×
20.11.2013
216.012.8207

Результат интеллектуальной деятельности: ШИХТА КЕРАМИЧЕСКОГО МАТЕРИАЛА ДЛЯ ВЫСОКОТЕМПЕРАТУРНОГО ПРИМЕНЕНИЯ В ОКИСЛИТЕЛЬНЫХ СРЕДАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к керамическому материаловедению, в частности к получению материала для высокотемпературного применения на основе тугоплавких бескислородных и оксидных соединений, характеризующегося высокой прочностью, термической и окислительной стойкостью, стойкостью к термоудару при градиенте температуры до 2000 К в условиях воздействия высокоскоростного окислительного потока. Технический результат заключается в возможности использования указанного керамического материала при температуре Т=1800°С при комплексном воздействии механических и тепловых нагрузок в условиях окислительных сред. Это достигается тем, что композиционный керамический материал для высокотемпературного применения в окислительных средах получают из шихты, содержащей SiC, YO, AlO и/или AlO·MgO, при следующем соотношении компонентов, (% мас.): SiC 76-80, YO 4-5, AlO и/или AlO·MgO - остальное. Получаемый керамический материал имеет следующие характеристики: плотность 99% от теоретической, прочность при изгибе 400±25 МПа, прочность при сжатии 1200±40 МПа, твердость по Виккерсу 25-27 ГПа, K1 - 8,5-10,0 МПа·м, окислительная стойкость ≤0,015 мг/смсек, рабочая температура 1800°С. 5 пр., 1 табл.
Основные результаты: Шихта керамического материала для высокотемпературного применения в окислительных средах для получения конструкционного керамического материала, состоящая из SiC, AlO и/или MgO·AlO и YO отличающаяся тем, что содержит компоненты в следующем соотношении (% мас.):

Изобретение относится к керамическому материаловедению, в частности к составу шихты для получения конструкционного материала для высокотемпературного применения на основе тугоплавких бескислородных и оксидных соединений, характеризующихся высокой прочностью, термической и окислительной стойкостью, стойкостью к термоудару при градиенте температуры до 2000 К в условиях воздействия высокоскоростного (300 м/с) окислительного потока.

Известен керамический материал (RU 2402507, Кл. С04В 35/565, 27.10.2010), содержащий (мас.%): 0,7-1,4, MgO 4,1-8,2 Y2O3, 5,2-10,4 Al2O3, остальное SiC.

Известен так же керамический материал (RU 2406196, кл. Н01Т 21/02, 10.12.2010), содержащий карбид кремния 50-75 (мас.%) и 25-50 (мас.%) Y2O3+Al2O3, способствующих при обжиге изделий образованию иттрий-алюминиевого граната. обеспечивающего спекание материала до высокой плотности за счет образования жидкой фазы.

Указанные материалы имеют высокий уровень свойств, но могут быть применимы как конструкционный материал при сравнительно низких температурах.

Наиболее близким аналогом заявленного изобретения (взят за прототип) является керамический материал (US 5656218, С04В 35/64, от 12.08.1997), шихта для изготовления которого состоит (% мас.): карбид кремния 10-90, оксид алюминия 3-15, оксид иттрия 2-10. При обжиге изделий оксидные компоненты практически полностью взаимодействуют с образованием иттрий-алюминиевого граната, способствующего спеканию до высокой плотности.

Задача, на решение которой направлено изобретение, является получение высокотемпературного конструкционного материала с высокой окислительной, коррозионной и термической стойкостью в условиях воздействия высокоскоростного окислительного газового потока.

Указанные известные керамические материалы на основе карбида кремния не могут быть использованы в столь же жестких условиях службы в связи с большим содержанием в их фазовом составе компонентов со сравнительно низкой температурой плавления (1930°С).

Технический результат изобретения заключается в разработке состава шихты для конструкционного керамического материала для высокотемпературного применения при температурах 1800°С и выше при комплексном длительном воздействии механических и тепловых нагрузок в условиях окислительной среды.

Это достигается тем, что шихта керамического материала для высокотемпературного применения в окислительных средах для получения конструкционного керамического материала, состоящая из SiC, Y2O3, Al2O3 и/или MgO·Al2O3, содержит компоненты в следующем соотношении (% мас.):

SiC 76-80
Y2O3 4-5
Al2O3 и/или MgO·Al2O3 16-19

Высокая стойкость к окислению и эрозионному воздействию высокотемпературному (до 2000°С) газовому потоку обеспечивается незначительным содержанием иттрий-алюминиевого граната (состав 1), а в случае содержания Y2O3 и шпинели в материале присутствуют высокотемпературные фазы (Тпл.≥2100°С), что и обуславливает их высокую стойкость к разным факторам воздействия.

Исследования физико-технических характеристик проводили на образцах размером 6×6×50 мм и пластинах размером 63×60×8 мм.

Разработанные конструкционные материалы в пределах предлагаемых составов шихты имеют следующие свойства: плотность - 97-99%, прочность при изгибе 340-400 МПа, прочность при сжатии 1000-1200 МПа, твердость 23-27 ГПа, критический коэффициент интенсивности напряжений К1с 8-10 МПа·м1/2 и высокую стойкость к окислению (см. таблицу).

Пример 1.

Керамические порошки в соотношении 0,2% оксида иттрия, 34,8% оксида алюминия, 65% (% масс.) карбида кремния измельчают в среде ацетона на планетарной мельнице до дисперсности 1-5 мкм. Сушку проводят на воздухе при температуре 70-80°С.

Измельченную шихту гранулируют с добавлением 5% (%мас.) поливинилового спирта и формуют образцы прессованием при давлении 250 МПа. Спекание проводят при температуре 1800°С в среде аргона при давлении 1,2 МПа с выдержкой при конечной температуре в течение 2 часов. (Свойства в таблице)

Пример 2.

Совместным измельчением в планетарной мельнице до дисперсности 0,1-5 мкм в среде безводного этилового спирта изготавливают порошковую шихту, состоящую из 19% оксида алюминия, 76% карбида кремния, 5% (% мас.) оксида иттрия. Сушку проводят на воздухе при температуре 70-80°С.

Приготавливают формовочную массу, содержащую 5% (% мас.) технологической связки из поливинилового спирта и 95% (% мас.) керамического порошка.

Образцы изготавливают прессованием при давлении 300 МПа. Сушку проводят на воздухе при температуре 150-200°С. Спекание проводят при температуре 1750°С в среде аргона при давлении 1,2 МПа с выдержкой при конечной температуре в течение 2 часов. (Свойства в таблице)

Пример 3.

Керамические порошки в соотношении 4% оксида иттрия, 16% алюмомагнезиальной шпинели, 80% (% мас.) карбида кремния измельчают в среде ацетона на планетарной мельнице до дисперсности 0.05-5 мкм.

Измельченную шихту гранулируют с добавлением 5% (% мас.) поливинилового спирта и формуют образцы прессованием при давлении 300 МПа. Спекание проводят при температуре 1800°С в среде аргона при давлении 1,2 МПа с выдержкой при конечной температуре в течение 2 часов.

Пример 4.

Порошок, состоящий из 17,5% алюмомагнезиальной шпинели, 4,5% оксида иттрия, 78% (% мас.) карбида кремния, измельчают в планетарной мельнице в среде безводного спирта до дисперсности 0,4-3 мкм. Измельченную шихту гранулируют с добавлением 5% (% мас.) поливинилового спирта и формуют прессованием при давлении 250 МПа. Спекание проводят при температуре 1850°С в среде аргона при давлении 1,2 МПа с выдержкой при конечной температуре в течение 2 часов.

Пример 5.

Керамические порошки в соотношении 3% оксида иттрия, 27% алюмомагнезиальной шпинели, 70% (% мас.) карбида кремния измельчают в среде ацетона на планетарной мельнице до дисперсности 0,1-4 мкм.

Измельченную шихту гранулируют с добавлением 5% (% мас.) поливинилового спирта и формуют образцы прессованием при давлении 250 МПа. Спекание проводят при температуре 1750°С в среде аргона при давлении 1,2 МПа с выдержкой при конечной температуре в течение 2 часов.

Компонентные составы и свойства композиционною керамического материала.

Таблица
№ п/п Состав, % мас. Плотность % от теор. Прочность при изгибе, МПа Прочность при сжатии, МПа Твердость по Виккерсу, ГПа К1c, МПа·м1/2 Δm*мг/см2с
34,8%
Al2O3
1 65% SiC 90 210 630 17 4,3 0,08
0,2% Y2O3
19% Al2O3
2 76% SiC 97 340 1000 24 8 0,019
5% Y2O3
16%
Al2O3·MgO
3 80% SiC 98 380 1100 23 10,0 0,015
4% Y2O3
17,5%
Al2O3·MgO
4 78% SiC 99 400 1200 27 9,3 0,017
4,5% Y2O3
27%
5 Al2O3·MgO 98 300 800 18 9,2 0,012
70% SiC
3% Y2O3
6 Прототип 95 200 600 15 - 0,2
*Привес массы после выдержки на воздухе при 1650°С за 5 часов.

Изделия из предлагаемого материала могут быть использованы для изготовления теплонапряженных деталей, работающих при температурах до 2000 К в условиях, которые требуют высокой прочности, твердости и окислительной стойкости, а также в условиях термоудара, например чехлов для термопар непрерывного контроля температуры расплавов металлов. В металлообрабатывающей промышленности - для изготовления режущего инструмента, в нефте- и газодобывающей промышленности - клапанные устройства и уплотнительные кольца насосов, наконечники мундштуков для сварки, сопловые насадки для пескоструйных аппаратов и распылителей химических растворов.

Шихта керамического материала для высокотемпературного применения в окислительных средах для получения конструкционного керамического материала, состоящая из SiC, AlO и/или MgO·AlO и YO отличающаяся тем, что содержит компоненты в следующем соотношении (% мас.):
Источник поступления информации: Роспатент

Показаны записи 41-41 из 41.
18.05.2019
№219.017.5a1f

Токопроводящая клеевая композиция

Изобретение относится к эпоксидным токопроводящим клеевым составам холодного отверждения. Составы предназначены для прочного соединения чувствительных элементов с обеспечением токопроводящего контакта при монтаже элементов радиоэлектронной аппаратуры и интегральных схем, особенно гибких...
Тип: Изобретение
Номер охранного документа: 0002408642
Дата охранного документа: 10.01.2011
Показаны записи 41-44 из 44.
18.05.2019
№219.017.57f3

Композиционный керамический материал для высокотемпературного применения (варианты)

Изобретение относится к керамическому материаловедению, в частности к получению композиционного керамического материала на основе тугоплавких бескислородных и оксидных соединений для применения в условиях, которые требуют высокой прочности, твердости и окислительной стойкости: для изготовления...
Тип: Изобретение
Номер охранного документа: 0002336245
Дата охранного документа: 20.10.2008
17.08.2019
№219.017.c0ea

Способ получения прозрачной высоколегированной er:иаг - керамики

Изобретение относится к области получения высоколегированного ионами эрбия прозрачного керамического материала со структурой иттрий-алюминиевого граната (Еr:ИАГ) для использования в качестве лазерного материала в медицине и оптической связи. Способ включает измельчение полученного методом...
Тип: Изобретение
Номер охранного документа: 0002697561
Дата охранного документа: 15.08.2019
02.10.2019
№219.017.cebb

Способ получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов

Изобретение относится к области получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната, легированных редкоземельными элементами для производства керамики, используемой в качестве активной среды твердотельного лазера, термостойкого высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002700062
Дата охранного документа: 12.09.2019
21.03.2020
№220.018.0ec6

Неорганический поликристаллический сцинтиллятор на основе sc, er:иаг и способ его получения

Настоящее изобретение относится к области прозрачных керамических материалов со структурой иттрий-алюминиевого граната, легированного ионами эрбия и скандия кубической структуры Er:ИАГ(Sc), обладающих свойствами для использования в качестве люминесцентных сцинтилляционных материалов,...
Тип: Изобретение
Номер охранного документа: 0002717158
Дата охранного документа: 18.03.2020
+ добавить свой РИД