×
10.11.2013
216.012.7d75

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКИХ ПОРОХОВ ДЛЯ СТРЕЛКОВОГО ОРУЖИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения сферических порохов (СФП) для стрелкового оружия. Получение СФП со стабильными физико-химическими и баллистическими характеристиками достигается путем обеспечения смешения пара с водой в пароструйном обогревателе, из которого теплоноситель выходит со строго заданной температурой и подается в рубашку реактора. Теплоноситель насосом по трубопроводу подают в пароструйный обогреватель, где за счет сопла увеличивают скорость теплоносителя. Одновременно в приемную камеру обогревателя подают под давлением пар, теплоноситель из сопла вместе с паром попадает в смесительную камеру длиной, равной 4-5 диаметрам трубопровода, и внутренним диаметром 0,7-0,8 от диаметра трубопровода. После смесительной камеры поток расширяют до исходного внутреннего диаметра трубопровода и теплоноситель подают в рубашку реактора. 1 ил., 1 табл., 5 пр.
Основные результаты: Способ получения сферических порохов для стрелкового оружия, характеризующийся тем, что первоначально заполняют систему обогрева реактора, включающую рубашку реактора, сборник и трубопроводы, водой, которую из сборника подают насосом в пароструйный обогреватель, смешивают с паром и полученную смесь в качестве теплоносителя подают в рубашку реактора с заданной температурой, отличающийся тем, что теплоноситель насосом по трубопроводу подают в пароструйный обогреватель под давлением 2,0-2,5 кгс/см со скоростью теплоносителя в трубопроводе 1,2-1,4 м/с к пароструйному обогревателю, где за счет сопла, установленного в пароструйном обогревателе, увеличивают скорость теплоносителя до 16-18 м/с, одновременно в приемную камеру диаметром, равным 1,4-1,5 от диаметра трубопровода, и длиной камеры, равной 2,0-2,5 от диаметра трубопровода подают под давлением 2,5-3,0 кгс/см пар, теплоноситель из сопла вместе с паром подают в смесительную камеру длиной, равной 4-5 диаметрам трубопровода, и внутренним диаметром 0,7-0,8 от диаметра трубопровода, после смесительной камеры поток расширяют до исходного внутреннего диаметра трубопровода и теплоноситель подают в рубашку реактора.

Изобретение относится к области получения сферических порохов (СФП) для стрелкового оружия.

Из литературных источников [1, 2] известны процессы, проводимые в реакторах, имеющих рубашку для нагрева смеси. В качестве теплоносителя для нагрева смеси используется вода, пар, этиленгликоль и др. Использование известных способов нагрева смеси в реакторах при получении СФП связано с увеличением длительности технологического процесса и невозможностью получения качественных характеристик пороха, например, по пористости, насыпной плотности и геометрическим размерам пороховых элементов.

В качестве ближайшего аналога авторами выбран способ обогрева реактора для получения сферических порохов [3], согласно которому первоначально заполняют систему обогрева реактора, включающую рубашку реактора, сборник и трубопроводы, водой, которую из сборника подают насосом в пароструйный обогреватель, смешивают с паром и полученную смесь в качестве теплоносителя подают в рубашку реактора с заданной температурой и обеспечением турбулентности потока смеси, при этом устанавливают разницу температур между входом и выходом смеси из рубашки реактора в пределах 1…2°С.

Недостатком такого способа обогрева реактора является то, что при смешении пара с водой в пароструйном обогревателе происходят гидроудары и перед подачей теплоносителя в рубашку реактора возможны колебания температур, что фиксируют термометры сопротивления, установленные перед подачей теплоносителя в рубашку реактора.

Техническим результатом является получение СФП со стабильными физико-химическими и баллистическими характеристиками путем обеспечения смешения пара с водой в пароструйном обогревателе, где из пароструйного обогревателя теплоноситель выходит со строго заданной температурой и подается в рубашку реактора.

Технический результат достигается тем, что теплоноситель насосом по трубопроводу подают в пароструйный обогреватель под давлением 2,0…2,5 кгс/см2 со скоростью теплоносителя в трубопроводе 1,2…1,4 м/с к пароструйному обогревателю, где за счет сопла, установленного в пароструйном обогревателе, увеличивают скорость теплоносителя до 16…18 м/с, одновременно в приемную камеру диаметром равным 1,4…1,5 от диаметра трубопровода и длиной камеры равной 2,0…2,5 от диаметра трубопровода подают под давлением 2,5…3,0 кгс/см2 пар, теплоноситель из сопла вместе с паром подают в смесительную камеру длиной равной 4…5 диаметрам трубопровода и внутренним диаметром 0,7…0,8 от диаметра трубопровода, после смесительной камеры поток расширяют до исходного внутреннего диаметра трубопровода и теплоноситель подают в рубашку реактора.

На чертеже приведена схематическая конструкция пароструйного обогревателя, состоящего из сопла поз.1, приемной камеры поз.2 и камеры смешения поз.3.

Работает пароструйный обогреватель следующим образом: теплоноситель под давлением 2,0…2,5 кгс/см2 подается насосом по трубопроводу со скоростью 1,2…1,4 м/с в пароструйный обогреватель в сопловую часть поз.1. В сопловой части скорость теплоносителя увеличивается до 16…18 м/с. Одновременно в приемную камеру поз.2 диаметром 1,4…1,5 от диаметра трубопровода и длиной камеры равной 2,0…2,5 от диаметра трубопровода подают пар под давлением 2,5…3,0 кгс/см2. Теплоноситель из сопла вместе с паром подают в смесительную камеру поз.3 длиной равной 4…5 диаметрам трубопровода и внутренним диаметром 0,7…0,8 от диаметра трубопровода, где при скорости теплоносителя 2,8…2,9 м/с происходит интенсивное смешение пара с водой. При этом гидродинамических ударов не происходит и при выходе из смесительной камеры теплоноситель принимает заданную температуру. Из смесительной камеры теплоноситель в трубопроводе расширяется и подается в рубашку реактора со скоростью 1,2…1,4 м/с.

Снижение давления, создаваемого насосом менее 2,0 кгс/см2 и скорости теплоносителя менее 1,2 м/с, не обеспечивает стабильного смешения пара с водой, а увеличение давления более 2,5 кгс/см2 и скорости потока более 1,4 м/с связано с дополнительным сопротивлением при движении теплоносителя по трубопроводу.

Уменьшение скорости теплоносителя в сопловой части менее 16 м/с не обеспечивает стабильного перемешивания пара с водой в смесительной камере, а увеличение скорости теплоносителя в сопловой части более 18 м/с связано с дополнительными трудозатратами и расходом дополнительной электроэнергии.

Уменьшение диаметра приемной камеры менее 1,4 от диаметра трубопровода и длины камеры менее 2,0 от диаметра трубопровода не обеспечивает равномерного распределения подаваемого пара в объем теплоносителя, а увеличение диаметра приемной камеры более 1,5 и ее длины более 2,5 от диаметра трубопровода связано с увеличением габаритов пароструйного обогревателя. Уменьшение давления пара менее 2,5 кгс/см2 приводит к неравномерному смешению пара с водой, а увеличение давления пара более 3,0 кгс/см2 связано с дополнительными трудозатратами.

Уменьшение длины смесительной камеры менее 4 диаметров трубопровода и внутреннего диаметра смесительной камеры менее 0,7 диаметра связано с дополнительным сопротивлением потока и приводит к отдельным гидравлическим ударам, а увеличение длины смесительной камеры более 5 диаметров трубопровода и внутреннего диаметра более 0,8 от диаметра трубопровода положительного эффекта не дает. Уменьшение скорости теплоносителя в смесительной камере менее 2,8 м/с приводит к появлению гидроударов, а увеличение скорости теплоносителя в смесительной камере более 2,9 м/с положительного эффекта не дает.

Технологические режимы, физико-химические и баллистические характеристики СФП по разработанному авторами способу (примеры 1…3) и по известному способу (примеры 4, 5) приведены в таблице.

Таблица
Технологические режимы, физико-химические и баллистические характеристики СФП
Наименование показателя Пример (Пр.№1) Пр.№2 Пр.№3 Пр.№4 Пр.№5
Давление подаваемого теплоносителя в трубопроводах до пароструйного обогревателя, кгс/см2 2,0 2,2 2,5 2,0 2,5
Скорость теплоносителя в трубопроводе, м/с 1,2 1,3 1,4 1,2 1,4
Диаметр приемной камеры от диаметра трубопровода 1,4 1,45 1,5 1,6 1,7
Длина приемной камеры от диаметра трубопровода 2,0 2,2 2,5 1,8 3,0
Давление пара, кгс/см2 2,5 2,7 3,0 2,1 3,0
Длина смесительной камеры от диаметра трубопровода 4 4,5 5,0 2,0 6,0
Внутренний диаметр смесительной камеры от диаметра трубопровода 0,7 0,75 0,8 0,6 0,9
Скорость теплоносителя в смесительной камере, м/с 2,8 2,85 2,9 2,6 3,2
Скорость теплоносителя за пароструйным обогревателем, м/с 1,2 1,3 1,4 1,2 1,4
Насыпная плотность пороха, кг/дм3 0,926 0,936 0,945 0,915 0,920
Пористость, % 4,0 4,5 5,0 8,0 7,0
Химическая стойкость, мм рт.ст. 32 32 32 32 32
Баллистические характеристики
Масса заряда, г 0,83 0,85 0,91 0,80 0,81
Средняя скорость полета пуль, м/с 558 553 559 559 540

Продолжение таблицы
Разброс скорости полета пуль, м/с 13 6 15 22 25
Максимальное давление пороховых газов в баллистической группе, МПа
Среднее 221,0 233,2 258,8 258,8 259,8
Наибольшее 234,1 258,9 302,0 302,0 327,5

По техническим условиям: средняя скорость полета пуль в баллистической группе - не менее 550 м/с, разброс между наибольшим и наименьшим значениями скорости полета пуль - не более 35 м/с; максимальное давление пороховых газов в баллистической группе, МПа: среднее - не более 264, наибольшее - не более 313,7.

Из приведенных данных таблицы видно, что по разработанному авторами способу получения СФП (примеры 1…3) система «рубашка реактора-сборник теплоносителя-трубопроводы» заполнены теплоносителем, который подается насосом в пароструйный обогреватель и при смешении конденсата пара в смесительной камере пароструйного обогревателя происходит нагрев теплоносителя в течение не более 1 минуты до заданной температуры. Время нагрева смеси в реакторе при самых интенсивных тепловых нагрузках не превышает 15 минут. Общий цикл формирования 7,0…7,2 часа.

Полученный СФП имеет пористость пороховых элементов не более 5%, насыпная плотность в пределах 0,926…0,945 кг/дм3. При этом обеспечиваются стабильные баллистические характеристики как по скорости полета пуль, так и по давлению пороховых газов в канале ствола оружия.

По известному способу (примеры 4, 5) нагрев воды в сборнике длится 20 минут. Обогрев реактора происходит неравномерно, общий цикл получения СФП составляет 9,2 часа. При этом физико-химические и баллистические характеристики значительно ниже, чем по разработанному авторами способу. Кроме того, следует отметить, что по известному способу на стенках рубашки реактора происходит отложение солей (накипь), на удаление которой требуются дополнительные трудозатраты.

Литература:

1. Касаткин А.Г. Основные процессы и аппараты химической технологии. - М.: Химия, 1973. - 750 с.

2. Плановский А.Н., Николаев П.И. Процессы и аппараты химической технологии. - М.: Химия, 987. - 492 с.

3. Заявка №2010104369/02 (006142) от 08.02.2010.

Способ получения сферических порохов для стрелкового оружия, характеризующийся тем, что первоначально заполняют систему обогрева реактора, включающую рубашку реактора, сборник и трубопроводы, водой, которую из сборника подают насосом в пароструйный обогреватель, смешивают с паром и полученную смесь в качестве теплоносителя подают в рубашку реактора с заданной температурой, отличающийся тем, что теплоноситель насосом по трубопроводу подают в пароструйный обогреватель под давлением 2,0-2,5 кгс/см со скоростью теплоносителя в трубопроводе 1,2-1,4 м/с к пароструйному обогревателю, где за счет сопла, установленного в пароструйном обогревателе, увеличивают скорость теплоносителя до 16-18 м/с, одновременно в приемную камеру диаметром, равным 1,4-1,5 от диаметра трубопровода, и длиной камеры, равной 2,0-2,5 от диаметра трубопровода подают под давлением 2,5-3,0 кгс/см пар, теплоноситель из сопла вместе с паром подают в смесительную камеру длиной, равной 4-5 диаметрам трубопровода, и внутренним диаметром 0,7-0,8 от диаметра трубопровода, после смесительной камеры поток расширяют до исходного внутреннего диаметра трубопровода и теплоноситель подают в рубашку реактора.
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКИХ ПОРОХОВ ДЛЯ СТРЕЛКОВОГО ОРУЖИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 185.
10.01.2013
№216.012.187c

Плавкий состав для эмульсионной флегматизации порохов

Изобретение относится к области производства порохов для патронов к стрелковому оружию. Для поверхностной обработки порохов предложен плавкий состав, включающий 90-50 мас.% динитротолуола и 10-50 мас.% централита II, способный образовывать эмульсию расплава в водной среде. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002471760
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.1f81

Способ получения наполненных нитратов целлюлозы

Изобретение относится к области получения порохов для стрелкового оружия и артиллерии. Способ получения наполненных нитратов целлюлозы (НЦ) включает перемешивание в воде нитратов целлюлозы и ввод наполнителя, при этом в качестве наполнителя используется калиевая соль...
Тип: Изобретение
Номер охранного документа: 0002473566
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.2367

Взрывозащитная форма аппарата конечной фазы производства пироксилиновых и сферических порохов

Изобретение относится к устройству аппарата конечной фазы производства пироксилиновых и сферических порохов, таких как сушка, мешка, укупорка или транспортировка. Согласно изобретению аппарат имеет конусообразную форму с углом конусности не менее 40°. Решение обеспечивает взрывобезопасные...
Тип: Изобретение
Номер охранного документа: 0002474565
Дата охранного документа: 10.02.2013
20.04.2013
№216.012.37be

Секционный картуз дисковой формы

Изобретение относится к области военной техники, в частности к секционным картузам дисковой формы для метательных зарядов артиллерии. Секционный картуз дисковой формы состоит из двух тканевых заготовок в виде круга, соединенных посредством швов, и заполнен навеской воспламеняющего состава....
Тип: Изобретение
Номер охранного документа: 0002479823
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.3a02

Способ получения водоустойчивого нитрата аммония (аммиачной селитры)

Изобретение относится к химической промышленности и может быть использовано при получении промышленных взрывчатых веществ и пролонгированных удобрений. Нитрат аммония измельчают одновременно при перемешивании совместно с гидрофобобизаторами - солями стеариновой кислоты в количестве не менее 0,1...
Тип: Изобретение
Номер охранного документа: 0002480411
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3e6a

Заряд для 5,6 мм спортивного тренировочного патрона кольцевого воспламенения

Изобретение относится к области разработки зарядов к 5,6 мм спортивному патрону кольцевого воспламенения. Заряд состоит из сферического пороха, размещенного в гильзе с пулей. Заряд выполнен из пороховых элементов, состоящих из смеси 60…80 мас.% пироксилина с содержанием оксида азота 212,5…213,5...
Тип: Изобретение
Номер охранного документа: 0002481545
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e6c

Заряд для 5,6 мм спортивного патрона кольцевого воспламенения

Изобретение относится к области разработки зарядов для спортивно-винтовочных патронов к стрелковому оружию, в частности для элитного 5,6 мм спортивного патрона кольцевого воспламенения. Заряд для элитного 5,6 мм спортивного патрона кольцевого воспламенения состоит из сферического пороха,...
Тип: Изобретение
Номер охранного документа: 0002481547
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e6d

Заряд для 9 мм пистолетного патрона

Изобретение относится к области разработки зарядов к 9 мм пистолетному патрону. Заряд состоит из частиц сферического пороха размером 0,2…0,4 мм. Заряд размещен в капсулированной гильзе с пулей. Заряд выполнен с насыпной плотностью 0,580…0,980 кг/дм из частиц, включающих смесь нитроцеллюлозы с...
Тип: Изобретение
Номер охранного документа: 0002481548
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e6e

Заряд для 7,62 мм винтовочного патрона

Изобретение относится к области разработки зарядов к 7,62 мм винтовочному патрону. Патрон содержит пулю, капсюлированную гильзу и размещенный в ней заряд из пороха. Порох состоит из пироксилина, дифениламина, динитротолуола, централита I, графита, этилацетата и влаги. Заряд содержит 70…80 мас.%...
Тип: Изобретение
Номер охранного документа: 0002481549
Дата охранного документа: 10.05.2013
10.07.2013
№216.012.5400

Способ флегматизации двухосновного сферического пороха

Изобретение относится к области производства сферических двухосновных порохов. Способ флегматизации сферического двухосновного пороха включает приготовление первой флегматизирующей эмульсии перемешиванием с водой флегматизатора α,ω-диметакрил-(бис-триэтиленгликоль) фталата (МГФ-9) в количестве...
Тип: Изобретение
Номер охранного документа: 0002487107
Дата охранного документа: 10.07.2013
Показаны записи 1-10 из 209.
10.01.2013
№216.012.187c

Плавкий состав для эмульсионной флегматизации порохов

Изобретение относится к области производства порохов для патронов к стрелковому оружию. Для поверхностной обработки порохов предложен плавкий состав, включающий 90-50 мас.% динитротолуола и 10-50 мас.% централита II, способный образовывать эмульсию расплава в водной среде. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002471760
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.1f81

Способ получения наполненных нитратов целлюлозы

Изобретение относится к области получения порохов для стрелкового оружия и артиллерии. Способ получения наполненных нитратов целлюлозы (НЦ) включает перемешивание в воде нитратов целлюлозы и ввод наполнителя, при этом в качестве наполнителя используется калиевая соль...
Тип: Изобретение
Номер охранного документа: 0002473566
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.2367

Взрывозащитная форма аппарата конечной фазы производства пироксилиновых и сферических порохов

Изобретение относится к устройству аппарата конечной фазы производства пироксилиновых и сферических порохов, таких как сушка, мешка, укупорка или транспортировка. Согласно изобретению аппарат имеет конусообразную форму с углом конусности не менее 40°. Решение обеспечивает взрывобезопасные...
Тип: Изобретение
Номер охранного документа: 0002474565
Дата охранного документа: 10.02.2013
27.04.2013
№216.012.3a02

Способ получения водоустойчивого нитрата аммония (аммиачной селитры)

Изобретение относится к химической промышленности и может быть использовано при получении промышленных взрывчатых веществ и пролонгированных удобрений. Нитрат аммония измельчают одновременно при перемешивании совместно с гидрофобобизаторами - солями стеариновой кислоты в количестве не менее 0,1...
Тип: Изобретение
Номер охранного документа: 0002480411
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3e6a

Заряд для 5,6 мм спортивного тренировочного патрона кольцевого воспламенения

Изобретение относится к области разработки зарядов к 5,6 мм спортивному патрону кольцевого воспламенения. Заряд состоит из сферического пороха, размещенного в гильзе с пулей. Заряд выполнен из пороховых элементов, состоящих из смеси 60…80 мас.% пироксилина с содержанием оксида азота 212,5…213,5...
Тип: Изобретение
Номер охранного документа: 0002481545
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e6c

Заряд для 5,6 мм спортивного патрона кольцевого воспламенения

Изобретение относится к области разработки зарядов для спортивно-винтовочных патронов к стрелковому оружию, в частности для элитного 5,6 мм спортивного патрона кольцевого воспламенения. Заряд для элитного 5,6 мм спортивного патрона кольцевого воспламенения состоит из сферического пороха,...
Тип: Изобретение
Номер охранного документа: 0002481547
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e6d

Заряд для 9 мм пистолетного патрона

Изобретение относится к области разработки зарядов к 9 мм пистолетному патрону. Заряд состоит из частиц сферического пороха размером 0,2…0,4 мм. Заряд размещен в капсулированной гильзе с пулей. Заряд выполнен с насыпной плотностью 0,580…0,980 кг/дм из частиц, включающих смесь нитроцеллюлозы с...
Тип: Изобретение
Номер охранного документа: 0002481548
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e6e

Заряд для 7,62 мм винтовочного патрона

Изобретение относится к области разработки зарядов к 7,62 мм винтовочному патрону. Патрон содержит пулю, капсюлированную гильзу и размещенный в ней заряд из пороха. Порох состоит из пироксилина, дифениламина, динитротолуола, централита I, графита, этилацетата и влаги. Заряд содержит 70…80 мас.%...
Тип: Изобретение
Номер охранного документа: 0002481549
Дата охранного документа: 10.05.2013
10.07.2013
№216.012.5400

Способ флегматизации двухосновного сферического пороха

Изобретение относится к области производства сферических двухосновных порохов. Способ флегматизации сферического двухосновного пороха включает приготовление первой флегматизирующей эмульсии перемешиванием с водой флегматизатора α,ω-диметакрил-(бис-триэтиленгликоль) фталата (МГФ-9) в количестве...
Тип: Изобретение
Номер охранного документа: 0002487107
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.5402

Сферический пироксилиновый порох для 9 мм спортивного пистолетного патрона

Изобретение относится к области получения сферических порохов для стрелкового оружия. Порох для спортивного пистолетного патрона содержит нитроцеллюлозу, октоген, дифениламин, технический углерод и графит, этилацетат и влагу, при этом в качестве нитроцеллюлозы содержит смесь нитроцеллюлозы с...
Тип: Изобретение
Номер охранного документа: 0002487109
Дата охранного документа: 10.07.2013
+ добавить свой РИД