×
20.10.2013
216.012.7739

Результат интеллектуальной деятельности: ФОТОЭЛЕКТРИЧЕСКИЙ КОНЦЕНТРАТОРНЫЙ СУБМОДУЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области солнечной энергетики. Фотоэлектрический концентраторный субмодуль содержит фронтальный стеклянный лист (1), на тыльной стороне которого расположен первичный оптический концентратор в виде линзы (2) квадратной формы с длиной стороны квадрата, равной W, и фокусным расстоянием F. В центральной области поверхности линзы (2) квадратной формы и соосно с ней установлен фотоэлемент (4) толщиной z, выполненный в виде квадрата со стороной, равной d, размещенный на теплоотводящем основании (3), выполненном в виде круга диаметром d или прямоугольника с длиной большей стороны d и толщиной z. На фотоактивной поверхности фотоэлемента (4) соосно с линзой (2) квадратной формы установлен вторичный оптический концентратор в виде, например, усеченного стеклянного конуса (5), высотой h, обращенного меньшим основанием к фотоэлементу. Параллельно фронтальному стеклянному листу (1) установлен тыльный стеклянный лист (6) со светоотражающим зеркальным покрытием (7). Расстояние от светоотражающего зеркального покрытия (7) до фотоэлемента (4) равно L. Величины F, W, d, d, z, z, h и L удовлетворяют определенным соотношениям. Изобретение обеспечивает уменьшение трудоемкости изготовления фотоэлектрического субмодуля при обеспечении высокой точности монтажа фотоэлемента и сохранении хорошей разориентационной характеристики, что позволит увеличить его энергопроизводительность и надежность. Снижение расхода материалов за счет уменьшения в 2 раза толщины субмодулей также позволит уменьшить стоимость изготовления фотоэлектрического модуля. 13 з.п. ф-лы, 5 ил.

Изобретение относится к области солнечной энергетики и, в частности к концентраторам солнечного излучения, используемым в фотоэлектрических модулях, применяемым, например, в наземных гелиоэнергетических установках, предназначенных для систем автономного энергоснабжения.

Одним из наиболее перспективных методов получения электроэнергии из возобновляемых источников является фотоэлектрическое преобразование концентрированного солнечного излучения с использованием дорогостоящих высокоэффективных многокаскадных солнечных элементов. Известно, что применение оптических концентраторов излучения в фотоэлектрических модулях позволяет увеличить энергетическую эффективность фотоэлектрических модулей, а также улучшить их энерго-экономические показатели за счет многократного уменьшения расхода дорогостоящих полупроводниковых материалов. Так, при увеличении степени концентрирования солнечного излучения на поверхности солнечного элемента до 1000х, площадь дорогих солнечных элементов сокращается в 1000 раз. Но от вклада стоимости оптических концентрирующих систем в общую стоимость модуля, степени сложности их изготовления и сборки модуля, величины срока эксплуатации зависит экономичность фотоэлектрического модуля.

Известен фотоэлектрический субмодуль (см. заявка РСТ WO 9213362, H01L 31/00, опубликована 06.08.1992), содержащий корпус, смонтированный в корпусе концентратор и фотоэлемент (ФЭ), расположенный на задней стенке корпуса. В качестве концентратора может быть использована линза Френеля, а корпус может иметь вид усеченного конуса, либо усеченной пирамиды.

Основным недостатком рассматриваемого фотоэлектрического субмодуля с концентратором является сложность изготовления и высокая стоимость конструкции.

Известен фотоэлектрический субмодуль (см. патент US 6717045, МПК H01L 31/052, опубликован 06.04.2004), состоящий из первичного концентратора, имеющего степень концентрации солнечного излучения 5-10 крат, вторичного концентратора, расположенного ниже первого и увеличивающего степень концентрации солнечного излучения в 20-50 раз, и третьего концентратора, установленного в нижней плоскости вторичного концентратора и фокусирующего излучение на поверхность солнечного фотоэлемента. В качестве первичного концентратора может быть использована линза Френеля. Вторичный концентратор представляет собой комбинированный параболический отражатель, изготовленный из стекла или керамики и имеющий отражающие и защитные покрытия. В качестве третьего концентратора служит стеклянная линза. Солнечный фотоэлемент установлен на площадке, имеющей оребрение для рассеяния тепла.

Недостатками известной конструкции фотоэлектрического субмодуля являются большие потери света за счет отражения от поверхностей оптических элементов трехкаскадного концентратора, технические сложности изготовления, монтажа и юстировки большого количества оптических деталей и, соответственно, также высокая стоимость конструкции.

Известен концентраторный солнечный фотоэлектрический субмодуль (см. заявка US 2007/0089778, МПК H02N 6/00, опубликована 26.04.2007), содержащий фронтальную панель с установленным на ее тыльной стороне пары коаксиальных осесимметричных криволинейных зеркал, фокусирующих солнечное излучение на фотоэлемент, установленный на тыльной панели.

К недостатку известного субмодуля следует отнести сложность изготовления двух отражательных оптических элементов с необходимой точностью профиля.

Известен концентраторный солнечный фотоэлектрический субмодуль (см. патент US7851693, МПК H02L 31/042, опубликован 14.12.2010), имеющий твердотельный прозрачный оптический концентратор, типа Кассегрейн, содержащий относительно большую вогнутую отражающую поверхность и расположенную против нее относительно малую выпуклую отражающую поверхность, фокусирующие и направляющие солнечное излучение на поверхность солнечного элемента, установленного на теплоотводе в центральной части вогнутой отражающей поверхности.

Недостаток известного субмодуля заключается в сложности изготовления оптических элементов сложной конфигурации и высокой стоимости конструкции.

Известен фотоэлектрический субмодуль (см. патент RU 2307294, МПК H01L 31/052, опубликован 27.09.2007), содержащий фронтальную панель из силикатного стекла с линзой Френеля на ее тыльной стороне, а также солнечный фотоэлемент с теплоотводящим основанием. Теплоотводящие основания расположены на тыльной панели из силикатного стекла или выполнено в виде лотка с плоским дном, через центральную продольную линию поверхности которой проходит оптическая ось линзы Френеля. Введена дополнительная промежуточная панель из силикатного стекла, на фронтальной или тыльной стороне которой установлена плоско-выпуклая линза, соосная с линзой Френеля. Светоприемная поверхность фотоэлемента находится в фокусном пятне двух концентраторов - линзы Френеля и плоско-выпуклой линзы. В зависимости от варианта выполнения субмодуля расстояние между промежуточной панелью и теплоотводящими основаниями, фокусное расстояние плоско-выпуклой линзы, толщина фотоэлемента, промежуточной панели и плоско-выпуклой линзы связаны соотношениями, приведенными в формуле изобретения.

Известный фотоэлектрический субмодуль обеспечивает улучшение разориентационных характеристик устройства. Однако недостатком известного субмодуля является высокий уровень концентрации солнечного излучения на фотоэлементе, что приводит к снижению эффективности преобразования света в электроэнергию и уменьшает срок службы фотоэлемента. Недостатком известного фотоэлектрического субмодуля является также трудоемкость позиционирования ФЭ и линзы в линзовой панели, а также дополнительные оптические потери при прохождении света через промежуточную линзовую панель.

Известен фотоэлектрический концентраторный субмодуль (см. патент RU 2352023, МПК H01L 31/052, опубликован 10.04.2009), совпадающий с заявляемым техническим решением по наибольшему числу существенных признаков и принятый за прототип.

Фотоэлектрический концентраторный субмодуль содержит фронтальную панель и тыльную панели, изготовленные из силикатного стекла, первичный и вторичный оптические концентраторы и фотоэлемент с теплоотводящим основанием. Первичный оптический концентратор выполнен в форме линзы, сформированной в виде тыльной поверхности фронтальной панели методом литья под давлением. Вторичный оптический концентратор выполнен в виде фокона, установленного меньшим основанием на светочувствительной поверхности фотоэлемента. Фотоэлемент с теплоотводящим основанием размещены на фронтальной поверхности тыльной панели соосно первичному оптическому концентратору. Вторичный оптический концентратор позволяет улучшить разориентационную характеристику солнечного фотоэлектрического субмодуля, что обеспечивает увеличение энергопроизводительности фотоэлектрического модуля.

Недостатками известного фотоэлектрического концентраторного субмодуля-прототипа являются сложность изготовления и монтажа вторичного оптического концентратора на светочувствительной поверхности фотоэлемента, а также трудоемкость позиционирования ФЭ и высокая статистическая вероятность линейного несовпадения центра ФЭ с оптическим центром линзы.

Задачей, решаемой заявляемым техническим решением, является уменьшение трудоемкости изготовления фотоэлектрического субмодуля при обеспечении высокой точности монтажа фотоэлемента и сохранении хорошей разориентационной характеристики, что позволит увеличить его энергопроизводительность и надежность. Снижение расхода материалов за счет уменьшения в 2 раза толщины субмодулей также позволит уменьшить стоимость изготовления фотоэлектрического модуля.

Поставленная задача решается тем, что фотоэлектрический концентраторный субмодуль включает фронтальный стеклянный лист, на тыльной стороне которого расположен первичный оптический концентратор в виде линзы квадратной формы с длиной стороны квадрата, равной W, и фокусным расстоянием F. В центральной области поверхности линзы квадратной формы и соосно с ней установлен фотоэлемент толщиной z1, выполненный в виде квадрата со стороной, равной d1, размещенный на теплоотводящем основании, выполненном в виде круга диаметром d2 или прямоугольника с длиной большей стороны d2 и толщиной z2. На фотоактивной поверхности фотоэлемента соосно с линзой квадратной формы установлен вторичный оптический концентратор высотой h1. Параллельно фронтальному стеклянному листу установлен тыльный стеклянный лист со светоотражающим зеркальным покрытием, расстояние от которого до фотоэлемента равно L. Величины F, W, d1, d2, z1, z2, h1 и L удовлетворяют соотношениям;

где n1 - показатель преломления материала вторичного оптического концентратора.

Новым в настоящем фотоэлектрическом концентраторном субмодуле является установка в центральной области поверхности линзы квадратной формы и соосно с ней фотоэлемента толщиной z1, выполненного в виде квадрата со стороной, равной d1, размещенного на теплоотводящем основании, выполненном в виде круга диаметром d2 или прямоугольника с длиной большей стороны d2 и толщиной z2, установка параллельно фронтальному стеклянному листу тыльного стеклянного листа со светоотражающим зеркальным покрытием, расстояние от которого до фотоэлемента равно L, и нахождение соотношения величин F, W, d1, d2, z1, z2, h1 и L.

Установка фотоэлемента в центральной области поверхности линзы квадратной формы и соосно с ней на тыльной стороне фронтального стеклянного листа увеличивает точность монтажа элементов и позволяет получить законченную сборочную единицу при изготовлении фотоэлектрических модулей. Установка параллельно фронтальному стеклянному листу тыльного стеклянного листа со светоотражающим зеркальным покрытием, расстояние от которого до фотоэлемента равно L, позволяет фокусировать солнечное излучение на фотоприемной поверхности фотоэлемента и исключает ошибку позиционирования, возникающую при установке линз первичного оптического концентратора и фотоэлементов на разных поверхностях. Кроме того, установка параллельно фронтальному стеклянному листу тыльного стеклянного листа со светоотражающим зеркальным покрытием позволяет в 2 раза уменьшить толщины субмодулей, что приводит к снижению расхода материалов и уменьшению стоимости изготовления фотоэлектрического модуля.

Первичный оптический концентратор может быть выполнен в виде линзы Френеля или в виде плоско-выпуклой линзы.

Теплоотводящее основание может быть выполнено в виде байпасного диода, изготовленного из кремниевой пластины с p-n переходом, полярность которого противоположна полярности p-n перехода фотоэлемента, или может быть выполнено из меди.

Светоотражающее зеркальное покрытие может быть расположено на фронтальной стороне тыльного стеклянного листа. При этом светоотражающее зеркальное покрытие может быть выполнено в виде круга диаметром D1, соосного с линзой первичного оптического концентратора, диаметр круга D1 удовлетворяет соотношению:

Светоотражающее зеркальное покрытие может быть также установлено на тыльной стороне тыльного стеклянного листа и покрыто защитным материалом, устойчивым к воздействию окружающей среды. В этом случае светоотражающее зеркальное покрытие может быть выполнено в виде круга диаметром D2, соосного с линзой первичного оптического концентратора, при этом диаметр круга D2 удовлетворяет соотношению:

где n2 - показатель преломления тыльного стеклянного листа,

h2 - толщина тыльного стеклянного листа, см.

Вторичный оптический концентратор может быть выполнен в виде усеченного стеклянного конуса, обращенного меньшим основанием к фотоэлементу, с диаметром меньшего основания, равным или меньшим d1, или в виде стеклянного цилиндра с диаметром основания, равным или меньшим d1, или в виде усеченной стеклянной пирамиды с квадратными основаниями, обращенной меньшим основанием к фотоэлементу, с длиной стороны меньшего основания, равной или меньшей d1, или в виде стеклянной пластины с квадратными основаниями и длиной стороны квадрата, равной или меньшей d1, или в виде короткофокусной плосковыпуклой линзы. Диаметры оснований стеклянного цилиндра или усеченного стеклянного конуса, а также длины сторон оснований усеченной стеклянной пирамиды или стеклянной пластины с квадратными основаниями обращенные к фотоэлементу, выбираются равными d1, если размер фотоактивной поверхности фотоэлемента совпадает с размероми фотоэлемента. В случае, когда фотоактивная поверхность фотоэлемента меньше размеров фотоэлемента, то соответствующие размеры оснований вторичных оптических концентраторов, обращенные к фотоэлементу, выбираются равными размеру фотоактивной поверхности фотоэлемента.

Выбор оптимального диапазона размеров первичного оптического концентратора в виде линзы, заданного соотношением 0,5F<W<F, определяется необходимостью получения максимальной энергетической кратности концентрирования солнечного излучения на поверхности фотоэлемента. Для этого отношение площади линзы к площади светового пятна на поверхности фотоэлемента должно быть как можно больше при сохранении высокого оптического кпд линзы. Известно, что диаметр сфокусированного линзой светового пятна строго детерминирован, определяясь угловым размером солнечного диска и фокусным расстоянием линзы, и равен 0.01F. При увеличении размеров линзы W больше F уменьшается ее оптический кпд, поскольку в этом случае периферийные области работают при больших углах преломления, что увеличивает отражение лучей от преломляющей поверхности линзы вплоть до достижения условия полного внутреннего отражения. Однако для размеров линзы W, меньших, чем 0,5F, кратность концентрирования солнечного излучения уже значительно уменьшается.

Размер фотоэлемента d1 выбирается таким, чтобы сфокусированное световое пятно целиком попадало на фотоактивную поверхность фотоэлемента и имело возможность перемещения при угловом рассогласовании ориентации субмодуля. Поскольку диаметр сфокусированного линзой светового пятна равен 0,01F, то минимальный размер фотоэлемента d1 должен быть не меньше этой величины. Размер фотоэлемента d1=0,03F обеспечивает попадание светового пятна на фотоактивную поверхность фотоэлемента при разориентации субмодуля ±30'. Увеличивать размер d1 больше этой величины нецелесообразно из-за высокой стоимости фотоэлементов.

Чтобы обеспечить отвод тепла от фотоэлемента, диаметр d2 круглого теплоотводящего основания либо размеры сторон d2 прямоугольного теплоотводящего основания должны быть не меньше 0,15W. Увеличение размеров теплоотводящего основания приводит к увеличению площади затенения излучения, фокусируемого первичным оптическим концентратором, и уменьшению эффективности фокусировки. Максимальное значение размеров d2 теплоотводящего основания не должно превышать 0,3W, при этом оптические потери не превышают 10%.

Расстояние L от тыльного стеклянного листа со светоотражающим зеркальным покрытием до фотоэлемента рассчитывается по формуле (4) и определяется фокусным расстоянием линзы F, уменьшенным на суммарную толщину теплоотводящего основания и фотоэлемента z1+z2 и увеличенным на величину разности хода лучей, возникающую за счет преломления света во вторичном оптическом концентраторе высотой h1.

Светоотражающее зеркальное покрытие на тыльном стеклянном листе может быть нанесено как на фронтальную, так и на тыльную сторону стеклянного листа в виде сплошного слоя. Однако в целях экономии материала светоотражающее зеркальное покрытие может быть выполнено в виде круга, соосного с линзой первичного оптического концентратора. При этом минимальные значения диаметров кругов D1 и D2 ограничиваются геометрическим ходом лучей в оптической системе и могут быть рассчитаны по формулам (5) и (6). Увеличивать диаметры кругов D1 и D2 больше размера W линзы первичного оптического концентратора нецелесообразно.

Настоящий фотоэлектрический концентраторный субмодуль поясняется чертежами, где:

на фиг.1 показан вид сбоку в разрезе на вариант воплощения настоящего фотоэлектрического концентраторного субмодуля;

на фиг.2 приведен вид сбоку в разрезе на другой вариант воплощения настоящего фотоэлектрического концентраторного субмодуля;

на фиг.3 изображен вид сбоку в разрезе на третий вариант воплощения настоящего фотоэлектрического концентраторного субмодуля;

на фиг.4 показан вид сбоку в разрезе на четвертый вариант воплощения настоящего фотоэлектрического концентраторного субмодуля;

на фиг.5 изображен вид сбоку в разрезе на пятый вариант воплощения настоящего фотоэлектрического концентраторного субмодуля.

Настоящий фотоэлектрический концентраторный субмодуль (см. фиг.1) содержит фронтальный стеклянный лист 1, на тыльной стороне которого расположен первичный оптический концентратор в виде линзы 2 квадратной формы с длиной стороны квадрата, равной W, и фокусным расстоянием F. В центральной области поверхности линзы 2 квадратной формы и соосно с ней установлен фотоэлемент 4 толщиной z1, выполненный в виде квадрата со стороной, равной d1, размещенный на теплоотводящем основании 3, выполненном в виде, например, круга диаметром d2 и толщиной z2. На фотоактивной поверхности фотоэлемента 4 соосно с линзой 2 квадратной формы установлен вторичный оптический концентратор в виде, например, усеченного стеклянного конуса 5, высотой h1, обращенного меньшим основанием к фотоэлементу, с диаметром основания, равным d1. Параллельно фронтальному стеклянному листу 1 установлен тыльный стеклянный лист 6 со светоотражающим зеркальным покрытием 7. Расстояние от светоотражающего зеркального покрытия 7 до фотоэлемента 4 равно L. Величины F, W, d1, d2, z1, z2 h1 и L удовлетворяют приведенным выше соотношениям (1)-(4).

Вторичный оптический концентратор может быть выполнен (см. фиг.2) в виде стеклянного цилиндра 8 с диаметром основания меньше d1, если размер фотоактивной поверхности фотоэлемента меньше размеров фотоэлемента. Вторичный оптический концентратор может быть выполнен (см. фиг.3) в виде усеченной стеклянной пирамиды 9 с квадратными основаниями, обращенной меньшим основанием к фотоэлементу, с длиной стороны меньшего основания, меньшей d1, если размер фотоактивной поверхности фотоэлемента меньше размеров фотоэлемента. Вторичный оптический концентратор может быть выполнен (см. фиг.4) в виде стеклянной пластины 10 с квадратными основаниями и длиной стороны квадрата, равной d1, если размер фотоактивной поверхности фотоэлемента совпадает с размером фотоэлемента. Вторичный оптический концентратор может быть выполнен (см. фиг.5) в виде короткофокусной плосковыпуклой линзы 11.

При работе настоящего фотоэлектрического концентраторного субмодуля с фотоэлементом 4, ориентированного перпендикулярно солнечным лучам, солнечное излучение, попадающее на входную апертуру первичного оптического концентратора в виде линзы 2 квадратной формы, преломляется ею и, после отражения зеркальным покрытием 7 тыльного стеклянного листа 6, фокусируется на большем основании вторичного оптического концентратора в виде усеченного стеклянного конуса 5. После преломления на входной поверхности усеченного стеклянного конуса частичного отражения от боковой поверхности усеченного стеклянного конуса, световой пучок через меньшее основание усеченного стеклянного конуса 5 попадает на фотоактивную поверхность фотоэлемента 4. При этом разориентационная характеристика фотоэлектрического концентраторного субмодуля, определяемая соотношением размеров фотоактивной поверхности фотоэлемента 4 и диаметром фокального пятна, остается более высокой, чем в фотоэлектрических модулях без вторичного оптического концентратора; распределение концентрации солнечного излучения на фотоактивной поверхности фотоэлемента 4 более однородное, чем в фокальном пятне первичного концентратора. Более однородное распределение концентрации солнечного излучения по поверхности фотоэлемента 4 приводит к уменьшению локального перегрева фотоэлемента 4, повышению надежности его работы и увеличению эффективности преобразования солнечного излучения в электрическую энергию. Соосное размещение линзы 2 первичного оптического концентратора и фотоэлемента 4 на тыльной стороне фронтального стеклянного листа 1 обеспечивает высокую точность взаимного расположения элементов конструкции, а отражение света светоотражающим зеркальным покрытием 7 тыльного стеклянного листа 6 позволяет почти в 2 раза уменьшить толщину субмодуля по сравнению с величиной фокусного расстояния линзы F.

Использование предложенного фотоэлектрического концентраторного субмодуля дает большой экономический эффект, обусловленный тем, что концентраторный субмодуль прост по конструкции, технологичен при сборке, обладает высокими фотоэлектрическими характеристиками, обеспечивает надежную и долговременную эксплуатацию.


ФОТОЭЛЕКТРИЧЕСКИЙ КОНЦЕНТРАТОРНЫЙ СУБМОДУЛЬ
ФОТОЭЛЕКТРИЧЕСКИЙ КОНЦЕНТРАТОРНЫЙ СУБМОДУЛЬ
ФОТОЭЛЕКТРИЧЕСКИЙ КОНЦЕНТРАТОРНЫЙ СУБМОДУЛЬ
ФОТОЭЛЕКТРИЧЕСКИЙ КОНЦЕНТРАТОРНЫЙ СУБМОДУЛЬ
ФОТОЭЛЕКТРИЧЕСКИЙ КОНЦЕНТРАТОРНЫЙ СУБМОДУЛЬ
ФОТОЭЛЕКТРИЧЕСКИЙ КОНЦЕНТРАТОРНЫЙ СУБМОДУЛЬ
ФОТОЭЛЕКТРИЧЕСКИЙ КОНЦЕНТРАТОРНЫЙ СУБМОДУЛЬ
ФОТОЭЛЕКТРИЧЕСКИЙ КОНЦЕНТРАТОРНЫЙ СУБМОДУЛЬ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 119.
16.05.2019
№219.017.5260

Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры АВ с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над...
Тип: Изобретение
Номер охранного документа: 0002687501
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.53af

Способ изготовления омических контактов фотоэлектрического преобразователя

Способ изготовления омических контактов фотоэлектрического преобразователя включает напыление на гетероструктуру AB основы фронтального омического контакта через первую фоторезистивную маску с рисунком фронтального омического контакта и основы тыльного омического контакта, термообработку...
Тип: Изобретение
Номер охранного документа: 0002687851
Дата охранного документа: 16.05.2019
01.06.2019
№219.017.7275

Способ изготовления нитридного светоизлучающего диода

Способ изготовления нитридного светоизлучающего диода включает последовательное формирование на диэлектрической подложке слоя нитридного полупроводника n-типа проводимости, активного слоя нитридного полупроводника, слоя нитридного полупроводника р-типа проводимости. На полученной...
Тип: Изобретение
Номер охранного документа: 0002690036
Дата охранного документа: 30.05.2019
07.06.2019
№219.017.7543

Концентраторно-планарный солнечный фотоэлектрический модуль

Концентраторно-планарный фотоэлектрический модуль (1) содержит фронтальную светопрозрачную панель (2) с концентрирующими оптическими элементами (4), светопрозрачную тыльную панель (5), на которой сформированы планарные неконцентраторные фотоэлектрические преобразователи (6) с окнами (10),...
Тип: Изобретение
Номер охранного документа: 0002690728
Дата охранного документа: 05.06.2019
13.06.2019
№219.017.8186

Импульсный инжекционный лазер

Импульсный инжекционный лазер содержит гетероструктуру раздельного ограничения, включающую асимметричный многомодовый волновод, ограничительные слои (3), (8) которого одновременно являются эмиттерами n- и р-типа проводимости с одинаковыми показателями преломления, активную область (6),...
Тип: Изобретение
Номер охранного документа: 0002691164
Дата охранного документа: 11.06.2019
20.06.2019
№219.017.8cbe

Оптический магнитометр

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе карбида кремния для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Оптический...
Тип: Изобретение
Номер охранного документа: 0002691774
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8cfa

Оптический магнитометр

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе карбида кремния для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Оптический...
Тип: Изобретение
Номер охранного документа: 0002691775
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8d0a

Способ измерения температуры

Изобретение относится к области нанотехнологий и может быть использовано в области измерения локальных слабых температурных полей с микро- и наноразмерным разрешением в микроэлектронике, биотехнологиях и др. Предложен способ измерения температуры, включающий предварительное построение...
Тип: Изобретение
Номер охранного документа: 0002691766
Дата охранного документа: 18.06.2019
17.07.2019
№219.017.b5e8

Устройство определения характеристик для определения характеристик сцинтилляционного материала

Группа изобретений относится к устройству определения характеристик для определения характеристик сцинтилляционного материала, в частности, для датчика ПЭТ. Первый источник излучения облучает сцинтилляционный материал первым излучением с длиной волны менее 450 нм. Второй источник излучения...
Тип: Изобретение
Номер охранного документа: 0002694592
Дата охранного документа: 16.07.2019
26.07.2019
№219.017.b955

Способ измерения магнитного поля

Изобретение относится к области измерительной техники и касается способа измерения магнитного поля. Способ включает воздействие на кристалл карбида кремния, содержащего спиновые центры с основным квадруплетным спиновым состоянием, сфокусированным лазерным излучением, перестраиваемым по частоте...
Тип: Изобретение
Номер охранного документа: 0002695593
Дата охранного документа: 24.07.2019
Показаны записи 81-90 из 104.
29.12.2018
№218.016.acff

Свч фотодетектор лазерного излучения

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотодетекторов (ФД) лазерного излучения (ЛИ). СВЧ фотодетектор лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: Брегговского отражателя 2, настроенного на...
Тип: Изобретение
Номер охранного документа: 0002676187
Дата охранного документа: 26.12.2018
01.03.2019
№219.016.cedd

Способ полирования полупроводниковых материалов

Изобретение относится к области обработки полупроводниковых материалов, а именно к химико-механическим способам полирования полупроводников. Изобретение обеспечивает высокое качество полированной поверхности. Сущность изобретения: в способе химико-механического полирования полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002457574
Дата охранного документа: 27.07.2012
01.03.2019
№219.016.d0be

Способ изготовления полупроводниковой структуры с p-n переходами

Изобретение относится к электронной технике, а именно к полупроводниковым многопереходным структурам, используемым, в частности, в фотоэлектрических преобразователях. Способ изготовления полупроводниковой структуры включает последовательное формирование на полупроводниковой подложке методом...
Тип: Изобретение
Номер охранного документа: 0002461093
Дата охранного документа: 10.09.2012
01.03.2019
№219.016.d0c1

Способ определения неоднородностей в полупроводниковом материале

Изобретение относится к области электронной техники и может быть использовано для контроля качества проводящих слоев и поверхностей полупроводниковых пленок, применяемых при изготовлении изделий микроэлектроники. Сущность изобретения: в способе определения неоднородностей в полупроводниковом...
Тип: Изобретение
Номер охранного документа: 0002461091
Дата охранного документа: 10.09.2012
03.03.2019
№219.016.d231

Способ изготовления мощного фотодетектора

Изобретение может быть использовано для создания СВЧ-фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании фоточувствительной области и контактной площадки для бондинга вне фоточувствительной области на...
Тип: Изобретение
Номер охранного документа: 0002680983
Дата охранного документа: 01.03.2019
10.04.2019
№219.017.0277

Способ формирования многослойного омического контакта фотоэлектрического преобразователя (варианты)

Изобретение относится к микроэлектронике. Сущность изобретения: в способе формирования многослойного омического контакта фотоэлектрического преобразователя на основе арсенида галлия электронной проводимости формируют фотолитографией топологию фоточувствительных областей и проводят травление...
Тип: Изобретение
Номер охранного документа: 0002391741
Дата охранного документа: 10.06.2010
16.05.2019
№219.017.5260

Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры АВ с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над...
Тип: Изобретение
Номер охранного документа: 0002687501
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.5967

Солнечный фотоэлектрический модуль на основе наногетероструктурных фотопреобразователей

Концентраторный фотоэлектрический модуль на основе наногетероструктурных солнечных элементов относится к области фотоэлектрического преобразования энергии, в частности к системам с расщеплением солнечного спектра. Модуль содержит корпус (1), имеющий фронтальную панель (2), содержащую...
Тип: Изобретение
Номер охранного документа: 0002426198
Дата охранного документа: 10.08.2011
29.05.2019
№219.017.689a

Концентраторный солнечный элемент

Концентраторный солнечный элемент (8) выполнен в форме в форме прямоугольника с соотношением длин сторон, находящимся в интервале от 1 до 1,5. Он содержит подложку (3), многослойную структуру (4), сформированную на подложке (3), с центральной фоточувствительной областью (12), контактный слой...
Тип: Изобретение
Номер охранного документа: 0002407108
Дата охранного документа: 20.12.2010
09.06.2019
№219.017.7c22

Способ получения структуры многослойного фотоэлектрического преобразователя

Способ получения многослойной структуры двухпереходного фотоэлектрического преобразователя, включающий последовательное осаждение из газовой фазы на подложку p-типа GaAs тыльного потенциального барьера из триметилгаллия (TMGa), триметилалюминия (TMAl), арсина (AsH) и источника p-примеси, базы...
Тип: Изобретение
Номер охранного документа: 0002366035
Дата охранного документа: 27.08.2009
+ добавить свой РИД