекомендованный интервал соотношения вводимого количества азотной кислоты и извлеченного в органическую фазу циркония и гафния объясняется стехиометрическим соотношением реакции образования экстрагируемой формы циркония или гафния. Таким образом, на каждый моль перешедшего в органическую фазу циркония или гафния из водной фазы изымается 2 моля азотной кислоты. При уменьшении соотношения (моль): азотная кислота: извлеченный в органическую фазу цирконий или гафний меньше 2, в органическую фазу начинает извлекаться недостающее количество кислоты, что как показано в табл.3, приводит к выпадению осадков гидролизованного циркония или гафния. Увеличение соотношения более 2 приводит к чрезмерному перерасходу кислоты, что нерационально. Для проведения процесса экстракции можно применять и 100% трибутилфосфат, но более быстрое расслаивание имеет место при разбавлении трибутилфосфата разбавителем до 90-95%. Как видно из результатов табл.5, в этом случае емкость органической фазы уменьшается на 5-7%, но скорость расслаивания увеличивается на 20-30%.
Таким образом, при выполнении вышеизложенного удается повысить емкость органической фазы до 90 г/л по цирконию и гафнию (по сравнению с 35-40 г/л в прототипе) и в то же время предотвратить образование эмульсии и осадков в процессе экстракции. При увеличении емкости органической фазы, соответственно, возрастает и производительность процесса. Кроме того, по сравнению с прототипом в 4-5 раз уменьшается расход азотной кислоты на приготовление исходного раствора.
Источники информации
1.Бутя Е.Л. и др. «Способ получения гексафторцирконата калия, очищенного от гафния». Патент РФ №2263074 от 06.11.2003, МПК: C01G 25/00.
2. Балуев В.А. и др. «Способ получения фториднйхеюединений циркония с пониженным содержанием гафния». Патент РФ №2170702 от 07.11.1999, МПК: C01G 25/00.
3. Хайковский А.А. и др. «Способ разделения циркония и гафния». Патент РФ №2052385 от 23.03.1993, МПК: C01G 25/00.
4. Волк В.И. и др. «Способ экстракционного разделения и концентрирования циркония и гафния». Заявка РФ №2000115722 от 15.06.2000, МПК: C01G 25/00.
5. Белозерова Л.А. и др. «Способ разделения циркония и гафния». Заявка РФ №2004125135 от 16.08.2004, МПК: C01G 25/00.
|
|
|
|
|