×
20.10.2013
216.012.765f

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО АНОДНОГО ОКСИДА ТИТАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гальванотехники и может быть использовано в области наноэлектроники. Способ включает формирование слоя пористого анодного оксида анодным окислением титанового образца в потенциостатическом режиме в электролите на неводной основе, при этом после формирования слоя пористого анодного оксида проводят электрохимический процесс его отделения в слабом водном растворе неорганической кислоты катодной поляризацией титанового образца в потенциостатическом режиме, затем анодным окислением титанового образца в потенциостатическом режиме в электролите на неводной основе формируют вторичный слой пористого анодного оксида титана, при этом анодное окисление титанового образца для формирования слоя и вторичного слоя пористого анодного оксида проводят при термостабилизации зоны протекания электрохимической реакции. Технический результат: повышение воспроизводимости формирования пористого оксида титана с высокой степенью упорядоченности наноструктуры. 2 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к области нанотехнологии и наноэлектроники, а конкретно к получению пористых оксидных наноматериалов.

Известен способ получения пористого оксида титана путем анодного окисления титана [1]. Он заключается в том, что электрохимически в электролите на водной основе (0,5-3,5 вес.% HF в воде) на титановом образце выращивают слой пористого анодного оксида титана. Основным недостатком способа является то, что он не обеспечивает получение оксида титана с повышенной степенью упорядоченности его наноструктуры и воспроизводимости геометрических параметров пор. Кроме того, выращиваемые в водных растворах кислот пористые слои оксида имеют предельную толщину (не более 500 нм), хотя для практического применения часто необходимы пористые пленки оксида большей толщины.

Известен способ получения пористого анодного оксида титана [2]. Он заключается в том, что электрохимически в электролите на неводной основе (1 вес.% HF в диэтиленгликоле) на титановом образце выращивают слой пористого оксида титана. Оксид имеет пористую структуру, а его толщина составляет более 10 мкм, что значительно превышает предельную толщину оксида, получаемого в водных растворах. Однако как в первом, так и в данном случае не удается получить оксид с высокой степенью упорядоченности пор и воспроизводимости их геометрических параметров.

Наиболее близким к предлагаемому техническому решению является способ получения пористого анодного оксида титана [3]. Он заключается в том, что электрохимически в потенциостатическом режиме с использованием электролита на неводной основе (раствор NH4F в этиленгликоле) на титановой подложке выращивают слой пористого оксида титана. Как и в предыдущем способе обеспечивается возможность формирования оксида значительной толщины. Способ позволяет формировать оксид титана с квазиупорядоченной наноструктурой. Однако и в данном случае не удается получить оксид с повышенной степенью упорядоченности пор и воспроизводимости их геометрических параметров.

Задача изобретения - повышение воспроизводимости формирования пористого оксида титана с высокой степенью упорядоченности наноструктуры.

Сущность изобретения заключается в следующем.

Исходным является титановый образец. На титановом образце формируют слой пористого оксида титана. Слой оксида титана формируют анодным окислением титанового образца (электрохимически при анодной поляризации титанового образца) в потенциостатическом режиме (в режиме стабилизации напряжения) в электролите на неводной основе при термостабилизации зоны протекания электрохимической реакции. Электролит на неводной основе меняют на слабый водный раствор неорганической кислоты и проведением электрохимического процесса при катодной поляризации титанового образца в потенциостатическом режиме отделяют слой пористого анодного оксида. Меняют слабый водный раствор неорганической кислоты на электролит на неводной основе и анодным окислением титанового образца в потенциостатическом режиме при термостабилизации зоны протекания электрохимической реакции формируют вторичный слой пористого анодного оксида титана. В качестве него используют титановую фольгу или подложку с нанесенной на нее тонкой пленкой титана. В качестве материала подложки может быть использован монокристаллический кремний.

Предлагаемый способ основан на двухстадийном анодировании титанового образца. Формируемый на титановом образце слой пористого оксида титана является «жертвенным». При протекании электрохимического процесса в слабом водном растворе неорганической кислоты при катодной поляризации титанового образца (по сути, при противоположной в сравнении с анодированием полярности напряжения между анодом и катодом) в потенциостатическом режиме на границе раздела титан-оксид титана, происходит активное выделение водорода, приводящее к отделению (механическому отрыву) «жертвенного» слоя пористого оксида титана. Образующаяся наноструктурированная поверхность титана является ориентирующей для последующего эффективного выращивания вторичного слоя пористого оксида титана с повышенной степенью упорядоченности наноструктуры.

На фиг.1 приведена РЭМ-микрофотография нанорельефной поверхности титанового образца после удаления с него слоя пористого оксида титана.

На фиг.2 представлены РЭМ-микрофотографии поверхности слоя пористого оксида титана, полученного при одностадийном (а) и двустадийном (б) анодировании.

Анодное окисление титанового образца для формирования слоя и вторичного слоя пористого анодного оксида проводят при термостабилизации зоны протекания электрохимической реакции. Это необходимо для того, что бы исключить локальные разогревы титанового образца и, как следствие, локальные растравы образующихся пор. В целой это повышает воспроизводимость формирования массива пор с требуемыми геометрическими параметрами.

Пример исполнения.

Исходной является титановая фольга. Титановую фольгу помещают в электрохимическую ячейку, в которой находится электролит на неводной основе (0,3 М NH4F в этиленгликоле), и анодным окислением в потенциостатическом режиме при клеммном напряжении 90 В в течение 15 минут при термостабилизации зоны протекания электрохимической реакции при 20°С выращивают слой пористого оксида титана толщиной 4 мкм. Электролит удаляют из электрохимической ячейки, заливают в нее слабый водный раствор неорганической кислоты (5% водный раствор H2SO4) и проводят электрохимический процесс при катодной поляризации титанового образца в потенциостатическом режиме при клеммном напряжении 5 В в течение 1 минуты, при этом отделяют (удаляют) слой пористого анодного оксида титана. Меняют слабый водный раствор неорганической кислоты на электролит на неводной основе (0,3М NH4F в этиленгликоле) и анодным окислением титанового образца в потенциостатическом режиме при клеммном напряжении 90 В в течение 45 минут при термостабилизации зоны протекания электрохимической реакции при 20°С формируют вторичный слой пористого анодного оксида титана толщиной 12 мкм.

Положительный эффект от использования предлагаемого способа заключается в повышении воспроизводимости формирования пористого оксида титана с высокой степенью упорядоченности наноструктуры. В процессе проведения предложенного двухстадийного способа формирования пористого анодного оксида титана образующаяся наноструктурированная поверхность титана является ориентирующей для последующего эффективного выращивания вторичного слоя пористого оксида титана с повышенной степенью упорядоченности наноструктуры.

Практическая значимость предлагаемого способа заключается в возможности создания на основе титан-оксидных структур высокочувствительных датчиков различных газов, характеризующихся повышенной воспроизводимостью, тонкопленочных солнечных элементов нового поколения.

Источники информации

1. Gong D., Grimes С.А., Varghese O.K. Titanium oxide nanotube arrays prepared by anodic oxidation // Journal of Materials Research. 2001. - Vol.16, No. 12. - P.3331-3334.

2. Sorachon Yoriya and Craig A. Grimes Self-Assembled TiО2 Nanotube Arrays by Anodization of Titanium in Diethylene Glycol: Approach to Extended Pore Widening// Langmuir. 2010. - Vel.26. P.417-420.

3. Патент США №20100320089, кл. C23C 28/00 - прототип.


СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО АНОДНОГО ОКСИДА ТИТАНА
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО АНОДНОГО ОКСИДА ТИТАНА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 27.
10.11.2013
№216.012.8010

Трехколлекторный биполярный магнитотранзистор

Изобретение относится к полупроводниковой электронике, к полупроводниковым приборам с биполярной структурой, обладающим чувствительностью к воздействию магнитного поля. Техническим результатом изобретения является повышение чувствительности к магнитному полю, направленному параллельно...
Тип: Изобретение
Номер охранного документа: 0002498457
Дата охранного документа: 10.11.2013
10.04.2014
№216.012.b0fe

Тестовая структура для оценки радиуса кривизны острия иглы кантилевера сканирующего зондового микроскопа

Тестовая структура состоит из основания, содержащего приповерхностный слой. Приповерхностный слой имеет рельефную ячеистую структуру с плотной упаковкой. Соседние ячейки имеют общую стенку, а каждая ячейка является как минимум пятистенной. Стенки каждой ячейки расположены вертикально, а верхние...
Тип: Изобретение
Номер охранного документа: 0002511025
Дата охранного документа: 10.04.2014
20.07.2014
№216.012.e24c

Нанокомпозитная газопоглощающая структура и способ ее получения

Изобретение относится к вакуумной технике и представляет собой нанокомпозитную газопоглощающую структуру и способ ее получения, предназначенную для поддержания вакуума в различных приборах, в том числе микроэлектромеханических системах. Нанокомпозитная газопоглощающая структура представляет...
Тип: Изобретение
Номер охранного документа: 0002523718
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ea03

Способ сборки чувствительного элемента микромеханического датчика

Изобретение относится к области приборостроения и может быть использовано при изготовлении чувствительных элементов, применяемых при изготовлении микромеханических акселерометров, микрогироскопов, интегральных датчиков давления. Задачей, на решение которой направлено изобретение, является...
Тип: Изобретение
Номер охранного документа: 0002525715
Дата охранного документа: 20.08.2014
20.11.2014
№216.013.06a0

Способ контроля ширины элементов топологии

Изобретение относится к области вычислительной техники и может быть использовано для проверки топологии фотошаблонов, печатных плат, микросхем на наличие дефектов. Техническим результатом является повышение точности контроля ширины элементов и изоляционных промежутков. Способ содержит этапы, на...
Тип: Изобретение
Номер охранного документа: 0002533097
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0923

Способ реактивного ионного травления слоя нитрида титана селективно к двуокиси кремния, поликремнию и вольфраму

Изобретение относится к микроэлектронике, методам и технологическим приемам контроля и анализа структуры интегральных схем, к процессам сухого плазменного травления. Сущность изобретения: слой TiN удаляется селективно к SiO, вольфраму и поликремнию при реактивном ионном травлении его в плазме O...
Тип: Изобретение
Номер охранного документа: 0002533740
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0ce9

Жидкостный наносветовод

Изобретение относится к области лазерной техники, в частности к устройствам для передачи лазерного излучения. Устройство содержит полый наносветовод, сердцевина которого заполнена водой или водным раствором с показателем преломления, большим показателя преломления оболочки. На торцах...
Тип: Изобретение
Номер охранного документа: 0002534722
Дата охранного документа: 10.12.2014
27.01.2015
№216.013.2083

Способ изготовления сверхпроводникового детектора

Использование: для получения высокотемпературных сверхпроводников и изготовления высокочувствительных приемников электромагнитного излучения. Сущность изобретения заключается в том, что способ включает в себя формирование пленки из высокотемпературного сверхпроводящего материала, который...
Тип: Изобретение
Номер охранного документа: 0002539771
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.2222

Солнечный коллектор

Изобретение направлено на повышение прочности и производительности солнечного коллектора. В солнечном коллекторе содержатся два боковых профиля, каждый из которых выполнен в виде вертикальной стенки, имеющей на концах утолщения с направляющими пазами, перпендикулярными стенке, прозрачное...
Тип: Изобретение
Номер охранного документа: 0002540191
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.248f

Способ информационного обмена в системе телемеханики

Изобретение относится к способам формирования информационных сообщений в системе телемеханики. Технический результат заключается в повышении информативности и оперативности системы телемеханики. Для этого предложен способ информационного обмена в системе телемеханики, в котором любое...
Тип: Изобретение
Номер охранного документа: 0002540812
Дата охранного документа: 10.02.2015
Показаны записи 1-10 из 35.
10.11.2013
№216.012.8010

Трехколлекторный биполярный магнитотранзистор

Изобретение относится к полупроводниковой электронике, к полупроводниковым приборам с биполярной структурой, обладающим чувствительностью к воздействию магнитного поля. Техническим результатом изобретения является повышение чувствительности к магнитному полю, направленному параллельно...
Тип: Изобретение
Номер охранного документа: 0002498457
Дата охранного документа: 10.11.2013
10.04.2014
№216.012.b0fe

Тестовая структура для оценки радиуса кривизны острия иглы кантилевера сканирующего зондового микроскопа

Тестовая структура состоит из основания, содержащего приповерхностный слой. Приповерхностный слой имеет рельефную ячеистую структуру с плотной упаковкой. Соседние ячейки имеют общую стенку, а каждая ячейка является как минимум пятистенной. Стенки каждой ячейки расположены вертикально, а верхние...
Тип: Изобретение
Номер охранного документа: 0002511025
Дата охранного документа: 10.04.2014
20.07.2014
№216.012.e24c

Нанокомпозитная газопоглощающая структура и способ ее получения

Изобретение относится к вакуумной технике и представляет собой нанокомпозитную газопоглощающую структуру и способ ее получения, предназначенную для поддержания вакуума в различных приборах, в том числе микроэлектромеханических системах. Нанокомпозитная газопоглощающая структура представляет...
Тип: Изобретение
Номер охранного документа: 0002523718
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ea03

Способ сборки чувствительного элемента микромеханического датчика

Изобретение относится к области приборостроения и может быть использовано при изготовлении чувствительных элементов, применяемых при изготовлении микромеханических акселерометров, микрогироскопов, интегральных датчиков давления. Задачей, на решение которой направлено изобретение, является...
Тип: Изобретение
Номер охранного документа: 0002525715
Дата охранного документа: 20.08.2014
20.11.2014
№216.013.06a0

Способ контроля ширины элементов топологии

Изобретение относится к области вычислительной техники и может быть использовано для проверки топологии фотошаблонов, печатных плат, микросхем на наличие дефектов. Техническим результатом является повышение точности контроля ширины элементов и изоляционных промежутков. Способ содержит этапы, на...
Тип: Изобретение
Номер охранного документа: 0002533097
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0923

Способ реактивного ионного травления слоя нитрида титана селективно к двуокиси кремния, поликремнию и вольфраму

Изобретение относится к микроэлектронике, методам и технологическим приемам контроля и анализа структуры интегральных схем, к процессам сухого плазменного травления. Сущность изобретения: слой TiN удаляется селективно к SiO, вольфраму и поликремнию при реактивном ионном травлении его в плазме O...
Тип: Изобретение
Номер охранного документа: 0002533740
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0ce9

Жидкостный наносветовод

Изобретение относится к области лазерной техники, в частности к устройствам для передачи лазерного излучения. Устройство содержит полый наносветовод, сердцевина которого заполнена водой или водным раствором с показателем преломления, большим показателя преломления оболочки. На торцах...
Тип: Изобретение
Номер охранного документа: 0002534722
Дата охранного документа: 10.12.2014
27.01.2015
№216.013.2083

Способ изготовления сверхпроводникового детектора

Использование: для получения высокотемпературных сверхпроводников и изготовления высокочувствительных приемников электромагнитного излучения. Сущность изобретения заключается в том, что способ включает в себя формирование пленки из высокотемпературного сверхпроводящего материала, который...
Тип: Изобретение
Номер охранного документа: 0002539771
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.2222

Солнечный коллектор

Изобретение направлено на повышение прочности и производительности солнечного коллектора. В солнечном коллекторе содержатся два боковых профиля, каждый из которых выполнен в виде вертикальной стенки, имеющей на концах утолщения с направляющими пазами, перпендикулярными стенке, прозрачное...
Тип: Изобретение
Номер охранного документа: 0002540191
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.248f

Способ информационного обмена в системе телемеханики

Изобретение относится к способам формирования информационных сообщений в системе телемеханики. Технический результат заключается в повышении информативности и оперативности системы телемеханики. Для этого предложен способ информационного обмена в системе телемеханики, в котором любое...
Тип: Изобретение
Номер охранного документа: 0002540812
Дата охранного документа: 10.02.2015
+ добавить свой РИД