×
20.10.2013
216.012.75f2

Результат интеллектуальной деятельности: ТВЕРДЫЙ ЭЛЕКТРОЛИТ НА ОСНОВЕ ОКСИДА ЦЕРИЯ И ЦЕРАТА БАРИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, а именно к твердооксидным композитным электролитам, и может быть использовано в средне- и высокотемпературных электрохимических устройствах. Твердый электролит на основе оксида церия и церата бария, допированный самарием, имеет состав, отвечающий формуле xBaCeSmO-(1-x)CeSmO, где x=0.3, 0.5, 0.7. Технический результат заключается в расширении ряда твердых электролитов на основе оксида церия и церата бария, обладающих повышенной термодинамической стабильностью в присутствии паров воды и углекислого газа при сохранении или повышении уровня ионной проводимости. 1 ил., 1 табл.
Основные результаты: Твердый электролит на основе оксида церия и церата бария, допированный самарием, отличающийся тем, что состав твердого электролита отвечает формуле xBaCeSmO-(1-x)CeSmO, где x=0,3, 0,5, 0,7.

Изобретение относится к области электротехники, а именно к твердооксидным композитным электролитам, и может быть использовано в средне- и высокотемпературных электрохимических устройствах.

Известен твердый электролит на основе оксида церия, допированный самарием (Ce0.8Sm0.2O2-δ, CSO) (M.R. Kosinski, R.Т. Baker. J. Power Sources. 196 (2011), p.2498) [1], а также твердый электролит на основе церата бария, допированный самарием (BaCe0.8Sm0.2O3-δ, BCS) (E. Gorbova, V. Maragou, D. Medvedev, A. Demina, P. Tsiakaras. J.Power Sources. 181 (2008), p.207-213) [2], обладающие высокой ионной проводимостью. Однако известный электролит [1] обладает высокой электронной проводимостью в восстановительных атмосферах, что снижает эффективность работы электрохимических устройств, а электролит [2] характеризуется низкой термодинамической стабильностью в атмосферах, содержащих пары воды и углекислого газа, что приводит к образованию новых фаз в электролите и снижению его электрической проводимости.

Наиболее близким по составу к предлагаемому изобретению является твердый электролит на основе оксида церия и церата бария, допированный самарием, отвечающий формуле 0.367BaCe0.8Sm0.2O3-δ-0.633Ce0.8Sm0.2O2-δ (W. Sun, Y. Jiang, Y. Wang, S. Fang, Z. Zhu, W. Liu, J. Power Sources. 196 (2011), p.62) [3]. Исследования известного электролита, полученного при массовом отношении фазы перовскита к фазе флюорита 1:1, выявили его повышенную устойчивость к парам воды и углекислого газа и высокий уровень ионной проводимости.

Задача настоящего изобретения состоит в расширении ряда твердых электролитов на основе оксида церия и церата бария, обладающих повышенной устойчивостью к парам воды и углекислого газа и высоким уровнем ионной проводимости.

Для решения поставленной задачи заявлен твердый электролит на основе оксида церия и церата бария, допированный самарием, при том, что состав твердого электролита отвечает формуле xBaCe0.8Sm0.2O3-δ-(1-x)Ce0.8Sm0.2O2-δ, где x=0.3, 0.5, 0.7.

Заявляемый двухфазный твердый электролит характеризуется массовыми отношениями фазы перовскита к фазе флюорита 0.447:0.553, 0.654:0.346, 0.815:0,185, что соответствует составу xBaCe0.8Sm0.2O3-δ-(1-x)Ce0.8Sm0.2O2-δ, где x=0.3, 0.5, 0.7. При этом увеличение флюоритной фазы (оксид церия) в композите данного электролита приводит к повышению термодинамической стабильности материала к парам воды и углекислого газа, а увеличение перовскитной фазы (церат бария) в композите - к снижению его электронной проводимости в восстановительной атмосфере, и, как следствие, к росту ионной проводимости. Экспериментально установлено, что при массовом соотношении фазы перовскита к фазе флюорита 0.447:0.553, 0.654:0.346, 0.815:0.185 - твердый электролит обладает преимуществами обеих фаз, а именно: и повышенной термодинамической стабильностью, и высокой ионной проводимостью. При значении x, близком к 0 или 1, данный эффект практически не проявляется.

Технический результат, достигаемый заявленным изобретением, заключается в расширении ряда твердых электролитов на основе оксида церия и церата бария, обладающих повышенной термодинамической стабильностью в присутствии паров воды и углекислого газа при сохранении или повышении уровня ионной проводимости.

Изобретение иллюстрируется следующим. На рисунке представлены рентгенограммы порошков заявленного электролита xBaCe0.8Sm0.2O3-δ-(1-x)Ce0.8Sm0.2O2-δ, при x=0.3; 0,5; 0,7. При этом черный кружок - фаза на основе церата бария, белый - на основе оксида церия. В таблице приведены результаты измерения электропроводности образцов заявленного твердого электролита, образца прототипа.

Твердый электролит на основе оксида церия и церата бария, допированный самарием, получали методом самовоспламеняющегося синтеза из прекурсоров Ba(NO3)2, Ce(NO3)3·6H2O, Sm(NO3)3·6H2O и глицерина C3H8O3. Образцы синтезировали при температуре 1100°С в течение 3 ч и спекали при температуре 1550°C в течение 3 ч.

Рентгенофазовый анализ показал, что образцы заявленного электролита являются двухфазными твердыми растворами, состоящими из перовскитной (пространственная группа Pmcn) и флюоритной (Fm3m) фаз. Электропроводность материалов измеряли 4-зондовым методом на постоянном токе в интервале температур 500-700°C во влажном воздухе. Результаты измерений при 500°C и 700°C приведены в таблице. Из полученных данных следует, что образцы заявленного твердого электролита при 500°C не уступают по электропроводности образцу прототипа, а при 700°C превосходят ее в 5-6 раз. Вместе с тем повышенная термодинамическая стабильность образцов заявленного электролита в присутствии паров воды и углекислого газа обеспечивается флюоритовой фазой композита - оксидом церия.

Таким образом, заявленное изобретение позволяет расширить ряд твердых электролитов на основе оксида церия и церата бария с высокой ионной проводимостью и термодинамической стабильностью в присутствии паров воды и углекислого газа.

Таблица
Образец электролита прототипа Электропроводность на воздухе, См·см-1 N п/п Образцы заявленного электролита Электропроводность на воздухе, См·см-1
При 500°C При 700°C При 500°C При 700°C
0.367BaCe0.8Sm0.2O3-δ-0.633Ce0.8Sm0.2O2-δ 4.0·10-3 4.7·10-2 1 0,3BaCe0.8Sm0.2O3-δ-0,7Ce0.8Sm0.2O2-δ 4.5·10-3 25·10-2
2 0,5BaCe0.8Sm0.2O3-δ-0,5Ce0.8Sm0.2O2-δ 4.0·10-3 20·10-2
3 0,7BaCe0.8Sm0.2O3-δ-0,3Ce0.8Sm0.2O2-δ 5.2·10-3 19·10-2

Твердый электролит на основе оксида церия и церата бария, допированный самарием, отличающийся тем, что состав твердого электролита отвечает формуле xBaCeSmO-(1-x)CeSmO, где x=0,3, 0,5, 0,7.
ТВЕРДЫЙ ЭЛЕКТРОЛИТ НА ОСНОВЕ ОКСИДА ЦЕРИЯ И ЦЕРАТА БАРИЯ
Источник поступления информации: Роспатент

Показаны записи 101-102 из 102.
14.05.2023
№223.018.552f

Амперометрический датчик для измерения концентрации метана и примеси водорода в анализируемой газовой смеси

Изобретение относится к аналитической технике и может быть использовано для измерения содержания в газовых смесях предельных углеводородов, таких как метан и этан, а также содержание в них примеси водорода. Амперометрический датчик для измерения концентрации метана и примеси водорода в...
Тип: Изобретение
Номер охранного документа: 0002735628
Дата охранного документа: 05.11.2020
16.06.2023
№223.018.7d6a

Способ определения содержания глинозема в криолит-глиноземном расплаве и электрохимическое устройство для его осуществления

Изобретение относится к способу и электрохимическому устройству для определения содержания глинозема в криолит-глиноземном расплаве при электролитическом производстве алюминия. Способ включает погружение электрохимического устройства в криолит-глиноземный расплав, поляризацию с использованием...
Тип: Изобретение
Номер охранного документа: 0002748146
Дата охранного документа: 19.05.2021
Показаны записи 61-69 из 69.
19.01.2018
№218.016.00d9

Способ утилизации углеродсодержащих отходов

Способ утилизации углеродсодержащих отходов включает отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты. В качестве отходов используют отработавшие газы из газотурбинных установок...
Тип: Изобретение
Номер охранного документа: 0002629666
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве...
Тип: Изобретение
Номер охранного документа: 0002634475
Дата охранного документа: 31.10.2017
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
29.05.2018
№218.016.5521

Амперометрический способ измерения концентрации кислорода в газовых смесях

Изобретение относится к области газового анализа и может быть использовано для регистрации и измерения содержания кислорода в газовых смесях, в частности в азоте, с помощью электрохимической ячейки на основе протонпроводящего твердого электролита. Амперометрический способ измерения концентрации...
Тип: Изобретение
Номер охранного документа: 0002654389
Дата охранного документа: 17.05.2018
16.03.2019
№219.016.e1d6

Твердооксидный протонпроводящий материал

Изобретение относится к высокоплотным твердооксидным протонпроводящим материалам на основе иттрата лантана, которые могут быть использованы в качестве электролитов для среднетемпературных электрохимических устройств, включая твердооксидные топливные элементы, сенсоры и электролизеры. Материал...
Тип: Изобретение
Номер охранного документа: 0002681947
Дата охранного документа: 14.03.2019
21.11.2019
№219.017.e46c

Способ изготовления единичной многослойной ячейки твердооксидного топливного элемента

Изобретение относится к изготовлению единичных многослойных ячеек с тонкослойным электролитом, которые могут быть использованы в качестве твердооксидных топливных элементов (ТОТЭ) или твердооксидных электролизеров (ТОЭ). Способ включает формирование ячейки из слоев функциональных материалов:...
Тип: Изобретение
Номер охранного документа: 0002706417
Дата охранного документа: 19.11.2019
21.12.2019
№219.017.f02a

Твердооксидный электродный материал

Изобретение относится к высокопористым электродным материалам на основе никелата неодима, которые могут быть использованы в качестве воздушных электродов для электрохимических устройств на основе протонпроводящих электролитов, включая твердооксидные топливные элементы, сенсоры и электролизеры....
Тип: Изобретение
Номер охранного документа: 0002709463
Дата охранного документа: 18.12.2019
22.04.2023
№223.018.50f6

Твердооксидный электролитный материал с протонной проводимостью на основе индата бария-неодима

Изобретение относится к производству материалов для электрохимических устройств, а именно к твердооксидным электролитным материалам с протонной проводимостью на основе индата бария-неодима (BaNdInO), которые могут быть использованы в качестве материала электролита в протонпроводящих...
Тип: Изобретение
Номер охранного документа: 0002794192
Дата охранного документа: 12.04.2023
20.05.2023
№223.018.6707

Электродный материал для электрохимических устройств

Изобретение относится к твердооксидным электродным материалам на основе никелита неодима, которые могут быть использованы в среднетемпературных электрохимических устройствах, таких как твердооксидные топливные элементы, электролизеры, сенсоры и др. Твердооксидный электродный материал содержит...
Тип: Изобретение
Номер охранного документа: 0002757926
Дата охранного документа: 25.10.2021
+ добавить свой РИД