×
10.12.2013
216.012.88d0

Результат интеллектуальной деятельности: СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нанотехнологии и может применяться в отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов. Способ диспергирования заключается в воздействии на смесь наночастиц с жидкой смолой несколькими короткими импульсами ультразвуковых колебаний общей длительностью, не превышающей 100 секунд. После воздействия каждого импульса смесь охлаждают до комнатной температуры, либо воздействуют на смесь одним импульсом с измерением температуры. Смесь охлаждают в процессе воздействия импульса так, чтобы температура смеси не превышала температуру смеси, при которой воздействие ультразвуковых колебаний приводит к уменьшению прочности при сдвиге клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии. Изобретение позволяет обеспечить повышение прочности клеевых соединений и стабильность этих свойств с течением времени, повысить прочность элементов конструкции. 2 з.п. ф-лы, 6 ил.

Изобретение относится к области нанотехнологии и является применимым в различных отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов, для клеевых и клеемеханических соединений различных элементов конструкций, а так же композиций, упрочняющих зоны концентрации напряжений (в виде отверстий, вырезов, галтелей, перепадов толщин) в конструкциях, для залечивания дефектов, микротрещин и других повреждений, возникающих при изготовлении и в процессе эксплуатации конструкций, для устранения и герметизации зазоров в отверстиях и стыках болтовых и заклепочных соединений.

Наиболее эффективным, с точки зрения значительного повышения прочности и ресурса конструкций при малых материальных и денежных затратах, является использование наномодифицированных эпоксидных клеевых композиций в указанных выше применениях.

Известен способ диспергирования упрочнителя в синтетической смоле, в котором частицы упрочнителя и смолу помещают в сосуд и перемешивают их с помощью установленного в сосуде лопастно-шнекового механизма (Патент США №4049244, 20 сентября 1977 г., класс 259/185). Недостатком известного способа в случае его применения для диспергирования наночастиц, в смеси их со смолой является неравномерность распределения наночастиц в смоле, которая может быть связана с недостаточно интенсивным механическим перемешиванием наночастиц со смолой, а так же с наличием зазоров между рабочими поверхностями лопастно-шнекового механизма и поверхностями стенки сосуда, размеры которых значительно превышают размеры наночастиц.

Известен способ диспергирования наночастиц в смоле (Заявка РФ 2005105685, МПК C09J /00, дата публ. заявки 10.12.2005) с использованием механических или ультразвуковых колебании, при котором жидкую смесь нагревают перед диспергированием или во время диспергирования и охлаждают после диспергирования.

Недостатками данного способа являются:

- отсутствие охлаждения жидкой смеси наночастиц со смолой во время диспергирования, вследствие чего нагрев смеси во время диспергирования может приводить к изменению структуры молекул смолы, что приводит к уменьшению прочности наномодифицированного клеевого соединения;

- отсутствие контроля адгезионной составляющей прочности клеевого соединения путем испытаний на прочность при сдвиге образца клеевого соединения, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Известен способ диспергирования наночастиц в эпоксидной смоле, (Э.Г. Раков. Нанотрубки и фуллерены., М., Университетская книга, Логос, 2006, стр.161-167,297-298), в котором наночастицы предварительно диспергируют в растворителе с применением ультразвуковых колебаний, полученную дисперсию смещивают со смолой, а затем из полученной смеси испаряют растворитель.

Данный способ позволяет получить при диспергировании равномерное распределение наночастиц в смоле. Однако у него имеются недостатки:

- трудно обеспечить полное удаление растворителя из смеси его со смолой и наночастицами, некоторое его количество остается и способствует образованию пористого клеевого шва, что уменьшает прочность и герметичность наномодифицированого клеевого соединения;

- операция предварительного диспергирования наночастиц в растворителе и операция удаления растворителя усложняют и удорожают способ;

- отсутствует контроль адгезионной составляющей прочности клеевого соединения путем испытаний на прочность при сдвиге образца, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Известен способ диспергирования наночастиц в эпоксидной смоле, в котором наночастицы предварительно смешивают с этанолом, подвергают смесь в течение 2 часов ультразвуковым колебаниям, смесь смешивают со смолой и отвердителем, а затем удаляют этанол из смеси вакуумированием (Smrutisikha Bal et al. Dispersion an reinforcing mechanism of carbon nanotubes in epoxy nanocomposite. Bull. Mater. Sci. Indian Academy of Science, vol. 33, №1, 2010, p.27-31. (http://www.ias.ac.in/matersci/bmteb2010/27.pdf).

Вышеописанный способ позволяет получить при диспергировании равномерное распределение наночастиц в смоле. Однако у него имеются недостатки:

- операция предварительного диспергирования наночастиц в этаноле и операция удаления этанола вакуумированием усложняют и удорожают способ;

- отсутствует контроль адгезионной составляющей путем испытаний на прочность при сдвиге образца клеевого соединения, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Известен способ диспергирования наночастиц в эпоксидной смоле, в котором наночастицы предварительно смешивают с ацетоном, подвергают смесь в течение 20-40 минут воздействию ультразвуковых колебаний, смешивают смесь с отвердителем и поверхностно активным веществом, подвергают смесь в течение 20-40 минут воздействию ультразвуковых колебаний, удаляют ацетон вакуумированием и смешивают со смолой для завершения процесса отверждения (Caio Erico Pizzutt et al. Study of epoxy /CNT nanocomposite prepared via dispersion in the hardener. Mater. Res., vol.14, №2, Cao Carlo 2011, Epub. June 03, 2011.), (http://www.sciclo.br/sciclo.php.pid=sl 516-14392011000200019&script=sci_arttext).

Известный способ позволяет получить при диспергировании равномерное распределение наночастиц в смоле. Однако у него имеются недостатки:

- операция предварительного диспергирования наночастиц в ацетоне, операция удаления ацетона вакуумированием, а так же применение двух операций, связанных с ультразвуковыми колебаниями длительностью по 20-40 минут, усложняют и удорожают способ;

- отсутствует контроль адгезионной составляющей прочности клеевого путем испытаний на прочность при сдвиге образца клеевого соединения, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Наиболее близким техническим решением к предлагаемому изобретению является способ диспергирования наночастиц в жидкой эпоксидной смоле, в котором наночастицы в виде углеродных нанотрубок смешивают с эпоксидной смолой и подвергают смесь ультразвуковым колебаниям в течение 5 часов (Fawad Inam et al. Multiscale hybrid micro-nanocomposite based on carbon nanotubes and fibres. Journal Nanomaterials, vol. 2010(2010), article ID 453420 doi. 10.1155/2010/453420, (www. http://hindawi.com/Journals/jnm 2010/453420).

Этот способ позволяет получить при диспергировании равномерное распределение наночастиц в смоле. Однако у него имеются недостатки:

1. Большая продолжительность процесса диспергирования и отсутствие контроля температуры диспергируемой смеси. Согласно проведенным экспериментам и наноизмерениям (Э.Г. Раков. Нанотрубки и фуллерены. -М.: Университетская книга, Логос, 2006, стр.140) при большой длительности диспергирования может значительно (более чем в 1000 раз) уменьшаться длина нанотрубок, что должно уменьшать и когезионную, и адгезионную составляющие прочности клеевого соединения, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии. Адгезионная и когезионная составляющие прочности будет уменьшаться вследствие того, что наличие укороченных нанотрубок на молекулярном уровне снижает деформационную составляющую клеевой композиции, а также прочность сцепления на границе склеиваемых поверхностей с клеевой композицией, содержащей наноэпоксидную дисперсию с укороченными нанотрубками.

2. Отсутствует контроль адгезионной составляющей прочности клеевого соединения путем испытаний на прочность при сдвиге образца, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Задачей предлагаемого изобретения является создание клеевых и клеемеханических соединений различных элементов конструкций повышенной прочности.

Техническим результатом является повышение прочности клеевых соединений, выполненных с применением наномодифицированных композиций на основе жидких смол и повышение прочности элементов конструкции с упрочненными наномодифицированными клеевыми композициями зонами концентрации напряжений, а так же обеспечение стабильности повышенных прочностных свойств с течением времени.

Технический результат достигается тем, что в предлагаемом способе диспергирования воздействуют на смесь наночастиц с жидкой смолой несколькими короткими импульсами ультразвуковых колебаний общей длительностью, не превышающей 100 секунд, или воздействуют на смесь одним импульсом такой же длительности с измерением температуры и охлаждением смеси в процессе воздействия, а после окончания диспергирования производят контроль его качества.

Технический результат достигается тем, что при воздействии на смесь нескольких коротких импульсов ультразвуковых колебаний после воздействия каждого импульса охлаждают смесь до комнатной температуры, а после воздействия на смесь одним импульсом длительностью, не превышающей 100 секунд, охлаждают смесь в процессе воздействия импульса так, чтобы температура смеси не превышала температуру смеси, при которой воздействие ультразвуковых колебаний приводит к уменьшению прочности при сдвиге клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Технический результат достигается также тем, что для контроля качества диспергирования наночастиц в смеси со смолой испытывают на прочность при сдвиге контрольный образец клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, и сравнивают полученное значение прочности с полученной на стадии отработки предложенного способа диспергирования максимальной прочностью при сдвиге образца клеевого соединения, изготовленного на основе клея с применением полученной на указанной стадии наноэпоксидной дисперсии.

Фиг.1. Влияние концентрации наночастиц в клее на предел прочности при сдвиге клеевого соединения.

Фиг.2. Образец из углепластика, моделирующий фрагмент стенки нервюры крыла при испытаниях на потерю устойчивости при сдвиге.

Фиг.3. Дефекты на поверхности и кромках отверстия образца после механической обработки.

Фиг.4. Вид кромки отверстия, упрочненной наноклеевой композицией.

Фиг.5. Исходный образец после испытаний на сдвиг.

Фиг.6. Образец с упрочненным наноклеевой композицией отверстием после испытаний на сдвиг.

Достижение значительного повышения прочности и ресурса клеевых соединений и других элементов конструкций с концентраторами напряжений возможно лишь при высококачественном диспергировании наночастиц в смеси с жидкой смолой, например, эпоксидной, которое определяется равномерным распределением наночастиц в смоле, минимальным их повреждением и минимальным повреждением структуры молекул смолы. Трудности обеспечения равномерности распределения наночастиц в смоле связаны со склонностью наночастиц к взаимному притяжению, приводящему к их слипанию и агрегированию. Поэтому способы и режимы диспергирования, а так же методы контроля качества диспергирования наночастиц в смоле имеют решающее значение для эффективного применения наномодифицированных эпоксидных клеевых композиций.

Одним из способов контроля качества, наиболее полно отражающих качество диспергирования, является испытание на прочность при сдвиге образца клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии. В этих - испытаниях автоматически, в отличие от аналогов и прототипа контролируется две составляющие прочности клеевого слоя - когезионная составляющая (отражающая прочность наномодифицированного клеевого слоя) и адгезионная составляющая (отражающая прочность сцепления наномодифицированного клеевого слоя с поверхностями склеиваемых элементов конструкции). В связи с этим контроль качества диспергирования наночастиц в смеси их со смолой только по когезионной прочности материала, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, является недостаточным.

Для осуществления предлагаемого способа воздействуют на смесь несколькими короткими импульсами ультразвуковых колебаний общей -длительностью, не превышающей 100 секунд, или воздействуют на смесь одним импульсом такой же длительности с измерением температуры в процессе воздействия и с охлаждением смеси, а после окончания диспергирования производят контроль его качества путем определения прочности клеевых соединении.

В процессе воздействия каждого короткого импульса ультразвуковых колебаний охлаждают смесь до комнатной температуры, а после воздействия на смесь одним импульсом длительностью, не превышающей 100 секунд, охлаждают смесь в процессе воздействия импульса таким образом, чтобы ее температура не превышала температуру смеси, при которой воздействие ультразвуковых колебаний приводит к уменьшению прочности при сдвиге клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии.

Для контроля качества диспергирования наночастиц в смеси их со смолой испытывают на прочность при сдвиге контрольный образец клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, и сравнивают полученное значение прочности с полученной на стадии отработки предложенного способа диспергирования максимальной прочностью при сдвиге образца клеевого соединения, изготовленного на основе клея с применением полученной на указанной стадии наноэпоксидной дисперсии.

При отработке предлагаемого способа диспергирования производят диспергирование наночастиц, например, углеродного наноматериала "Таунит" в эпоксидной смоле, например, ЭД-20 с применением нескольких коротких импульсов ультразвуковых колебаний общей длительностью, не превышающей 100 секунд, охлаждают смесь после воздействия каждого импульса ультразвуковых колебаний до комнатной температуры, изготавливают образцы клеевых соединений на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, и испытывают их на прочность при сдвиге. Форма и размеры образцов и методика испытаний образцов соответствуют ГОСТ 14759.

С применением наноэпоксидной дисперсии, полученной при воздействии при диспергировании на смесь наночастиц со смолой трех импульсов ультразвуковых колебаний общей длительностью до 100 секунд с охлаждением после каждого импульса до комнатной температуры и при воздействии при диспергировании на смесь наночастиц со смолой одного импульса ультразвуковых колебаний длительностью до 100 секунд без охлаждения до комнатной температуры, были изготовлены и испытаны образцы клеевых соединений из сплава Д16АТ, которые показали, что предел прочности при сдвиге образцов клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, во втором случае уменьшается ~ на 8% при увеличении температуры смеси наночастиц со смолой в конце диспергирования ~ в 1,5 раза по сравнению с конечной температурой смеси в конце воздействия кратковременных импульсов первого случая диспергирования. Одной из причин такого уменьшения прочности является возможное начало деструкции эпоксидной смолы, вызванное повышенной температурой при одновременном воздействии на смолу ультразвуковых колебаний. Основываясь на данных проведенных исследований, для того, чтобы температура при изготовлении наноэпоксидной дисперсии не приводила к уменьшению предела прочности при сдвиге образцов клеевого соединения на основе клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, необходимо охлаждать смесь до комнатной температуры после воздействия каждого из нескольких коротких импульсов ультразвуковых колебаний с общей длительностью, не превышающей 100 секунд, или при воздействии одного импульса ультразвуковых колебаний длительностью не более 100 секунд осуществлять охлаждение с измерением температуры в процессе воздействия импульса и при этом производят охлаждение смеси так, чтобы ее температура была не выше 95°С в зависимости от вида смолы и объема приготавливаемой смеси.

Первый вариант охлаждения смеси при диспергировании использован при доведении предложенного способа до практической реализации.

С применением наноэпоксидной дисперсии, полученной при воздействии при диспергировании на смесь наночастиц со смолой нескольких коротких импульсов ультразвуковых колебаний общей длительностью до 100 секунд с охлаждением после каждого импульса до комнатной температуры были изготовлены и испытаны образцы клеевых соединений из сплава Д16АТ и из стеклопластика с титановым сплавом ВТ-6, которые показали (фиг.1, 1 - среднее значение предела прочности; 2 -минимальное значение предела прочности) существенное (до 26%) повышение минимального значения предела прочности при сдвиге наномодифицированного клеевого соединения по сравнению с пределом прочности при сдвиге исходного клеевого соединения.

При концентрации наночастиц в клее, изменяющейся в диапазоне от 0 до 2% коэффициент вариации предела прочности изменяется в пределах от 7,5 до 5,0. Повышение прочности клеевого соединения за счет наноэпоксидной дисперсии происходит без уменьшения предельных деформаций клеевого слоя, т.е. охрупчивания клеевого слоя в проведенных экспериментах не наблюдалось.

Для контроля стабильности повышения прочности клеевых соединений за счет применения получаемой при диспергировании наноэпоксидной дисперсии были испытаны контрольные образцы клеевых соединений из алюминиевого сплава Д16АТ и контрольные образцы клеевых соединений из стеклопластика с титановым сплавом ВТ-6, изготовленные на основе клея с применением наноэпоксидной дисперсии, полученной с перерывом в 1,5 года после получения при отработке предложенного способа данных, приведенных на фиг.1. Результаты испытаний показали, что значения прочности при сдвиге контрольных образцов на 2-5% выше полученных раньше значений прочности.

С использованием клея, изготовленного с применением полученной при диспергировании наноэпоксидной дисперсии, было выполнено упрочнение поверхности и кромок отверстия диаметром 80 мм в образце из углепластика, моделирующего фрагмент стенки нервюры крыла самолета и были проведены испытания образца на потерю устойчивости при сдвиге (фиг.2). Дефекты на поверхности и кромках отверстия в образце после механической обработки, вид кромки отверстия, упрочненной наноклеевой композицией, и характер разрушения панелей показаны на фиг.3-6.

Нагружение образца при испытаниях вызывает потерю устойчивости и расслоение углепластика в сжатой зоне (фиг.5), сопровождающиеся разрушением образца на кромках отверстия в зоне максимальной концентрации растягивающих напряжений. Упрочнение поверхности отверстия и заполнение содержащей наноэпоксидную дисперсию наноклеевой композицией микротрещин и микродефектов на кромках отверстия образца (фиг.6) сдвигает зону начала расслоения и разрушения от кромок отверстия и повышает значение нагрузки начала потери устойчивости образца на 32%.

Таким образом, предложенным способом диспергирования наночастиц в эпоксидной смоле обеспечивается повышение прочности клеевых соединений, выполненных с применением наномодифицированных композиций на основе эпоксидных смол, повышается прочность элементов конструкции за счет упрочнения наномодифицированными клеевыми композициями зон концентрации напряжений, а так же обеспечивается стабильность повышенных прочностных свойств с течением времени.


СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОЧАСТИЦ В ЭПОКСИДНОЙ СМОЛЕ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 292.
13.01.2017
№217.015.7672

Способ определения температурной зависимости степени черноты (варианты)

Изобретение относится к теплофизике и может быть использовано для определения температурной зависимости интегральной степени черноты покрытий и поверхностей твердых тел. Способ включает измерение температуры на внешних и внутренних поверхностях двух размещенных параллельно с небольшим зазором...
Тип: Изобретение
Номер охранного документа: 0002598699
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.76dd

Способ контроля обрывов изолированных термопар при теплопрочностных испытаниях конструкций и измерительная информационная система для его осуществления (варианты)

Изобретение относится к измерительной технике и предназначено для теплопрочностных испытаний конструкций. Способ заключается в том, что в измерительной информационной системе с режимами измерения сигналов термопар и сопротивления резисторных датчиков измеряют сопротивление термоэлектродов...
Тип: Изобретение
Номер охранного документа: 0002598703
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.77eb

Система энергопитания рулевых приводов первичных органов управления пассажирского самолета

Изобретение относится к электроснабжению системы управления и передачи для приведения в действие поверхностей управления самолета. Система энергопитания рулевых приводов первичных органов управления пассажирского самолета содержит бортовые электрогенераторы переменного тока, вспомогательные...
Тип: Изобретение
Номер охранного документа: 0002598926
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.791b

Способ мониторинга нагрузок и накопленной усталостной повреждаемости в условиях эксплуатации самолета

Изобретение относится к авиации и касается способа мониторинга нагрузок и накопленной усталостной повреждаемости конструкции агрегатов планера в условиях реальной эксплуатации. При мониторинге нагрузок и накопленной усталостной повреждаемости конструкции агрегатов планера на основе обработки...
Тип: Изобретение
Номер охранного документа: 0002599108
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.864d

Лопасть винта винтокрылого летательного аппарата

Изобретение относится к области авиации, в частности к конструкциям лопастей несущего и рулевого винтов винтокрылых летательных аппаратов. Лопасть винта состоит из комлевой части с узлом крепления, средней части и концевой части, состоящей из первого участка, имеющего переднюю кромку обратной...
Тип: Изобретение
Номер охранного документа: 0002603710
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.86b4

Способ снижения динамической нагруженности транспортного средства при движении по поверхности и транспортное средство

Группа изобретений относится к области транспорта, а именно к способу снижения динамической нагруженности транспортного средства при движении по неровной поверхности. Транспортное средство содержит амортизационную стойку шасси, логико-вычислительную подсистему, включающую вычислитель, эталонную...
Тип: Изобретение
Номер охранного документа: 0002603703
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.878c

Лопасть несущего винта вертолёта с отклоняемой задней кромкой

Изобретение относится к области авиации, в частности к конструкциям устройств изменения циклического шага несущих винтов вертолетов. Лопасть несущего винта вертолета с отклоняемой задней кромкой включает закрылок, привод и встроенную в корпус лопасти систему передачи движения, содержащую тяги....
Тип: Изобретение
Номер охранного документа: 0002603707
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.87b7

Устройство для измерения давления и температуры

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения давления, температуры и теплового потока с компенсацией влияния температуры на результаты измерения давления. Чувствительным элементом (ЧЭ) для измерения давления выбран «кремний на сапфире»,...
Тип: Изобретение
Номер охранного документа: 0002603446
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.880a

Способ торможения сверхзвукового потока

Изобретение относится к аэродинамике летательных аппаратов сверхзвуковых и околозвуковых скоростей. Способ торможения сверхзвукового потока заключается в создании скачков уплотнения, движущихся относительно обтекаемой поверхности в направлении течения, со значениями скоростей меньшими разницы...
Тип: Изобретение
Номер охранного документа: 0002603705
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9c51

Устройство для измерения интегральной полусферической излучательной способности частично прозрачных материалов

Изобретение относится к измерительной технике. Устройство содержит вакуумную камеру, исследуемый образец, механизм вращения образца, два плоских омических нагревателя с расположенными в них датчиками температуры и тепловых потоков. Определение интегральной полусферической излучательной...
Тип: Изобретение
Номер охранного документа: 0002610552
Дата охранного документа: 13.02.2017
Показаны записи 131-140 из 199.
25.08.2017
№217.015.acd8

Устройство для измерения давления в аэродинамических трубах

Изобретение относится к измерительной технике и может быть использовано для измерения полного и статическое давления, их пульсаций в аэродинамических трубах и стендах. Для измерения указанных давлений предложен датчик давления, содержащий тензометрические и емкостные чувствительные элементы....
Тип: Изобретение
Номер охранного документа: 0002612733
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.ae50

Гидродинамический интерцептор

Изобретение относится к области судостроения и, в частности, касается усовершенствования быстроходных судов, обеспечивает ускоренный выход судна на режим глиссирования и повышает устойчивость при движении на скорости. Предложен гидродинамический интерцептор, содержащий устройство управления,...
Тип: Изобретение
Номер охранного документа: 0002612941
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b441

Способ охлаждения дыхательной газовой смеси в средствах индивидуальной защиты органов дыхания

Изобретение относится к области спасательной техники, а именно к средствам индивидуальной защиты органов дыхания, преимущественно маятникового типа, работающим на химически связанном кислороде. Дыхательную газовую смесь (ДГС) пропускают между волокнистыми подложками, на которые предварительно...
Тип: Изобретение
Номер охранного документа: 0002614028
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b614

Магистральный пассажирский самолет на криогенном топливе

Изобретение относится к авиационной технике. Магистральный пассажирский самолет на криогенном топливе состоит из фюзеляжа, стреловидного крыла большого удлинения, хвостового оперения, двигателей, расположенных на фюзеляже. Фюзеляж имеет две параллельные пассажирские кабины, между которыми...
Тип: Изобретение
Номер охранного документа: 0002614443
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b78f

Мотогондола двигателя на крыле летательного аппарата

Предлагаемое изобретение относится к авиационной технике. Мотогондола (1) на крыле (3) летательного аппарата установлена так, что координата по оси X составляет 0.7÷0.8 средней аэродинамической хорды крыла, отложенной от передней кромки крыла (6) до среза сопла мотогондолы (5), по оси Y...
Тип: Изобретение
Номер охранного документа: 0002614870
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b84a

Способ ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем

Изобретение относится к области летательных аппаратов околозвуковых скоростей. Способ ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем на обтекаемой поверхности включает выполнение выдува струй округлой поперечной формы из обтекаемой поверхности перед скачком...
Тип: Изобретение
Номер охранного документа: 0002615251
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.c6e3

Способ получения дисперсий углеродных наноматериалов

Изобретение относится к нанотехнологии и может быть использовано при изготовлении нанокомпозитов. Углеродный наноматериал - нанотрубки или графен, частицы которых содержат на поверхности кислородсодержащие группы, обрабатывают раствором водорастворимого резольного фенолформальдегидного полимера...
Тип: Изобретение
Номер охранного документа: 0002618881
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.cbe2

Способ получения мезопористого углерода

Изобретение направлено на получение углеродных материалов с развитой поверхностью и пористостью. Согласно изобретению исходное вещество, представляющее собой смесь водорастворимой фенолформальдегидной смолы, углевода и графеновых нанопластинок, подвергают термообработке при температуре до...
Тип: Изобретение
Номер охранного документа: 0002620404
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cc1d

Осесимметричная носовая часть фюзеляжа летательного аппарата

Изобретение относится к области авиационной техники. Осесимметричная носовая часть фюзеляжа затуплена по торцу и ее боковая поверхность имеет образующую, которая составлена из двух дуг окружностей и элемента, задаваемого степенной зависимостью радиуса от продольной координаты. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002620455
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cffe

Имитатор сигналов мостовых тензорезисторных датчиков

Изобретение относится к измерительной технике и предназначено для имитации сигналов мостовых тензорезисторных датчиков при проведении метрологических исследований и калибровке быстродействующих измерительных систем в автоматическом режиме. Имитатор сигналов мостовых тензорезисторных датчиков...
Тип: Изобретение
Номер охранного документа: 0002620895
Дата охранного документа: 30.05.2017
+ добавить свой РИД