×
20.11.2013
216.012.82a3

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ СОВМЕЩЕННОГО МЕХАНИЧЕСКОГО И ТЕРМИЧЕСКОГО РАСШИРЕНИЯ СКВАЖИН

Вид РИД

Изобретение

Аннотация: Изобретение относится к горной промышленности, в частности к бурению скважин. Устройство для совмещенного механического и термического расширения скважин содержит электронагреватели с адсорбером, которые последовательно установлены в магистрали подвода воздуха, при этом адсорбер выполнен в виде двух вставленных один в другой и ограниченных поверхностями цилиндров разного диаметра, причем адсорбер внутренней стенкой меньшего цилиндра плотно насажен на внешнюю поверхность трубы для отвода парогазовой смеси в атмосферу, адсорбент размещен в подпружиненной кассете, свободно перемещающейся в вертикальном направлении между внутренней поверхностью большего цилиндра и внешней поверхностью меньшего цилиндра. Цилиндры разных диаметров адсорбера выполнены из биметаллов, при этом материал внутренней поверхности большого цилиндра имеет коэффициент теплопроводности в 2,0-2,5 раза больше, чем коэффициент теплопроводности материала внешней поверхности большего цилиндра, а материал внешней поверхности меньшего цилиндра имеет коэффициент теплопроводности в 2,0-2,5 раза меньше, чем коэффициент теплопроводности меньшего цилиндра со стороны трубы для отвода горячего парогазового потока в окружающую среду. Обеспечивает повышение эффективности термического расширения скважин при длительной эксплуатации. 4 ил.
Основные результаты: Устройство для совмещенного механического и термического расширения скважин, включающее буровой став с породоразрушающими элементами, размещенную в торце става горелку с магистралями подвода горючего и воздуха, установку пылегазоподавления со встроенной трубой для отвода горячего парогазового потока в окружающую среду, пульт управления, электронагреватели с адсорбером, которые последовательно установлены в магистрали подвода воздуха, при этом адсорбер выполнен в виде двух вставленных один в другой и ограниченных поверхностями цилиндров разного диаметра, причем адсорбер внутренней стенкой меньшего цилиндра плотно насажен на внешнюю поверхность трубы для отвода парогазовой смеси в атмосферу, адсорбент размещен в подпружиненной кассете, свободно перемещающейся в вертикальном направлении между внутренней поверхностью большего цилиндра и внешней поверхностью меньшего цилиндра, при этом в верхней части на внутренней поверхности большего цилиндра укреплен золотник, а в нижней ее части выполнено золотниковое отверстие, причем горелка выполнена как минимум из двух противоположно расположенных суживающихся сопел, на внутренних поверхностях которых выполнены криволинейные канавки, при этом на внутренней поверхности одного суживающегося сопла кривизна направляющей криволинейной канавки имеет направление движения по ходу часовой стрелки, а на внутренней поверхности противоположно расположенного сопла кривизна направляющей криволинейной канавки имеет направление движения против хода часовой стрелки, отличающееся тем, что цилиндры разных диаметров адсорбера выполнены из биметаллов, при этом материал внутренней поверхности большого цилиндра имеет коэффициент теплопроводности в 2,0-2,5 раза больше, чем коэффициент теплопроводности материала внешней поверхности большего диаметра, а материал внешней поверхности меньшего цилиндра имеет коэффициент теплопроводности в 2,0-2,5 раза меньше, чем коэффициент теплопроводности меньшего цилиндра со стороны трубы для отвода горячего парогазового потока в окружающую среду.

Изобретение относится к горной промышленности, в частности к бурению скважин.

Известно устройство для совмещенного механического и термического расширения скважин (см. патент РФ №2168597, МПК Е21В 7/14,. 2001), включающее буровой став с породоразрушающими элементами, размещенную в конце става горелку с магистралями подвода горючего и воздуха, установку пылеподавления с встроенной трубой для отвода горячего парогазового потока в окружающую среду, пульт управления, электронагреватели с адсорбером, которые последовательно установлены в магистрали подвода воздуха, при этом адсорбер выполнен в виде двух вставленных один в другой и ограниченных поверхностями цилиндров разного диаметра, причем адсорбер внутренней стенкой меньшего цилиндра плотно насажен на внешнюю поверхность трубы для отвода парогазовой смеси в атмосферу, адсорбер размещен в подпружиненной кассете, свободно перемещающейся в вертикальном направлении между внутренней поверхностью большего цилиндра и внешней поверхностью меньшего цилиндра, при этом в верхней части на внутренней поверхности большего цилиндра укреплен золотник, а в нижней ее части выполнено золотниковое отверстие.

Недостатком данного устройства является невозможность увеличения температурного градиента в условиях бурения при изменяющейся твердости пород взрывных скважин, что обусловлено прямоточностью движения огневого потока и соответственно постоянством теплового напряжения в зоне действия факела.

Известно устройство для совмещенного механического и термического расширения скважин (см. патент РФ №2401379, МПК Е21В 7/14, Е21В 7/28 опубл. 10.10.1010, Бюл. №28), включающее буровой став спородоразрушающими элементами, размещенную в торце става горелку с магистралями подвода горючего и воздуха, установку пылегазоподавления с встроенной трубой для отвода горячего парогазового потока в окружающую среду, пульт управления, электронагреватели с адсорбером, которые последовательно установлены в магистрали подвода воздуха, при этом адсорбер выполнен в виде двух вставленных один в другой и ограниченных поверхностями цилиндров разного диаметра, причем адсорбер внутренней стенкой меньшего цилиндра плотно насажен на внешнюю поверхность трубы для отвода парогазовой смеси в атмосферу, адсорбент размещен в подпружиненной кассете, свободно перемещающейся в вертикальном направлении между внутренней поверхностью большего цилиндра и внешней поверхностью меньшего цилиндра, при этом в верхней части на внутренней поверхности большего цилиндра укреплен золотник, а в нижней ее части выполнено золотниковое отверстие, причем горелка выполнена как минимум из двух противоположно расположенных суживающихся сопл, на внутренних поверхностях которых выполнены криволинейные канавки, при этом на внутренней поверхности одного суживающегося сопла кривизна направляющей криволинейной канавки имеет направление движения по ходу часовой стрелки, а на внутренней поверхности противоположно расположенного сопла кривизна направляющей криволинейной канавки имеет направление движения против хода часовой стрелки.

Недостатком данного устройства является снижение производительности при термическом расширении скважин из-за уменьшения глубины осушки сжатого воздуха, являющегося окислителем, при длительной эксплуатации, вследствие температурного разрушения путем растрескивания зерен адсорбента, находящихся в непосредственном контакте с внешней поверхностью меньшего цилиндра адсорбера, из-за поступления посредством теплопроводности значительного теплового потока со стороны трубы для отвода парогазовой смеси в атмосферу.

Технической задачей является повышение эффективности термического расширения скважин при длительной эксплуатации путем снижения вероятности температурного разрушения зерен адсорбента, приводящего к последующему уменьшению необходимой глубины осушки сжатого воздуха и, как следствие, снижение качества воздушного окисления путем выполнения цилиндров адсорбера разных диаметров из биметалла, причем материал внутренней поверхности большего цилиндра имеет коэффициент теплопроводности в 2,0-2.,5 раза больше, чем коэффициент теплопроводности материала внешней поверхности большего цилиндра, а материал внешней поверхности меньшего цилиндра имеет коэффициент

теплопроводности в 2,0-2.,5 раза меньше, чем коэффициент теплопроводности меньшего цилиндра со стороны трубы для отвода горячего парогазового потока в окружающую среду.

Технический результат предложенного изобретения достигается тем, что устройство для совмещенного механического и термического расширения скважин, включающее буровой став с породоразрушающими элементами, размещенную в торце става горелку с магистралями подвода горючего и воздуха, установку пылегазоподавления со встроенной трубой для отвода горячего парогазового потока в окружающую среду, пульт управления, электронагреватели с адсорбером, которые последовательно установлены в магистрали подвода воздуха, при этом адсорбер выполнен в виде двух вставленных один в другой и ограниченных поверхностями цилиндров разного диаметра, причем адсорбер внутренней стенкой меньшего цилиндра плотно насажен на внешнюю поверхность трубы для отвода парогазовой смеси в атмосферу, адсорбент размещен в подпружиненной кассете, свободно перемещающейся в вертикальном направлении между внутренней поверхностью большего цилиндра и внешней поверхностью меньшего цилиндра, при этом в верхней части на внутренней поверхности большего цилиндра укреплен золотник, а в нижней ее части выполнено золотниковое отверстие, причем горелка выполнена как минимум из двух противоположно расположенных суживающихся сопел, на внутренних поверхностях которых выполнены криволинейные канавки, при этом на внутренней поверхности одного суживающегося сопла кривизна направляющей криволинейной канавки имеет направление движения по ходу часовой стрелки, а на внутренней поверхности противоположно расположенного сопла кривизна направляющей криволинейной канавки имеет направление движения против хода часовой стрелки, причем цилиндры разных диаметров адсорбера выполнены из биметаллов при этом материал внутренней поверхности большого цилиндра имеет коэффициент теплопроводности в 2-2,5 раза больше, чем коэффициент теплопроводности материала внешней поверхности большего цилиндра, а материал внешней поверхности меньшего цилиндра имеет коэффициент теплопроводности в 2,0-2,5 раза меньше, чем коэффициент теплопроводности меньшего цилиндра со стороны трубы для отвода горячего парогазового потока в окружающую среду.

На фиг.1 изображено устройство, общий вид; на фиг 2 - узел А фиг.1;

на фиг.3 - внутренняя поверхность суживающегося сопла с криволинейными канавками, кривизна которых имеет направление против хода часовой стрелки; фиг.4 внутренняя поверхность суживающегося сопла с криволинейными канавками, кривизна которых имеет направление по ходу часовой стрелки.

Устройство для совмещенного механического и термического расширения скважин содержит горелку с породоразрушающими элементами 1, магистраль для подвода воздушного окислителя (воздуха) 2, магистраль для подвода горючего 3, установку пылегазоподавления 4, трубу для отвода горячего парогазового потока 5, пульт управления 6, электронагреватели 7, адсорбер 8, представляющий собой два вставленных один в другой и ограниченных поверхностями цилиндров разного диаметра, при этом адсорбент размещен в подпружиненной кассете 9, опирающейся на пружину 10 и свободно перемещающейся в вертикальном направлении между внутренней поверхностью 11 большего цилиндра и внешней поверхностью 12 меньшего цилиндра, кроме того, в верхней части на внутренней поверхности 11 большего цилиндра укреплен золотник 13, а в нижней ее части выполнено золотниковое отверстие 14. Горелка 15 выполнена как минимум из двух противоположно расположенных суживающихся сопел 16 и 17. На внутренней поверхности 18 суживающегося сопла 16 расположены криволинейные канавки 19, кривизна направляющей которых имеет направление по ходу часовой стрелки, а на внутренней поверхности 20 суживающегося сопла 17 расположены криволинейные канавки 21, кривизна направляющей которых имеет направление против хода часовой стрелки.

Цилиндр 22 большего диаметра адсорбера выполнен из биметалла таким образом, что материал 23 внутренней поверхности 11 имеет коэффициент теплопроводности (например, алюминий с коэффициентом теплопроводности 204 Вт/(м·°С), см. Нащокин В.В. Техническая термодинамика и теплопроводность. М.: 1980. 469 с.) в 2,0-2,5 раза выше, чем коэффициент теплопроводности материала 24 со стороны окружающей среды (например, латунь с коэффициентом теплопроводности 85 Вт/(м·°С) см. там же). Цилиндр 25 меньшего диаметра адсорбера выполнен из биметалла таким образом, что материал 26 внешней поверхности 12 имеет коэффициент теплопроводности (например, латунь) в 2,0-2,5 раза меньше чем коэффициент теплопроводности материала 27 (например, алюминий) со стороны трубы для отвода горячего парогазового потока в окружающую среду.

Устройство для совмещенного механического и термического расширения скважин работает следующим образом.

Выполнение цилиндра 22 большего диаметра из биметалла при расположении адсорбера в кузове устройства уже совмещенного механического и термического расширения скважин с преимущественно положительными температурами вне зависимости от времени года приводит к тому, что при выполнении материала 24 с коэффициентом теплопроводности в 2,0-2,5 меньше, чем коэффициент теплопроводности материала 23, снижают в той же пропорции теплопотери в окружающую среду за счет образования в месте касания биметаллов термической зоны сопротивления (см., например, Дмитриев В.П. Биметаллы. Пермь: 1991. 387 с.). В результате во внутренней полости адсорбера, т.е. в месте нахождения адсорбента поддерживается постоянный температурный (близкий к нормированному,+20°С) режим адсорбции, способствующий наиболее эффективному процессу осушки сжатого воздуха (см., например, Серпионова Е.Н. Промышленная адсорбция газов и паров. М.: 1969. 388 с.)

При включении переключателя на пульте 6 управления процессом бурения в режим термического разрушения горных пород воздушный окислитель (воздух) от компрессора (не показан) по магистрали 2 подвода воздушного окислителя через выключенный электронагреватель 7 поступает к адсорберу 8 и далее на подпружиненную кассету 9, где и контактирует с адсорбентом. Очищенный от влаги воздух поступает в горелку 15 с породоразрушающими элементами 1, куда одновременно подается горючее по магистрали 3. В результате происходит сгорание горючего и выделенная теплота расходуется на термическое разрушение горных пород без затрат на превращение влаги окислителя в перегретый пар, соответствующий температуре газовой струи, и образуется факел.

Факел в горелке 15 разделяется на два потока и выбрасывается через противоположно расположенные сопла 16 и 17. Перемещаясь по криволинейным канавкам 19, выполненным на внутренней поверхности 18 суживающегося сопла 16, поток газов закручивается по ходу часовой стрелки, а поток газов, перемещаясь по криволинейным канавкам 21, выполненным на внутренней поверхности 20 суживающегося сопла 17, закручивается против хода часовой стрелки. В результате взаимодействия двух противоположно закрученных потоков горячих газов, выбрасываемых из сужающихся сопел 16 и 17, образуются микровзрывы в зоне контакта с разрушаемой породой, что приводит к резкому возрастанию «точечных» давлений (см., например, Меркулов В.П. Вихревой эффект и его применение в промышленности, Куйбышев: 1969. 356 с), что повышает эффективность термического разрушения и особенно при расширении взрывных скважин.

При контакте воздуха с адсорбентом и насыщении его влагой увеличивается масса подпружиненной кассеты 9, и она свободно начинает перемещается вниз по внутренней поверхности 11 большего цилиндра и внешней поверхности 12 меньшего цилиндра, перекрывая золотниковое отверстие 14. Пружина 10 осуществляет гашение вибрационного воздействия процесса термомеханического разрушения горных пород на подпружиненную кассету 9, уменьшая тем самым истирание зерен адсорбента. По мере скольжения подпружиненной кассеты 9 по поверхности золотника 13 в полость нахождения пружины 10 поступает часть осушаемого воздуха для компенсации действия дополнительной массы, получаемой при насыщении влагой адсорбента. В результате совместного воздействия пружины 10 и давления сжатого воздуха, поступающего в полость нахождения пружины 10 через золотник 1, осуществляется процесс осушки с обеспечением эффективного гашения вибрационного воздействия горелки с породоразрушающими элементами 1 на установку пылегазоподавления 4 и, соответственно, через подпружиненную кассету 9 на адсорбент.

При включении переключателя на пульте 6 управления процессом бурения в режиме продувки скважин смесь парогазового потока с выбуренной массой твердых частиц из скважины поступает в установку 4 пылегазоподавления, где отделяется от твердых частиц, а очищенный горячий парогазовый поток по трубе 5 для отвода горячего парогазового потока выбрасывается в атмосферу.

Процесс регенерации адсорбента осуществляется при температуре, обеспечивающей удаление адсорбционно-связанной влаги, которая сначала испаряется в адсорбенте, а затем перемещается в виде пара к его поверхности. Нарушение этой временной последовательности при быстром нагреве зерен адсорбента (например, как в прототипе), особенно непосредственно контактирующих с внешней поверхностью 12 цилиндра 25 меньшего диаметра, приводит к растрескиванию зерен адсорбента, и как следствие, последующему ухудшению качеству осушки воздушного окислителя, что и наблюдается при длительной эксплуатации.

Для устранения этого явления стенка цилиндра 25 меньшего диаметра выполнена из биметалла. В этом случае тепловой поток от поверхности трубы для отвода горячего парогазового потока 5 теплопроводностью передается материалу 27 (алюминию) с высоким коэффициентом теплопроводности, нагревает его и далее также теплопроводностью передается материалу 26 с более низким коэффициентом теплопроводности (латунь), осуществляя при этом постепенное нагревание зерен адсорбента с обеспечением удаления адсорбационно связанной влаги.

Наличие границы между материалом 26 и материалом 27 биметалла стенки цилиндра 25 меньшего диаметра адсорбера приводит к образованию в этой области зоны термодинамического сопротивления (различные температурные градиенты в материалах 27 и 26), которая позволяет в материале 27 аккумулировать избыток тепла, а в материале 26 с пониженным температурным градиентом осуществлять постепенную отдачу накапливаемого тепла зернам адсорбента, непосредственно контактирующим с внешней поверхностью 12, тем самым практически устраняя условия их растрескивания, т.е. механического разрушения.

Одновременно сжатый воздух от компрессора (не показан) через выключенные электронагреватели 7, находящиеся в магистрали для подвода воздуха 2, направляется на зерна адсорбента в подпружиненной кассете 9. В результате осуществляется процесс регенерации и воздух, насыщенный влагой десорбции, поступает в горелку 2, увеличивая массу парогазового потока в скважине. В случае недостаточного количества тепла для регенерации зерен адсорбента в подпружиненной кассете 9 адсорбера 8 пульт 6 управления подает команду на включение электронагревателей 7, которые дополнительно подогревают регенерирующий воздух, обеспечивающий процесс десорбции в заданном режиме.

По мере контакта горячего воздуха с зернами адсорбента, а также прогрева их теплотой, передаваемой теплопроводностью от трубы 5 через внутреннюю поверхность 12 цилиндра 25 меньшего диаметра, осуществляется процесс регенерации с последующим удалением влаги, и масса подпружиненной кассеты 9 (ранее состоящая из суммы масс адсорбента и влаги, отделенной от осушаемого воздуха) уменьшается, что приводит к перемещению ее вверх под суммарным воздействием сжатого воздуха и действием пружины 10. Дальнейший процесс регенерации зерен адсорбента приводит к переходу подпружиненной кассеты 9 в крайнее верхнее положение. В результате перекрывается золотник 13 и открывается золотниковое отверстие 14, выпуская сжатый воздух из полости нахождения пружины 10 в атмосферу, и адсорбер 8 вновь готов к осуществлению осушки сжатого воздуха (воздушного окислителя), при этом пружина 10 обеспечивает гашение вибрационного воздействия на зерна от регенерированного адсорбента.

Оригинальность предпринимаемого технического решения заключается в том, что повышение эффективности термического расширения скважин достигается при длительной эксплуатации адсорбера получением необходимого количества воздушного окислителя за счет устранения растрескивания, т.е. механического разрушения зерен адсорбента под воздействием повышенной температуры, возникающей при передаче тепла теплопроводностью от внешней поверхности цилиндра меньшего диаметра к контактирующим с ней зернам адсорбента, и обеспечивается выполнением этого цилиндра из биметалла. При этом материал биметалла со стороны трубы для отвода горячего парогазового потока имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем коэффициент теплопроводности материала со стороны адсорбента. А выполнение цилиндра большего диаметра из биметалла таким образом, что материал со стороны окружающей среды имеет коэффициент теплопроводности в 2,0-2,5 раза меньше, чем коэффициент теплопроводности материала со стороны адсорбента, не только обеспечивает близкий к нормированному (около +20°С) процесс осушки воздушного окислителя, но и снижает тепловые потери в окружающую среду и в конечном итоге уменьшает энергоемкость термического расширения скважин.

Устройство для совмещенного механического и термического расширения скважин, включающее буровой став с породоразрушающими элементами, размещенную в торце става горелку с магистралями подвода горючего и воздуха, установку пылегазоподавления со встроенной трубой для отвода горячего парогазового потока в окружающую среду, пульт управления, электронагреватели с адсорбером, которые последовательно установлены в магистрали подвода воздуха, при этом адсорбер выполнен в виде двух вставленных один в другой и ограниченных поверхностями цилиндров разного диаметра, причем адсорбер внутренней стенкой меньшего цилиндра плотно насажен на внешнюю поверхность трубы для отвода парогазовой смеси в атмосферу, адсорбент размещен в подпружиненной кассете, свободно перемещающейся в вертикальном направлении между внутренней поверхностью большего цилиндра и внешней поверхностью меньшего цилиндра, при этом в верхней части на внутренней поверхности большего цилиндра укреплен золотник, а в нижней ее части выполнено золотниковое отверстие, причем горелка выполнена как минимум из двух противоположно расположенных суживающихся сопел, на внутренних поверхностях которых выполнены криволинейные канавки, при этом на внутренней поверхности одного суживающегося сопла кривизна направляющей криволинейной канавки имеет направление движения по ходу часовой стрелки, а на внутренней поверхности противоположно расположенного сопла кривизна направляющей криволинейной канавки имеет направление движения против хода часовой стрелки, отличающееся тем, что цилиндры разных диаметров адсорбера выполнены из биметаллов, при этом материал внутренней поверхности большого цилиндра имеет коэффициент теплопроводности в 2,0-2,5 раза больше, чем коэффициент теплопроводности материала внешней поверхности большего диаметра, а материал внешней поверхности меньшего цилиндра имеет коэффициент теплопроводности в 2,0-2,5 раза меньше, чем коэффициент теплопроводности меньшего цилиндра со стороны трубы для отвода горячего парогазового потока в окружающую среду.
УСТРОЙСТВО ДЛЯ СОВМЕЩЕННОГО МЕХАНИЧЕСКОГО И ТЕРМИЧЕСКОГО РАСШИРЕНИЯ СКВАЖИН
УСТРОЙСТВО ДЛЯ СОВМЕЩЕННОГО МЕХАНИЧЕСКОГО И ТЕРМИЧЕСКОГО РАСШИРЕНИЯ СКВАЖИН
УСТРОЙСТВО ДЛЯ СОВМЕЩЕННОГО МЕХАНИЧЕСКОГО И ТЕРМИЧЕСКОГО РАСШИРЕНИЯ СКВАЖИН
УСТРОЙСТВО ДЛЯ СОВМЕЩЕННОГО МЕХАНИЧЕСКОГО И ТЕРМИЧЕСКОГО РАСШИРЕНИЯ СКВАЖИН
Источник поступления информации: Роспатент

Показаны записи 71-80 из 148.
10.07.2015
№216.013.61dc

Ограждающий элемент с солнечным коллектором

Изобретение относится к строительству, а именно к конструкциям ограждающих элементов с солнечным коллектором, и может быть использовано в строительстве различных отапливаемых зданий, преимущественно сельскохозяйственных. Технический результат: поддержание заданных теплоизоляционных свойств...
Тип: Изобретение
Номер охранного документа: 0002556594
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6ab4

Трехслойная ресурсосберегающая железобетонная панель

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий. Технический результат - обеспечение энергосберегающих условий эксплуатации промышленных зданий и сооружений, особенно в условиях отрицательных температур окружающей среды. Трехслойная...
Тип: Изобретение
Номер охранного документа: 0002558874
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.73d2

Вентиляторная градирня

Изобретение относится к области энергетики. Технической задачей предлагаемого изобретения является снижение энергоемкости за счет поддержания стационарности тепломассообмена в условиях различных температурных воздействий окружающей среды на наружную поверхность вытяжной башни путем обеспечения...
Тип: Изобретение
Номер охранного документа: 0002561225
Дата охранного документа: 27.08.2015
27.09.2015
№216.013.7fbb

Устройство для гранулирования удобрений

Изобретение относится к сельскому и лесному хозяйству, а именно к производству гранулированного удобрения преимущественно из отходов производства, например дефеката сахарных заводов или смеси дефеката и чернозема, смываемого с корнеплодов свеклы. Технической задачей изобретения является...
Тип: Изобретение
Номер охранного документа: 0002564296
Дата охранного документа: 27.09.2015
20.11.2015
№216.013.8fee

Забивная сейсмостойкая свая

Изобретение относится к области строительства и может быть использовано для погружения сборных железобетонных свай сплошного сечения в грунт способом забивки. Забивная сейсмостойкая свая включает ствол с раздвигающейся нижней частью и размещенным внутри последней клиновидным элементом,...
Тип: Изобретение
Номер охранного документа: 0002568462
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.9451

Экструдер пресса для производства макаронных изделий улучшенного качества

Экструдер включает содержащийся в корпусе шнек с выходным валом привода экструдера с одной стороны и с формующим устройством с другой стороны. Винтовая поверхность шнека разделена на три ступени, первая из которых связана с тестосмесителем, вторая ступень является зоной дозированной подачи...
Тип: Изобретение
Номер охранного документа: 0002569588
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9523

Система оборотного водоснабжения

Изобретение относится к теплоэнергетике, в частности к системам оборотного водоснабжения промышленных предприятий. Система оборотного водоснабжения, содержащая теплообменники, подключаемые прямой и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой...
Тип: Изобретение
Номер охранного документа: 0002569798
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9651

Способ контроля качества смазочного масла и устройство для его осуществления

Изобретение относится к области технической диагностики технических систем, имеющих замкнутую систему смазки, и может быть использовано для контроля качества моторных масел в процессе эксплуатации. Оценивают степень загрязнения масла в процессе эксплуатации, при этом дополнительно одновременно...
Тип: Изобретение
Номер охранного документа: 0002570101
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9b0f

Водоотвод для скатной крыши многоэтажного дома

Изобретение относится к области строительства, в частности к водоотводу для скатной крыши многоэтажного здания. Техническим результатом изобретения является ресурсосберегающая эксплуатация здания за счет использования для освещения в темное время суток подъездов и вспомогательных помещений...
Тип: Изобретение
Номер охранного документа: 0002571320
Дата охранного документа: 20.12.2015
10.03.2016
№216.014.bf61

Вентиляторная градирня

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержит вентилятор, на нижнюю и верхнюю поверхности каждой из лопастей вентилятора наносят наноматериал в виде стекловидной пленки, причем нанопокрытие выполнено...
Тип: Изобретение
Номер охранного документа: 0002576948
Дата охранного документа: 10.03.2016
Показаны записи 71-80 из 146.
20.07.2014
№216.012.e279

Мостовой измеритель параметров n-элементных двухполюсников

Изобретение относится к информационно-измерительной технике. Мостовой измеритель параметров n-элементных двухполюсников содержит генератор, четырехплечую мостовую цепь и нуль-индикатор. Мостовая цепь состоит из двух ветвей, в первой из которых установлены последовательно соединенные первый и...
Тип: Изобретение
Номер охранного документа: 0002523763
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e282

Мостовой измеритель параметров двухполюсников

Изобретение относится к контрольно-измерительной технике. Мостовой измеритель параметров двухполюсников содержит последовательно соединенные генератор питающих импульсов с изменением напряжения в течение их длительности пропорционально t, где n при раздельном уравновешивании принимает значения...
Тип: Изобретение
Номер охранного документа: 0002523772
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e328

Параллельный сумматор-вычитатель на нейронах со сквозным переносом

Изобретение относится к средствам информатики и вычислительной техники и может быть использовано для синтеза арифметико-логических устройств, для создания быстродействующих и производительных цифровых устройств суммирования и вычитания чисел в двоичной системе счисления в прямых кодах....
Тип: Изобретение
Номер охранного документа: 0002523942
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e32a

Способ выделения протяженных линейных объектов на аэрокосмических изображениях

Изобретение относится к средствам выделения линейных объектов на изображении. Техническим результатом является повышение точности выделения протяженных линейных объектов на изображении. Способ содержит обработку изображения с использованием КИХ-фильтра, позволяющего определить точки,...
Тип: Изобретение
Номер охранного документа: 0002523944
Дата охранного документа: 27.07.2014
20.08.2014
№216.012.ea05

Мостовой измеритель параметров двухполюсников

Изобретение относится к промышленной электронике, автоматике, информационно-измерительной технике и может быть использовано для контроля и определения параметров двухполюсников. Мостовой измеритель параметров двухполюсников содержит генератор питающих импульсов, состоящий из каскада...
Тип: Изобретение
Номер охранного документа: 0002525717
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f18c

Мостовой измеритель параметров двухполюсников

Изобретение относится к измерительной технике. Измеритель содержит генератор импульсов, нуль-индикатор, мостовую цепь. В мостовой измеритель параметров двухполюсников введены четыре дополнительных резистора, дополнительная катушка индуктивности и дополнительный конденсатор, а также цепь из...
Тип: Изобретение
Номер охранного документа: 0002527658
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f584

Способ получения концентрированных водных растворов хлоркупрата меди (ii) cu[cucl]

Изобретение может быть использовано в химической промышленности. Способ получения концентрированных водных растворов хлоркупрата меди (II) включает взаимодействие оксида меди (II) с соляной кислотой при интенсивном механическом перемешивании. Используют 29,2-38%-ную соляную кислоту, которую...
Тип: Изобретение
Номер охранного документа: 0002528685
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fb77

Устройство с регулируемой жесткостью для отделочной обработки изделий

Изобретение относится к области абразивной обработки и может быть использовано при отделочной обработке алмазно-абразивными брусками различных поверхностей. Устройство содержит два вращающихся в противоположных направлениях диска, перемещающих шатун с алмазно-абразивными брусками. Последние...
Тип: Изобретение
Номер охранного документа: 0002530221
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fbad

Устройство планирования топологии логических интегральных схем

Изобретение относится к области цифровой вычислительной техники и предназначено для планирования топологии логических интегральных схем при проектировании вычислительных систем. Техническим результатом является планирования топологии программируемых логических интегральных схем по критерию...
Тип: Изобретение
Номер охранного документа: 0002530275
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.04b6

Мостовой измеритель параметров двухполюсников

Изобретение относится к контрольно-измерительной технике, автоматике и промэлектронике, в частности, оно позволяет определять параметры четырехэлементных двухполюсников или параметры датчиков с четырехэлементной схемой замещения. Задача, на решение которой направлено изобретение, состоит в...
Тип: Изобретение
Номер охранного документа: 0002532604
Дата охранного документа: 10.11.2014
+ добавить свой РИД