×
10.11.2013
216.012.7d7f

Результат интеллектуальной деятельности: СПОСОБ КАТАЛИТИЧЕСКОЙ КОНВЕРСИИ ЦЕЛЛЮЛОЗЫ В ГЕКСИТОЛЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области переработки возобновляемого сырья (в частности, целлюлозы) в сырье для химического синтеза и биотопливо. В способе каталитической конверсии целлюлозы в гекситолы, включающем проведения процесса гидролитического гидрирования целлюлозы в течение 3-7 минут при температуре 240-250°C при парциальном давлении водорода 55-65 атм и при перемешивании реакционной среды в присутствии рутениевого катализатора, согласно изобретению в качестве подложки рутениевого катализатора используют сверхсшитый полистирол марки MN 270, при этом содержание рутения в катализаторе составляет от 1,0 до 1,5 мас.% от массы катализатора. При этом перемешивание реакционной смеси осуществляют при помощи пропеллерной мешалки, число оборотов которой составляет 580-620 об/мин. 1. з.п. ф-лы, 1 табл. 16 пр.

Изобретение относится к области переработки возобновляемого сырья (в частности, целлюлозы) в сырье для химического синтеза и биотопливо.

Известен способ получения гекситолов (сорбитола и маннитола) из целлюлозы с использованием в качестве катализаторов переходных металлов группы 8-11. [US №20090217922, кл. B01J 29/068, 2009]. Наибольшую активность переходных металлов показали Pt и Ru. В качестве подложки использовались оксид алюминия, диоксид кремния, цеолиты, оксид циркония и активированный уголь. Суммарный выход сорбитола и маннитола составил 22%.

Недостатком способа является длительность процесса 24 часа и невысокий выход сорбитола.

Известен способ конверсии целлюлозы в сорбитол с использованием, в качестве катализатора, Ru на углеродных нанотрубках (Ru/CNT) [W. Deng, X. Tan, W. Fang, Q. Zhang, Y. Wang. Conversion of Cellulose into Sorbitol over Carbon Nanotube-Supported Ruthenium Catalyst. // Catal. Lett. - 2009. - 133. P.167-174]. Углеродные нанотрубки с наружным диаметром 20 - 60 нм и внутренним диаметром 3-5 нм оказались наиболее эффективным носителем Ru для конверсии целлюлозы в сорбитол по сравнению с SiO2 CeO2, Al2O2,, MgO. Максимальный выход сорбитола (69%) был получен при следующих условиях: давление водорода 5 МПа, температура 185°C, время реакции 24 часа, катализатор 1% Ru/CNT. Образцы целлюлозы предварительно были обработаны фосфорной кислотой.

Недостатком метода является длительность процесса, дорогостоящий носитель для катализатора и необходимость предварительной обработки целлюлозы.

Наиболее близким к заявленному способу является способ, указанный в статье [Luo С, Wang S., Liu Н. Cellulose Conversion into Polyols Catalyzed by Reversibly Formed Acids and Supported Ruthenium Clusters in Hot Water. // Angew. Chem. Int. Ed. - 2007. - No.46. - P.7636-7639]. В качестве среды для каталитической конверсии целлюлозы использовали горячую воду под давлением (субкритическую воду). Вода при повышенной температуре (выше 200°C) может генерировать протоны, способные осуществлять реакции кислотного катализа. Такое образование кислот обратимо. Протоны автоматически исчезают при понижении температуры. Таким образом, полностью исчезает проблема регенерации кислот и утилизации отходов. В качестве катализатора авторы использовали 4% Ru/C (на 1 г целлюлозы 0,0040 г рутения - активной фазы катализатора). Степень конверсии целлюлозы 38,5% и суммарный выход гекситолов (сорбитола и маннитола в молярном соотношении около 3,6:1) 22,2% были получены за 5 минут при 245°C и давлении водорода 60 атм.

Из недостатков метода стоит отметить небольшой выход гекситолов и степень конверсии целлюлозы менее 40%. Кроме того, используемый катализатор отличается сравнительно высоким содержанием рутения.

Задачей изобретения является разработка новой подложки катализатора при одновременном уменьшении активной фазы катализатора.

Техническим результатом является повышение эффективности процесса каталитической конверсии целлюлозы в гекситолы (повышение суммарного выхода гекситолов и степени конверсии целлюлозы).

Поставленная задача и указанный технический результат достигаются тем, что в способе каталитической конверсии целлюлозы в гекситолы, включающем проведения процесса гидролитического гидрирования целлюлозы в течение 3-7 минут при температуре 240-250°C при парциальном давлении водорода 55-65 атм и при перемешивании реакционной среды в присутствии рутениевого катализатора, согласно изобретению в качестве подложки рутениевого катализатора используют сверхсшитый полистирол марки MN 270, при этом содержание рутения в катализаторе составляет от 1,0 до 1,5 мас.% от массы катализатора. При этом перемешивание реакционной смеси осуществляют при помощи пропеллерной мешалки, число оборотов которой составляет 580-620 об/мин.

Степень конверсии целлюлозы с использованием указанных параметров составляет 84,5%, а суммарный выход гекситолов - 31,5% (сорбитола и маннитола в молярном соотношении 8,9:1). Количество активной фазы катализатора (рутения), приходящейся на 1 г целлюлозы, снижается до 0,0028 г.

При повышении содержания рутения в катализаторе выше 1,5 масс.% наблюдалось уменьшение выхода гекситолов с одновременным увеличением выхода пентодов, тетродов и низших полиолов. Степень конверсии целлюлозы при этом уменьшается 10% при 2% и на 20% при 3%-ном содержании рутения. Уменьшение процентного содержания рутения в катализаторе ниже 1 масс.% нежелательно, поскольку приводит к нестабильности получаемых экспериментальных данных, связанной с техническими проблемами в рамках используемой методики приготовлении катализатора.

Оптимальный режим перемешивания среды в реакторе наблюдался при 580-620 оборотах в минуту пропеллерной мешалкой. Понижение данного параметра ниже 580 об/мин приводило к снижению суммарного выхода гекситолов в среднем на 10-12%, что может объясняться влиянием внешнедиффузионного торможения. При этом степень конверсии целлюлозы увеличивалась на 10-15%. Повышение числа оборотов выше 620 оборотов в минуту приводило к увеличению скорости преобразования гекситолов в пентолы, тетроды и низшие полиолы, что, соответственно, снижает выход целевых продуктов на 5-8%. Степень конверсии целлюлозы увеличивается на 10-14%.

Способ каталитической конверсии целлюлозы в гекситолы поясняется следующими примерами.

Пример 1

В стальной реактор объемом 50 см3 с пропеллерной мешалкой (Parr-Instrument, USA) загружали 0.5001 г микрокристаллической целлюлозы; 0,140 г рутениевого катализатора (что соответствует соотношению 1/0,0028), (носитель катализатора MN 270, содержание Ru - 1,0%); 30 мл воды. Реактор трижды продували водородом под давлением 60 атм, после чего включали нагрев и перемешивание (~100 об/мин) для предотвращения образования локальных зон перегрева и насыщения поверхности катализатора водородом. После достижения 245°C обороты мешалки повышали до 600 об/мин. Этот момент служил началом отсчета времени эксперимента. По окончании опыта катализатор и негидролизованную целлюлозу отделяли фильтрованием. Анализ продуктов гидролитического гидрирования целлюлозы проводили методом ВЭЖХ.

Степень конверсии целлюлозы составил 84,3%, суммарный выход гекситолов 31,5%, селективность по сорбитолу 31,8%, селективность по маннитолу 3,6%.

Остальные варианты реализации заявленного способа проводились аналогично примеру 1, результаты указаны в таблице.

Примеры реализации способа каталитической конверсии целлюлозы в полиолы.
№ примера: Условия процесса: Результаты:
Влияние температуры:
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы: 41,4
0,5002 г: катализатор 3,0 % Ru/СПС %.
MN 270 - 0,0700 г: вода - 30 мл. Суммарный выход гекситолов: 17,9
2 Температура 230°C. %.
Давление Н2: - 60 атм. Селективность по сорбитолу: 16,8
Перемешивание ~ 600 об.Амин. %.
Время процесса - 5 мин. Селективность по маннитолу: 3,0 %.
11,еллюлоза микрокристаллическая - Степень конверсии целлюлозы: 70,0 %.
3 0,5005 г: катализатор 3,0 % Ru/СПС Суммарный выход гекситолов: 25,2 %.
MN 270 - 0,0699 г: вода - 30 мл. Селективность по сорбитолу: 24,3 %.
Температура 245°С. Селективность по маннитолу: 3,3%.
Давление Н2: - 60 атм.
Перемешивание ~ 600 об./мин.
Время процесса - 5 мин.
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы:
0,5001 г; катализатор 3,0% Ru/СПС 93,2%.
MN 270 - 0,0700 г; вода - 30 мл. Суммарный выход гекситолов:
4 Температура 260 С. 10,5%.
Давление H2 - 60 атм. Селективность по сорбитолу:
Перемешивание ~ 600 об./мин. 10,1%.
Время процесса - 5 мин. Селективность по маннитолу: 1,4%.
Влияние парциального давления водорода:
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы:
0,5001 г; катализатор 3,0% Ru/СПС 69,4%.
MN 270 - 0,0699 г: вода - 30 мл. Суммарный выход гекситолов:
5 Температура 245°C. 14,4%.
Давление Н2 - 40 атм. Селективность по сорбитолу:
Перемешивание ~ 600 об./мин. 14,1%.
Время процесса - 5 мин. Селективность по маннитолу: 1,9%.
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы:
0,5005 г; катализатор 3,0% Ru/СПС 70,0%.
MN 270 - 0,0699 г: вода - 30 мл. Суммарный выход гекситолов:
6 Температура 245°C. 25,2%.
Давление H2 - 60 атм. Селективность по сорбитолу:
Перемешивание ~ 600 об./мин. 24,3%.
Время процесса - 5 мин. Селективность по маннитолу: 3,3%.
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы:
0,4999 г; катализатор 3,0% Ru/СПС 92,6%.
MN 270 - 0,0699 г; вода - 30 мл. Суммарный выход гекситолов:
7 Температура 245°C. 31,3%.
Давление H2 - 140 атм. Селективность по сорбитолу:28,9%.
Перемешивание ~ 600 об./мин. Селективность по маннитолу: 6,3%.
Время процесса - 5 мин.
Влияние времени процесса
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы:
0,4999 г; катализатор 3,0% Ru/СПС 61,6%.
MN 270 - 0.0701 г: вода - 30 мл. Суммарный выход гекситолов:
8 Температура 245°C. 21,0%.
Давление H2 - 60 атм. Селективность по сорбитолу:
Перемешивание ~ 600 об./мин. 20,4%.
Время процесса - 1 мин. Селективность по маннитолу: 3,1%.
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы:
0,5005 г; катализатор 3,0% Ru/СПС 70,0%.
MN 270 - 0,0699 г: вода - 30 мл. Суммарный выход гекситолов:
7 Температура 245°C. 25,2%.
Давление H2: - 60 атм. Селективность по сорбитолу:
Перемешивание ~ 600 об./мин. 24,3%.
Время процесса - 5 мин. Селективность по маннитолу: 3,3%.
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы:
0,5005 г: катализатор 3,0% Ru/СПС 78,5%.
MN 270 - 0,0699 г: вода - 30 мл. Суммарный выход гекситолов:
8 Температура 245°C. 19,7%.
Давление H2 - 60 атм. Селективность но сорбитолу:
Перемешивание ~ 600 об./мин. 19,5%.
Время процесса - 10 мин. Селективность по маннитолу: 2,2%.
Влияние режима перемешивания
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы:
0,4999 г; катализатор 3,0% Ru/СПС 83,8%.
MN 270 - 0,0701 г; вода - 30 мл. Суммарный выход гекситолов:
9 Температура 245°C. 13,8%.
Давление H2 - 60 атм. Селективность по сорбитолу:
Перемешивание ~ 500 об./мии. 13,3%.
Время процесса - 5 мин. Селективность по маннитолу: 1,7%.
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы:
0,5005 г: катализатор 3,0% Ru/СПС 70,0%.
MN 270 - 0,0699 г: вода - 30 мл. Суммарный выход гекситолов:
10 Температура 245°C. 25,2%.
Давление H2 - 60 атм. Селективность по сорбитолу:
Перемешивание ~ 600 об./мии. 24,3%.
Время процесса - 5 мин. Селективность по маннитолу: 3,3%.
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы:
0,5002 г: катализатор 3,0% Ru/СПС 83,0%.
MN 270 - 0,0699 г: вода - 30 мл. Суммарный выход гекситолов:
11 Температура 245°C. 18,7%.
Давление H2 - 60 атм. Селективность по сорбитолу:
Перемешивание ~ 700 об./мии. 17,6%.
Время процесса - 5 мин. Селективность по маннитолу: 2,5%.
Влияние процентного содержания рутения в катализаторе
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы:
0,5005 г; каталиштор 3,0% Ru/СПС 70,0%.
MN 270 - 0,0699 г; вода - 30 мл. Суммарный выход гекситолов:
12 Температура 245°C. 25,2%.
Давление H2 - 60 атм. Селективность по сорбитолу: 2,3%.
Перемешивание ~ 600 об./мин. Селективность по маннитолу: 3,3%.
Время процесса - 5 мин.
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы:
0,5002 г: катализатор 2,0% Ru/СПС 81,3%.
MN 270 - 0,1050 г; вода - 30 мл. Суммарный выход гекситолов:
13 Температура 245°C. 23,3%.
Давление H2: - 60 атм. Селективность по сорбитолу:
Перемешивание ~ 600 об./мин. 23,0%.
Время процесса - 5 мин. Селективность по маннитолу: 3,1%.
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы:
0,4998 г; каталиштор 1,0% Ru/СПС 91,4%.
MN 270 - 0,2100 г: вода - 30 мл. Суммарный выход гекситолов:
14 Температура 245°C. 26,0%.
Давление H2 - 60 атм. Селективность по сорбитолу:
Перемешивание ~ 600 об./мин. 24,8%.
Время процесса - 5 мин. Селективность по маннитолу: 3,4%.
Влияние соотношения целлюлоза/активная фаза катализатора (рутений)
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы:
0,5001 г: катализатор 1,0% Ru/СПС 84,3%.
MN 270 - 0,1400 г; вода - 30 мл. Суммарный выход гекситолов:
Температура 245°C. 31,5%.
15 Давление H2 - 60 атм. Селективность по сорбитолу:
Перемешивание ~ 600 об./мин. 31,8%.
Время процесса - 5 мин. Селективность но маннитолу: 3,6%.
Соотношение иеллюлоза/рутении
1/0,0028.
Целлюлоза микрокристаллическая - Степень конверсии целлюлозы: 91,4%.
0,4998 г: катализатор 1,0% Ru/СПС Суммарный выход гекситолов: 26,0%.
16 MN 270 - 0,2100 г: вода - 30 мл. Селективность по сорбитолу: 24,8%.
Температура 245°C. Селективность по маннитолу: 3,4%.
Давление H2 - 60 атм.
Перемешивание - 600 об./мин.
Время процесса - 5 мин.
Соотношение целлюлоза/рутений
1/0,0042.

Представленные примеры выполнения заявляемого способа подтверждают, что за счет использования Ru-содержащего полимерного катализатора нового типа на основе сверхсшитого полистирола (СПС) марки MN 270 возможно достичь увеличения выхода гекситолов минимум на 10%. При этом степень конверсии возрастает на 45%, количество активной фазы катализатора, приходящейся на единицу массы целлюлозы, снижается на треть, по сравнению с прототипом, что, в свою очередь, может уменьшить себестоимость используемого катализатора.

В настоящее время способ находится на стадии лабораторный экспериментов.

Источник поступления информации: Роспатент

Показаны записи 41-50 из 65.
10.04.2016
№216.015.2b5f

Автоматический анализатор теплоценности газообразных топлив

Изобретение относится к области аналитической техники и может быть использовано для автоматического контроля теплоценности газообразных топлив. Автоматический анализатор теплоценности газообразных топлив содержит камеру, в днище которой установлена горелка для формирования пламени во...
Тип: Изобретение
Номер охранного документа: 0002579832
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f76

Способ получения 4-метоксибифенила реакцией сузуки-мияура

Изобретение относится к способу получения 4-метоксибифенила реакцией Сузуки-Мияура и может быть использовано в химической и фармацевтической промышленностях для получения биарилов, которые являются важными полупродуктами в синтезе фармацевтических препаратов, лигандов и полимеров. Способ...
Тип: Изобретение
Номер охранного документа: 0002580107
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33df

Фибра для дисперсного армирования бетона

Изобретение относится к области строительства, в частности к искусственной фибре для приготовления бетонов. Фибра для дисперсного армирования бетона выполнена в виде прямолинейного отрезка нити 1 с анкерами, анкеры выполнены в виде поперечных выпусков 2 из той же нити, равномерно распределенных...
Тип: Изобретение
Номер охранного документа: 0002582254
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3672

Способ защиты от обрывов фазных и нулевого проводов четырехпроводной воздушной линии электрической сети напряжением 380 в и устройство для его реализации

Использование: в области электротехники. Технический результат - повышение надежности работы электрических сетей напряжением 380 В и улучшение условий электробезопасности. Способ заключается в использовании для защиты линии трехфазного микропроцессорного счетчика электрической энергии,...
Тип: Изобретение
Номер охранного документа: 0002581607
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3712

Способ нанесения керамического покрытия на алюминий и его сплавы

Изобретение относится к области формирования защитных антифрикционных износостойких покрытий на деталях из алюминия и его сплавов или на деталях с покрытием из алюминия и его сплавов. Способ включает микродуговое оксидирование детали в электролите, содержащем щелочь 1-4 г/л, жидкое стекло 3-12...
Тип: Изобретение
Номер охранного документа: 0002581956
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3946

Люминесцентный дозиметр ультрафиолетового излучения

Изобретение относится к области радиационных измерений и касается люминесцентного дозиметра ультрафиолетового излучения. Дозиметр включает в себя чувствительный элемент, передающее оптическое волокно, подвижную кассету с оптическими фильтрами и фотоприемное устройство. Чувствительный элемент...
Тип: Изобретение
Номер охранного документа: 0002582622
Дата охранного документа: 27.04.2016
10.06.2016
№216.015.478d

Плазменно-дуговая сталеплавильная печь

Изобретение относится к области металлургии, в частности к электротермической технике. Плазменно-дуговая сталеплавильная печь постоянного тока содержит керамический тигель с ванной металла, вертикальный плазмотрон, установленный в своде печи, и подовый электрод, установленный соосно...
Тип: Изобретение
Номер охранного документа: 0002585897
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.6cd9

Способ получения гетерогенного катализатора синтеза углеводородов из метанола

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов преобразования метанола в углеводороды, и может быть с успехом реализовано на предприятиях химической промышленности, в том числе для получения топлив. Способ получения гетерогенного...
Тип: Изобретение
Номер охранного документа: 0002597269
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6d92

Способ получения металлических пленок заданной формы

Изобретение относится к электронно-лучевой технологии и может быть использовано в оптике, фотонике, интегральной оптике, наноплазмонике и электронике. Способ получения металлических пленок заданной формы заключается в том, что на подложку с высоким электрическим сопротивлением предварительно...
Тип: Изобретение
Номер охранного документа: 0002597373
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.81de

Фибра для дисперсного армирования бетона

Изобретение относится к области строительства. Фибра для дисперсного армирования бетона выполнена в виде отрезка нити с анкерами на концах. Отрезок нити состоит из двух ветвей, соединенных общим анкером, выполненным с возможностью изменения ориентации ветвей относительно общего анкера. В одном...
Тип: Изобретение
Номер охранного документа: 0002601705
Дата охранного документа: 10.11.2016
Показаны записи 41-50 из 98.
10.08.2015
№216.013.6bdb

Устройство для измерения параметров паза, не сопряженного с отверстием детали

Изобретение относится к измерительной технике, в частности для измерения ширины и отклонения расположения паза относительно оси не сопряженного с ним отверстия. Устройство содержит наклонный корпус с двумя центрирующими пальцами, шток, установленный в наклонном корпусе с возможностью...
Тип: Изобретение
Номер охранного документа: 0002559169
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f3a

Грохот для классификации строительных материалов

Предложенное изобретение относится к области строительства, в частности к устройствам для разделения пород и строительных материалов по крупности при подготовке к транспортировке, для выполнения дробильно-сортировочных операций, а также для классификации строительных материалов. Грохот для...
Тип: Изобретение
Номер охранного документа: 0002560044
Дата охранного документа: 20.08.2015
27.09.2015
№216.013.8040

Сырьевая смесь для получения гипсовых материалов

Изобретение относится к гипсовым материалам, используемым в производстве тонкостенных изделий строительного назначения, например стеновых панелей без картонной обшивки, сухой штукатурки и т.п. Технический результат заключается в повышении прочности гипсового камня при упрощении технологии....
Тип: Изобретение
Номер охранного документа: 0002564429
Дата охранного документа: 27.09.2015
20.11.2015
№216.013.8fbc

Способ измерения параметров расположения продольного паза на круглом валу

Изобретение может быть использовано для контроля параметров шпоночных пазов на валах. Согласно изобретению измерение проводят на двух уровнях по глубине паза, при этом измерительную поверхность устройства размещают в измеряемом пазу, после чего отсчетное устройство жестко связывают с корпусом в...
Тип: Изобретение
Номер охранного документа: 0002568412
Дата охранного документа: 20.11.2015
10.01.2016
№216.013.9eea

Пространственная фундаментная опора резервуара на мерзлом основании

Изобретение относится к области строительства, в частности к устройству фундаментов на сложных основаниях в суровых природно-климатических условиях. Пространственная фундаментная опора резервуара на мерзлом основании включает свайный фундамент с ростверком, охлаждающую систему из ряда трубчатых...
Тип: Изобретение
Номер охранного документа: 0002572319
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f76

Дозиметр ультрафиолетового излучения

Изобретение относится к радиационным измерениям, в частности к измерениям дозы ультрафиолетового (УФ) излучения, и может быть использовано в медицине, сельском хозяйстве, биотехнологии, обеззараживании объектов, материаловедении, экологии, дефектоскопии, криминалистике, искусствоведении....
Тип: Изобретение
Номер охранного документа: 0002572459
Дата охранного документа: 10.01.2016
20.02.2016
№216.014.cf11

Способ регенерации насыщенного раствора поглотителя влаги

Изобретение относится к способам регенерации насыщенного раствора поглотителя влаги - диэтиленгликоля, который используют в качестве абсорбента для извлечения водяных паров из газа в установках осушки природных и нефтяных газов. Способ регенерации насыщенного раствора поглотителя влаги,...
Тип: Изобретение
Номер охранного документа: 0002575540
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2b5f

Автоматический анализатор теплоценности газообразных топлив

Изобретение относится к области аналитической техники и может быть использовано для автоматического контроля теплоценности газообразных топлив. Автоматический анализатор теплоценности газообразных топлив содержит камеру, в днище которой установлена горелка для формирования пламени во...
Тип: Изобретение
Номер охранного документа: 0002579832
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f76

Способ получения 4-метоксибифенила реакцией сузуки-мияура

Изобретение относится к способу получения 4-метоксибифенила реакцией Сузуки-Мияура и может быть использовано в химической и фармацевтической промышленностях для получения биарилов, которые являются важными полупродуктами в синтезе фармацевтических препаратов, лигандов и полимеров. Способ...
Тип: Изобретение
Номер охранного документа: 0002580107
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33df

Фибра для дисперсного армирования бетона

Изобретение относится к области строительства, в частности к искусственной фибре для приготовления бетонов. Фибра для дисперсного армирования бетона выполнена в виде прямолинейного отрезка нити 1 с анкерами, анкеры выполнены в виде поперечных выпусков 2 из той же нити, равномерно распределенных...
Тип: Изобретение
Номер охранного документа: 0002582254
Дата охранного документа: 20.04.2016
+ добавить свой РИД