×
27.10.2013
216.012.7afe

Результат интеллектуальной деятельности: БЛОК ПРИЕМА И СИНХРОНИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к приемному тракту радиолокационных систем и предназначено для обеспечения высокопроизводительной первичной цифровой обработки сигналов в реальном масштабе времени. Достигаемый технический результат изобретения - повышение эффективности цифровой обработки радиолокационных сигналов на фоне помех и обеспечение синхронизации работы бортового радиолокационного комплекса. Технический результат достигается тем, что блок приема и синхронизации состоит из модуля синхронизации и n-приемных каналов, каждый из которых содержит усилитель промежуточной частоты, аналого-цифровой преобразователь, цифровой формирователь квадратур, цифровой гетеродин, устройство цифрового гетеродинирования, адаптер, сумматор, оптимальный фильтр, фильтр боковых лепестков, коммутатор и формирователь выходных сигналов. Модуль синхронизации содержит устройство управления, формирователь сигналов синхронизации и формирователь тактовых импульсов. Перечисленные средства определенным образом соединены между собой. 1 ил.
Основные результаты: Блок приема и синхронизации, содержащий модуль синхронизации и n (n - целое число) приемных каналов, каждый из которых содержит усилитель промежуточной частоты, аналого-цифровой преобразователь, цифровой гетеродин и сумматор, отличающийся тем, что в каждый приемный канал введены цифровой формирователь квадратур, устройство цифрового гетеродинирования, адаптер, оптимальный фильтр, фильтр боковых лепестков, коммутатор и формирователь выходных сигналов, при этом усилитель промежуточной частоты, аналого-цифровой преобразователь, цифровой формирователь квадратур, устройство цифрового гетеродинирования и сумматор соединены последовательно, вход усилителя промежуточной частоты является входом приемного канала, тактовые входы аналого-цифрового преобразователя и модуля синхронизации являются входами сигнала опорной частоты, входы адаптера и модуля синхронизации являются входом интерфейса специализированной цифровой вычислительной машины, первый выход адаптера через цифровой гетеродин соединен со вторым входом устройства цифрового гетеродинирования, второй выход соединен с управляющим входом сумматора, а третий с управляющим входом коммутатора, выход сумматора соединен с первым входом коммутатора, через оптимальный фильтр со вторым входом коммутатора и через фильтр боковых лепестков с третьим входом коммутатора, выход коммутатора соединен с входом формирователя выходных сигналов, выход которого является выходом приемного канала, модуль синхронизации содержит устройство управления, формирователь тактовых импульсов и формирователь сигналов синхронизации, при этом первый вход устройства управления является входом модуля синхронизации, а второй вход является входом сигнала опорной частоты, первый выход устройства управления соединен с тактовым входом адаптера, второй выход соединен с входом формирователя сигналов синхронизации, а третий выход соединен с входом формирователя тактовых импульсов, первый, второй, третий, четвертый выходы формирователя сигналов синхронизации являются соответственно выходами сигнала управления фазовым манипулятором, сигнала управления задающим генератором, импульса запуска передатчика, импульса бланкирования высокочастотного приемника модуля синхронизации, первый и второй выходы формирователя тактовых импульсов являются соответственно выходами тактового импульса задающего генератора и тактового импульса специализированной цифровой вычислительной машины модуля синхронизации.

Предлагаемое техническое решение относится к приемному тракту радиолокационных или аналогичных систем и предназначено для обеспечения высокопроизводительной первичной цифровой обработки сигналов в реальном масштабе времени во всех режимах работы бортового радиолокационного комплекса и синхронизации работы входящих в него блоков.

В известной радиолокационной станции для вертолета [патент РФ №2206903, МПК G01S 13/00, 2001] обработка принимаемых сигналов ведется одним блоком, содержащим как аналоговую, так и цифровую часть, а обеспечение когерентного режима работы и синхронизация работы блоков ведется другим блоком - синхронизатором. Одним из основных требований к бортовому радиолокационному комплексу является обеспечение минимальных массогабаритных характеристик. В предлагаемом техническом решении функции обработки принимаемых сигналов и синхронизации приема объединены в одном устройстве, что значительно уменьшило габариты и вес бортового радиолокационного комплекса.

Известен радиолокационный приемник сложных сигналов [патент РФ №2033625, МПК G01S 7/292, 1991], содержащий регулируемый усилитель, два фазовых детектора, два аналого-цифровых преобразователя, три блока сравнения, блок селекции движущихся целей, ограничитель, фильтр сжатия, детектор, некогерентный накопитель, три фильтра нижних частот, синхронизатор, источник квадратурных колебаний, блок хранения констант и цифроаналоговый преобразователь. Предлагается улучшение помехозащищенности радиолокационного приемника путем вычитания постоянной составляющей на основе предварительной оценки уровня ложных тревог на фиксированном пороговом уровне. Для этого необходимо, чтобы заранее был известен уровень ложных тревог, что ограничивает практическое применение такого технического решения.

Известен цифровой блок обработки радиолокационных сигналов [патент РФ №2166771, МПК G01S 13/53, 1999], содержащий два фазовых детектора, два аналого-цифровых преобразователя, фазовращатель, управляемый гетеродин, блок быстрого преобразования Фурье, блок распознавания одного самолета, блок распознавания двух самолетов, блок распознавания трех самолетов, блок распознавания четырех самолетов, логический элемент И, четыре матричные цифровые устройства сравнения, девять матриц элементов И, четыре матричные постоянные запоминающие устройства, две матрицы элементов ИЛИ, блок выбора минимального значения, цифроаналоговый преобразователь, два световых табло, блок световых табло. В этом изобретении используется аналоговый метод переноса спектра сигнала на видеочастоту, который имеет следующие недостатки: не идентичность амплитудно-частотной и фазово-частотной характеристик, различие коэффициентов передачи квадратурных каналов, дрейф нуля и нелинейность фазового детектора, которые создают дополнительную неопределенность относительно количества разрешаемых воздушных целей и не компенсируются путем проверки совокупности гипотез на истинность в соответствии с критерием согласия 2 - Пирсона.

Известно радиоприемное устройство когерентной РЛС [патент РФ №2189054, МПК G01S 13/04, 2000], содержащее n-каналов приема, состоящих из аналогового сумматора, фазовращателя и приемника, гетеродина и цифровых сумматоров, где число n - четное, целое, определяется заданным увеличением линейного динамического диапазона приемного устройства в n раз. Таким образом, расширение линейного динамического диапазона приемного устройства достигается путем параллельного включения пар аналогичных приемников, что неприемлемо для бортового радиолокационного комплекса, где жесткие требования к массогабаритным характеристикам.

Наиболее близким по технической сущности к заявляемому техническому решению является приемное устройство радиолокатора бокового обзора с синтезированной апертурой [патент РФ №2032185, МПК G01S 13/90, 1989], содержащий смеситель, усилитель промежуточной частоты, задающий генератор промежуточной частоты, фазовые детекторы, гребенчатые фильтры, сумматор, синхронизатор, аналого-цифровые преобразователи, перемножители, цифроаналоговый преобразователь, цифровой гетеродин, широкополосный фазовращатель. Как указано в описании, данное приемное устройство позволяет повысить чувствительность при значительном расширении полосы пропускания, но различие коэффициентов передачи квадратурных каналов и не ортогональность опорных сигналов для фазовых детекторов приводит к искажению спектра сигнала и, в результате, собственный шум ограничивает чувствительность приемного устройства.

Технической задачей, на решение которой направлено предлагаемое изобретение, это повышение разрешающей способности по дальности бортового радиолокационного комплекса за счет улучшения распознавания принятых сигналов на фоне помех, а также обеспечение синхронизации работы бортового радиолокационного комплекса.

Эта задача решается тем, что блок приема и синхронизации содержит модуль синхронизации и n-приемных каналов, каждый из которых содержит усилитель промежуточной частоты, аналого-цифровой преобразователь, цифровой гетеродин и сумматор. В каждый приемный канал включены цифровой формирователь квадратур, устройство цифрового гетеродинирования, адаптер, оптимальный фильтр, фильтр боковых лепестков, коммутатор и формирователь выходных сигналов. В каждом приемном канале последовательно соединены усилитель промежуточной частоты, аналого-цифровой преобразователь, цифровой формирователь квадратур, устройство цифрового гетеродинирования и сумматор. Вход усилителя промежуточной частоты является входом приемного канала. Тактовые входы аналого-цифрового преобразователя и модуля синхронизации являются входами сигнала опорной частоты. Интерфейс специализированной цифровой вычислительной машины соединен с входами адаптера и модуля синхронизации. Первый выход адаптера через цифровой гетеродин соединен со вторым входом устройства цифрового гетеродинирования, второй выход адаптера соединен с управляющим входом сумматора, а третий - с управляющим входом коммутатора. Выход сумматора соединен с первым входом коммутатора, через оптимальный фильтр со вторым входом коммутатора и через фильтр боковых лепестков с третьим входом коммутатора, выход коммутатора соединен с входом формирователя выходных сигналов, выход которого является выходом приемного канала. Модуль синхронизации содержит устройство управления, формирователь тактовых импульсов и формирователь сигналов синхронизации блоков бортового радиолокационного комплекса. Первый вход устройства управления является входом модуля синхронизации, а второй вход - входом сигнала опорной частоты. Первый выход устройства управления соединен с тактовым входом адаптера, второй выход - с входом формирователя сигналов синхронизации, а третий выход - с входом формирователя тактовых импульсов. Первый, второй, третий, четвертый выходы формирователя сигналов синхронизация являются соответственно выходами сигнала управления фазовым манипулятором, сигнал управления задающим генератором, импульс запуска передатчика, импульс бланкирования высокочастотного приемника модуля синхронизации. Первый и второй выходы формирователя тактовых импульсов являются соответственно выходами тактового импульса задающего генератора и тактового импульса специализированной цифровой вычислительной машины модуля синхронизации.

Функциональная схема блока приема и синхронизации представлена на чертеже, с одним каналом блока приема и синхронизации, n-ые приемные каналы имеют аналогичную структуру и их количество зависит от тактических требований к бортовому радиолокационному комплексу.

Блок приема и синхронизации содержит усилитель промежуточной частоты 1, аналого-цифровой преобразователь 2, цифровой формирователь квадратур 3, устройство цифрового гетеродинирования 4, сумматор 5, цифровой гетеродин 6, адаптер 7, оптимальный фильтр 8, фильтр боковых лепестков 9, коммутатор 10, формирователь выходных сигналов 11, устройство управления 12, формирователь сигналов синхронизации 13, формирователь тактовых импульсов 14. Устройство управления 12, формирователь сигналов синхронизации 13 и формирователь тактовых импульсов 14 входят в состав модуля синхронизации 15.

Усилитель промежуточной частоты (УПЧ)1, аналого-цифровой преобразователь 2, цифровой формирователь квадратур 3, устройство цифрового гетеродинирования 4 и сумматор 5 последовательно соединены. Вход усилителя промежуточной частоты 1 является входом приемного канала блока приема и синхронизации. Тактовые входы аналого-цифрового преобразователя 2 и модуля синхронизации являются входами сигнала опорной частоты Fоп. Интерфейс специализированной цифровой вычислительной машины соединен с входами адаптера 7 и модуля синхронизации. Первый выход адаптера 7 через цифровой гетеродин 6 соединен со вторым входом устройства цифрового гетеродинирования 4, второй выход адаптера 7 соединен с управляющим входом сумматора 5, а третий - с управляющим входом коммутатора 10. Выход сумматора 5 соединен с первым входом коммутатора 10, через оптимальный фильтр 8 со вторым входом коммутатора 10 и через фильтр боковых лепестков 9 с третьим входом коммутатора 10, выход коммутатора 10 соединен с входом формирователя выходных сигналов 11, выход которого является выходом приемного канала блока приема и синхронизации. В модуле синхронизации первый вход устройства управления 12 является входом модуля синхронизации 15, а второй вход - входом сигнала опорной частоты Fоп. Первый выход устройства управления 12 соединен с тактовым входом адаптера 7, второй выход - с входом формирователя сигналов синхронизации 13, а третий выход - с входом формирователя тактовых импульсов 14. Первый, второй, третий, четвертый выходы формирователя сигналов синхронизация 13 являются соответственно выходами сигнала управления фазовым манипулятором Dπ, сигнала управления задающим генератором Ds, импульса запуска передатчика ИЗП, импульс бланкирования высокочастотного приемника ИБП модуля синхронизации 15.

Первый и второй выходы формирователя тактовых импульсов 14 являются соответственно выходами тактового импульса задающего генератора ТИ_G и тактового импульса специализированной цифровой вычислительной машины ТИ_S модуля синхронизации 15.

Рассмотрим работу блока приема и синхронизации на примере прохождения принимаемого сигнала по одному приемному каналу. Поскольку построение n-ых каналов идентично первому каналу, то прохождение принимаемого сигнала по ним будет аналогично.

Входной сигнал на второй промежуточной частоте Fпч2 с высокочастотного приемника (на чертеже не показано) поступает на вход усилитель промежуточной частоты 1, усилитель промежуточной частоты 1 обеспечивает необходимый уровень сигналов на входе аналого-цифрового преобразователя 2. С выхода усилителя промежуточной частоты 1 сигнал поступает на вход аналого-цифрового преобразователя 2, на тактовый вход которого поступает сигнал опорной частоты Fоп. С выхода аналого-цифрового преобразователя 2 сигнал в цифровой форме поступает на цифровой формирователь квадратур 3. С выхода цифрового формирователя квадратур 3 цифровые сигналы, соответствующие реальной и мнимой квадратурным составляющим сигнала, поступают на первый вход устройства цифрового гетеродинирования 4, на второй вход которого поступают цифровые сигналы, соответствующие реальной и мнимой квадратурным составляющим сигнала гетеродина с выхода цифрового гетеродина 6. Код частоты цифрового гетеродина 6 поступает с первого выхода адаптера 7. После гетеродинирования сигнал поступает на сумматор 5, где происходит суммирование отсчетов сигнала на интервале одного элемента дальности. Количество суммируемых выборок, задержка начала зоны приема относительно импульса начала отсчета, количество элементов дальности в зоне приема, задержка начала кадра относительно тактового импульса и размер кадра определяются соответствующими кодами, поступающими на управляющий вход сумматора 5 со второго выхода адаптера 7. После суммирования отсчетов сигнала в сумматоре 5 производится деление суммарного сигнала на количество суммируемых выборок (нормировка данных) и полученный сигнал поступает через коммутатор 10 на формирователь выходных сигналов 11, который обеспечивает передачу выходной цифровой информации в устройство вторичной обработки сигналов бортового радиолокационного комплекса по последовательным LVDS шинам (LVDS - Low-Voltage Differential Signaling). Коммутатор 10 обеспечивает прохождение сигнала с выхода сумматора 5 без фильтрации или через оптимальный фильтр 8, или, дополнительно, через фильтр боковых лепестков 9, в зависимости от поступающей команды с третьего выхода адаптера 7 на управляющий вход коммутатора 10.

Управление блоком приема и синхронизации производится специализированной цифровой вычислительной машиной по интерфейсу SMI (Serial Management Interface) через адаптер 7 и устройство управления 12. Интерфейс SMI представляет собой последовательную синхронную шину (сигналы mdc, mdio и шина GND), обеспечивающую доступ по записи и чтению к 16-разрядным регистрам устройств. Синхронизация работы приемных каналов обеспечивается тактовым импульсом и импульсом начала отсчета, поступающими из модуля синхронизации с первого выхода устройства управления 12 на тактовый вход адаптера 7. Со второго выхода устройства управления 12 поступают команды на вход формирователя сигналов синхронизации 13, который обеспечивает формирование сигналов управления блоками бортового радиолокационного комплекса: Dπ - сигнал управления фазовым манипулятором, Ds - сигнал управления задающим генератором, ИЗП - импульс запуска передатчика, ИБП - импульс бланкирования высокочастотного приемника. С третьего выхода устройства управления 12 поступают команды на вход формирователя тактовых импульсов 14, который обеспечивает формирование импульсов синхронизации бортового радиолокационного комплекса: ТИ_G - тактовый импульс задающего генератора, TH_S - тактовый импульс специализированной цифровой вычислительной машины. Более подробно построение формирователей приведено в описании к [патенту РФ №2304788, МПК G01S 7/285, 2006].

Для подтверждения возможности реализации технического решения было проведено макетирование модулей четырехканального блока приема и синхронизации с тактико-техническими характеристиками для конкретного бортового радиолокационного комплекса. Управление блоком приема и синхронизации осуществляется специализированной цифровой вычислительной машиной с использованием интерфейса SMI. Приемопередатчики интерфейса SMI адаптера и устройства управления модуля синхронизации реализованы на ПЛИС (программируемая логическая интегральная схема) и обеспечивают преобразование последовательного кода управляющей информации, поступающей по интерфейсу SMI в параллельный код управляющих сигналов. Усилители, аналого-цифровые преобразователи выбраны из промышленно выпускаемой элементной базы.

Цифровая обработка сигнала, поступающего с аналого-цифрового преобразователя 2, организована на базе ПЛИС и обеспечивает выполнение следующих операций: цифровое формирование квадратур входного сигнала, фильтрацию гармоник верхних частот, цифровое гетеродинирование, суммирование отсчетов сигнала на интервале одного элемента дальности и деление результата на количество суммирований (нормировка данных), оптимальную фильтрацию принятого сигнала и подавление боковых лепестков результатов сжатия оптимального фильтра. Передача данных блока приема и синхронизации производится через встроенный в ПЛИС передатчик данных LVDS. Одновременно передаются реальные и мнимые квадратуры принимаемого сигнала. Модуль синхронизации 15 также реализован на базе ПЛИС, что позволило обеспечить формирование сигналов синхронизации с уровнями, соответствующими стандарту Standart LVDS, и их передачу в блоки бортового радиолокационного комплекса по дифференциальным линиям связи с волновым сопротивлением (100±2) Ом, а также увеличить частоту входного опорного сигнала синхронизации до 112 МГЦ. Увеличение частоты входного опорного сигнала позволяет уменьшить дискрет перестройки периода зондирующих импульсов бортового радиолокационного комплекса до 1/112 мкс.

Для уменьшения массогабаритных характеристик блока приема и синхронизации в едином модуле стандарта «Евромеханика-3U» выполнены УПЧ двух каналов. Также в едином модуле выполнены аналого-цифровой преобразователь 2 и цифровые части двух каналов, при этом цифровой формирователь квадратур 3, устройство цифрового гетеродинирования 4, цифровой гетеродин 6, сумматор 5, адаптер 7, оптимальный фильтр 8, фильтр боковых лепестков 9, коммутатор 10 и формирователь выходных сигналов 11 для обоих каналов выполнены на одной ПЛИС. В едином модуле на одной ПЛИС выполнен модуль синхронизации, что значительно улучшило массогабаритные характеристики и позволило избавиться от паразитных наводок по сигнальным цепям. Источник питания выполнен, как единый модуль, по стандартной схеме в зависимости от требований к первичным системам электропитания.

Предлагаемое техническое решение позволило реализовать четырех канальный блок приема и синхронизации с выполнением вышеперечисленных функций в исполнении «Евромеханика» типоразмера 1ATR Short, состоящим из шести модулей стандарта 3U, при массе не более 8 кг.

Полученные характеристики на этапе макетирования подтверждают достижение технического результата предлагаемого изобретения. Блок приема и синхронизации обеспечивает преобразование широкополосных аналоговых сигналов в последовательности цифровых отсчетов с высокой точностью, формирование синусной и косинусной квадратурных составляющих оцифрованных сигналов с выхода каждого из приемных каналов бортового радиолокационного комплекса, подготовку первичной информации об обнаруженных и сопровождаемых объектах и выдачу ее в системы управления бортового радиолокационного комплекса, формирование сигналов, синхронизирующих работу блоков, входящих в состав бортового радиолокационного комплекса, и работу модулей, входящих в состав блока.

Блок приема и синхронизации, содержащий модуль синхронизации и n (n - целое число) приемных каналов, каждый из которых содержит усилитель промежуточной частоты, аналого-цифровой преобразователь, цифровой гетеродин и сумматор, отличающийся тем, что в каждый приемный канал введены цифровой формирователь квадратур, устройство цифрового гетеродинирования, адаптер, оптимальный фильтр, фильтр боковых лепестков, коммутатор и формирователь выходных сигналов, при этом усилитель промежуточной частоты, аналого-цифровой преобразователь, цифровой формирователь квадратур, устройство цифрового гетеродинирования и сумматор соединены последовательно, вход усилителя промежуточной частоты является входом приемного канала, тактовые входы аналого-цифрового преобразователя и модуля синхронизации являются входами сигнала опорной частоты, входы адаптера и модуля синхронизации являются входом интерфейса специализированной цифровой вычислительной машины, первый выход адаптера через цифровой гетеродин соединен со вторым входом устройства цифрового гетеродинирования, второй выход соединен с управляющим входом сумматора, а третий с управляющим входом коммутатора, выход сумматора соединен с первым входом коммутатора, через оптимальный фильтр со вторым входом коммутатора и через фильтр боковых лепестков с третьим входом коммутатора, выход коммутатора соединен с входом формирователя выходных сигналов, выход которого является выходом приемного канала, модуль синхронизации содержит устройство управления, формирователь тактовых импульсов и формирователь сигналов синхронизации, при этом первый вход устройства управления является входом модуля синхронизации, а второй вход является входом сигнала опорной частоты, первый выход устройства управления соединен с тактовым входом адаптера, второй выход соединен с входом формирователя сигналов синхронизации, а третий выход соединен с входом формирователя тактовых импульсов, первый, второй, третий, четвертый выходы формирователя сигналов синхронизации являются соответственно выходами сигнала управления фазовым манипулятором, сигнала управления задающим генератором, импульса запуска передатчика, импульса бланкирования высокочастотного приемника модуля синхронизации, первый и второй выходы формирователя тактовых импульсов являются соответственно выходами тактового импульса задающего генератора и тактового импульса специализированной цифровой вычислительной машины модуля синхронизации.
БЛОК ПРИЕМА И СИНХРОНИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 401-410 из 650.
05.07.2018
№218.016.6bbe

Способ прогнозирования остаточного ресурса подшипников качения по данным об их виброактивности

Изобретение относится к области машиностроения. Способ содержит операцию измерения общего уровня виброускорения подшипникового узла с последующим переводом его в коэффициент виброперегрузки. Отличительной особенностью способа является то, что прогноз остаточного ресурса подшипника...
Тип: Изобретение
Номер охранного документа: 0002659867
Дата охранного документа: 04.07.2018
06.07.2018
№218.016.6cb5

Способ сборки ракетного двигателя твердого топлива (рдтт) с газогенератором и сопловым блоком

Изобретение относится к технологии изготовления крупногабаритных ракетных двигателей твердого топлива. Сборку ракетного двигателя с газогенератором, расположенным внутри сквозного центрального канала заряда, и сопловым блоком производят в горизонтальном положении на основных рельсовых путях, на...
Тип: Изобретение
Номер охранного документа: 0002660209
Дата охранного документа: 05.07.2018
06.07.2018
№218.016.6d30

Способ переработки мицелиальных отходов производства гентамицина сульфата

Изобретение относится к области микробиологии, а именно к способам биологической переработки органических отходов, и может быть использовано для утилизации мицелиальных отходов производства аминогликозидных антибиотиков и производства органических удобрений. Способ включает предварительный...
Тип: Изобретение
Номер охранного документа: 0002660261
Дата охранного документа: 05.07.2018
10.07.2018
№218.016.6f24

Гибкий защитный слой для подвижных и деформирующихся элементов конструкций

Изобретение относится к области машиностроения. Защитный экран содержит слой поглощения рентгеновского излучения. Он выполнен в виде полос фольги из металла, эффективно поглощающего излучение, закрепленных на гибкой подложке. Каждая последующая полоса расположена внахлест предыдущей по всей...
Тип: Изобретение
Номер охранного документа: 0002660656
Дата охранного документа: 09.07.2018
10.07.2018
№218.016.6f3d

Доплеровский измеритель скорости космического аппарата

Изобретение относится к радиотехнике и может быть использовано в системах радиосвязи для повышения точности измерения скорости движения космических аппаратов (КА). Достигаемый технический результат - повышение точности измерения скорости космического аппарата за счет уменьшения случайной...
Тип: Изобретение
Номер охранного документа: 0002660676
Дата охранного документа: 09.07.2018
12.07.2018
№218.016.7045

Колейный разборный мост для пропуска нагрузок легкой категории по массе

Изобретение относится к сборно-разборным мостам и мостовым конструкциям. Колейный разборный мост для пропуска нагрузок легкой категории по массе включает четыре аппарели, четыре береговые секции, десять средних секций с демонтируемой проезжей частью, все перечисленные элементы собираются в две...
Тип: Изобретение
Номер охранного документа: 0002660767
Дата охранного документа: 10.07.2018
13.07.2018
№218.016.70b8

Способ наземной эксплуатации аккумуляторных батарей системы электропитания космического аппарата

Изобретение относится к наземным испытаниям космических аппаратов (КА). Способ наземной эксплуатации аккумуляторных батарей (АБ) системы электропитания (СЭП) космического аппарата (КА) заключается в циклировании двух или более АБ в режиме заряда-разряда, задаваемом бортовой автоматикой СЭП,...
Тип: Изобретение
Номер охранного документа: 0002661187
Дата охранного документа: 12.07.2018
13.07.2018
№218.016.70e6

Тренажер для обучения механика-водителя гусеничной машины

Изобретение относится к тренажерам для обучения механиков-водителей гусеничных машин. В тренажере содержится пульт управления инструктора, блок моделирования динамики движения, счетчик превышения предельного ускорения и схема установки уровня ударной перегрузки. Пульт управления инструктора...
Тип: Изобретение
Номер охранного документа: 0002661176
Дата охранного документа: 12.07.2018
14.07.2018
№218.016.711f

Устройство термостатирования бортовой аппаратуры полезного груза в составе космической головной части

Изобретение относится к средствам предстартовой подготовки космической головной части ракеты с полезным грузом (ПГ) (2), имеющим бортовую аппаратуру (БА) (1). Устройство включает в себя экранно-вакуумную тепловую изоляцию (ЭВТИ) (3) на поверхности ПГ (2), радиатор-охладитель (4) в виде силовой...
Тип: Изобретение
Номер охранного документа: 0002661270
Дата охранного документа: 13.07.2018
18.07.2018
№218.016.71c9

Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей (АБ) в автономных системах электропитания (СЭП) космических аппаратов (КА), функционирующих на низкой околоземной орбите. Повышение надежности работы...
Тип: Изобретение
Номер охранного документа: 0002661340
Дата охранного документа: 16.07.2018
Показаны записи 371-377 из 377.
04.04.2018
№218.016.30af

Способ управления амплитудно-фазовым распределением на раскрыве фазированной антенной решетки

Изобретение относится к антенной технике и предназначено для управления амплитудно-фазовым распределением (АФР) поля на раскрыве деформированной фазированной антенной решетки (ФАР). Изобретение позволяет расширить область возможных применений способа управления АФР на раскрыве ФАР с...
Тип: Изобретение
Номер охранного документа: 0002644999
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3109

Способ оценки точности геометрической модели местности при ее автоматическом построении

Изобретение относится к измерительной технике и может быть использовано в области фотограмметрии при оценке точности геометрической модели местности при ее автоматическом построении. Технический результат – повышение быстродействия за счет сокращения вычислительных операций. Для этого в...
Тип: Изобретение
Номер охранного документа: 0002644996
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3173

Способ идентификации космических объектов искусственного происхождения в космическом пространстве

Способ идентификации космических объектов искусственного происхождения в космическом пространстве включает в себя использование лазерной локации для сканирования поверхности космических объектов. На поверхность указанных объектов нанесены светоотражающие элементы, спектр отражения которых...
Тип: Изобретение
Номер охранного документа: 0002645001
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.31a3

Вероятностная спутниковая система для мониторинга лесных пожаров

Изобретение относится к вероятностным (т.е. без стабилизации структуры) спутниковым системам наблюдения Земли, c охватом её обширных регионов. Спутники системы, находящиеся на круговых орбитах, оснащены сканирующей широкоугольной оптико-электронной системой ИК-диапазона с линейным фотоприемным...
Тип: Изобретение
Номер охранного документа: 0002645179
Дата охранного документа: 16.02.2018
28.07.2018
№218.016.7661

Радиолокатор с поляризационной селекцией

Изобретение относится к области радиолокации, в частности к радиолокационным станциям (радиолокаторам), устанавливаемым на летательных аппаратах. Достигаемый технический результат - расширение функциональных возможностей устройства за счет реализации функции обнаружения малоскоростных и...
Тип: Изобретение
Номер охранного документа: 0002662452
Дата охранного документа: 26.07.2018
20.02.2019
№219.016.bc7f

Когерентный приемник рлс с цифровым устройством для амплитудной и фазовой корректировки квадратурных составляющих принимаемого сигнала

Изобретение относится к технике обработки сигналов радиолокационных станций (РЛС). Технический результат состоит в расширении функциональных возможностей и улучшении основных технических параметров РЛС. Сущность изобретения состоит в обеспечении управляемого усиления, преобразования частоты,...
Тип: Изобретение
Номер охранного документа: 0002273860
Дата охранного документа: 10.04.2006
29.05.2019
№219.017.66d6

Модуль синхронизации

Изобретение относится к приемному тракту радиолокационных или аналогичных систем и предназначено для обеспечения синхронизации работы всех составляющих приемного тракта, а также приемных и передающих блоков радиолокационных систем. Технический результат предлагаемого изобретения направлен на...
Тип: Изобретение
Номер охранного документа: 0002304788
Дата охранного документа: 20.08.2007
+ добавить свой РИД