×
27.09.2013
216.012.6fd0

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ГОРЕНИЯ ТВЕРДОГО РАКЕТНОГО ТОПЛИВА

Вид РИД

Изобретение

Аннотация: При определении скорости горения твердого ракетного топлива монтируют и сжигают стержневой образец твердого ракетного топлива с запальным проводником в камере сгорания, имеющей систему регистрации давления, а также вентили подачи и сброса давления. Перед монтажом измеряют длину небронированного образца, бронируют его, после чего выполняют на открытом торце бронированного образца пропил, перпендикулярный этому торцу, глубиной 5…8% от длины образца и измеряют глубину пропила. После монтажа образца вместе с гермовыводом в камере сгорания образец поджигают и поддерживают давление в камере сгорания на уровне заданного давления, сбрасывая избыточное в течение времени сброса давления, определяемого соотношением, защищаемым настоящим изобретением. Затем закрывают этот вентиль и после достижения максимального давления в момент времени, соответствующий окончанию горения образца, снова открывают вентиль сброса. После этого определяют среднее давление и скорость горения твердого ракетного топлива на контрольном участке горения образца по соотношениям, защищаемым настоящим изобретением. Изобретение позволяет повысить точность определения скорости горения твердого ракетного топлива. 3 ил.
Основные результаты: Способ определения скорости горения твердого ракетного топлива (ТРТ), включающий монтаж и сжигание стержневого образца ТРТ с запальным проводником в камере сгорания, имеющей систему регистрации давления, а также вентили подачи и сброса давления, отличающийся тем, что перед монтажом измеряют длину Lo небронированного образца, опускают его в бронестаканчик, предварительно заполненный неотвержденным бронесоставом таким образом, чтобы этот бронесостав полностью закрыл боковую поверхность образца, отверждают бронесостав, после чего выполняют на открытом торце бронированного образца пропил, перпендикулярный этому торцу, глубиной 5…8% от длины образца, измеряют глубину пропила Lп, устанавливают в него запальный проводник, соединяют концы проводника с гермовыводом, затем монтируют образец вместе с гермовыводом в камере сгорания, герметизируют и подают в нее начальное давление из внешнего источника вентилем подачи давления, поджигают образец и поддерживают давление в камере сгорания на уровне заданного давления Pз, сбрасывая избыточное давление через вентиль сброса в течение времени сброса давленияtc=(Lo-Lп)/(U1·Pз)·Кс,где U1 и ν - прогнозируемые параметры закона скорости горения испытуемого ТРТ,Кс=0,8…0,9 - коэффициент времени сброса давления,затем закрывают этот вентиль и после момента времени tк, соответствующего максимальному давлению в камере сгорания, снова открывают вентиль сброса, после чего определяют среднее давление Pоп по данным системы регистрации где tн - время начала подъема давления при зажигании образца,и определяют скорость горения ТРТ, соответствующую давлению Pз, по формулеU(Рз)=(Lo-Lп)/(tк-tн)·(Рз/Роп).

Изобретение относится к ракетной технике и может быть использовано для определения скорости горения твердого ракетного топлива (ТРТ) в зависимости от давления. Полученные экспериментальные данные (особенно при низких давлениях для низкотемпературного ТРТ) часто вызывают большие сомнения, и поэтому они бывают мало пригодны для надежного прогнозирования скоростей горения в натурных РДТТ, а также для точных расчетов баллистических параметров ТРТ.

В настоящее время известны способы определения скорости горения ТРТ с регистрацией положения поверхности горения при использовании киносъемки, светорегистраторов, измерения емкости или электропроводности продуктов сгорания, а также теоретические способы расчета скорости горения по зависимости давления от времени, полученной при испытаниях ракетного двигателя твердого топлива /4, 7/. Однако все указанные способы обладают Принципиальными недостатками - это сложность конструкций, в которых сжигается ТРТ и несовершенство систем регистрации прохождения фронта горения. Для этих способов характерно большое количество брака определения скорости горения. Известны также способы определения скорости горения ТРТ с использованием микроволновой техники /5, 6/. Скорость горения здесь определяется по регистрации сигнала падающей и отраженной СВЧ волн от поверхности горения образца ТРТ с одновременной записью давления в камере сгорания. Недостатком СВЧ методов является неточность определения скорости горения, связанная с неопределенностью диэлектрической проницаемости различных ТРТ.

Известен высокопроизводительный способ определения скорости горения ТРТ с использованием плавких проволочных электрических сигнализаторов /2, 3/. При прохождении фронта горения через эти сигнализаторы они плавятся и перегорают, сопротивление цепи сигнализаторов мгновенно резко возрастает, и эти моменты времени фиксируются системой регистрации. Скорость горения определяется из отношения:

U=dL/(tк-tн),

где dL - расстояние между сигнализаторами или база (длина контрольного участка образца, на котором определяется скорость горения),

tк, tн - времена плавления сигнализаторов.

Недостатком данного способа является то, что электросигналы проволочек подвержены влиянию электрических помех. Кроме того, при низких давлениях испытаний (P=5…20 ата) для ТРТ, имеющих низкую температуру пламени, проволочки плавятся с большими задержками относительно времени прохождения фронта горения, т.е. они являются косвенными сигнализаторами фронта горения. Эти задержки могут достигать нескольких секунд, что является физически существенной величиной и ставит под сомнение заявленную для этого способа погрешность в определении времени горения образца в 1…5 миллисекунд.

В качестве прототипа выбран способ, описанный в патенте «Установка для определения скорости горения твердого ракетного топлива» /1/. Там для определения моментов Тф прохождения фронта пламени в качестве сигнализаторов в образце используются подсыпки дымного ружейного пороха (ДРП) или измельченного ТРТ. Подсыпки в момент Тф быстро сгорают и вызывают соответствующие пички на осциллограмме давления. Недостатком данного способа является материалозатратный, трудозатратный и пожароопасный метод сборки образцов, а также неточности в определении скорости горения из-за сложности обеспечения параллельности торцов образца и сверлений.

Технической задачей изобретения является создание способа определения скорости горения ТРТ, позволяющего, с высокой точностью определять время горения и длину контрольного участка образца без использования косвенных сигнализаторов прохождения фронта пламени. Решение этой задачи позволяет существенно снизить разбросы определения скорости горения, повысить экономичность и пожаробезопасность способа.

Поставленная задача решается тем, что в известном способе определения скорости горения ТРТ, включающем монтаж и сжигание стержневого образца ТРТ с запальным проводником в камере сгорания, имеющей систему регистрации непрерывного изменения давления, а также вентили подачи и сброса давления, выполняются следующие операции. Перед монтажом измеряют длину Lo небронированного образца, опускают его, в бронестаканчик предварительно заполненный неотвержденным бронесоставом таким образом, чтобы этот бронесостав полностью закрыл боковую поверхность образца. После этого проводят отверждение этого состава и выполняют на открытом торце бронированного образца пропил, перпендикулярный этому торцу, глубиной 5…8% от длины образца. Измеряют глубину пропила Lп, устанавливают в него запальный проводник и соединяют концы проводника с гермовыводом. Затем монтируют образец вместе с гермовыводом в камере сгорания, герметизируют и подают нее начальное давление из внешнего источника вентилем подачи давления. После этого поджигают образец и поддерживают давление в камере сгорания на уровне Pз, сбрасывая избыточное давление через вентиль сброса в течение времени сброса давления

где U1 и ν - прогнозируемые параметры закона скорости горения испытуемого ТРТ.

Kс=0.8…0.9 - коэффициент времени сброса давления.

После истечения времени tc закрывают вентиль сброса. Давление в камере сгорания возрастает и после момента tк - соответствующего времени достижения максимального давления снова открывают вентиль сброса. Среднее давление Pоп, при котором происходит горение образца, определяют по данным системы регистрации:

где tн - время начала подъема давления при зажигании образца.

Скорость горения ТРТ, соответствующую заданному давлению Рз, определяют по формуле:

Минимальная глубина пропила, составляющая 5% от длины образца, выбрана исходя из того, что она позволяет исключить возможную ошибку измерения контрольного участка (базы), возникающую из-за краевых неровностей, имеющих место на открытом торце образца после отверждения бронесостава. Верхняя граница пропила 8% позволяет максимально использовать длину образца в качестве контрольного участка и снизить расходы испытуемого ТРТ.

Время окончания сброса давления tc, находится из условия, что образец сгорает на 80…90% от всей длины, т.е. Kс=0.8…0.9. При этом для расчета Kс используется заранее известный (из общих представлений о горении аналогичных ТРТ) закон скорости горения U(P)=U1*Рν. После закрытия вентиля сброса в момент tc давление в замкнутом объеме камеры сгорания начинает подниматься, а после полного сгорания образца оно падает из-за охлаждения газов, поэтому время достижения максимального давления Рмах соответствует времени tк - окончания горения образца.

Отсутствие трудоемких операций изготовления и установки сигнализаторов (пожароопасных подсыпок ДРП, измельченного ТРТ, проволочек и др.) существенно упрощает процедуру испытаний. При этом исключен разгонный участок образца ТРТ. что снижает затраты на ТРТ, увеличивает базу, и, следовательно, точность определения скорости горения. Кроме того, при испытаниях низкотемпературных ТРТ увеличена точность обработки в связи с отсутствием косвенных сигнализаторов, часто являющихся причиной ошибочного определения моментов прохождения фронта пламени.

Пример реализации описанного выше способа определения скорости горения рассмотрен при испытании образца низкотемпературного ТРТ в камере сгорания, описанной в прототипе. Скорость горения определялась следующим образом. После изготовления, фиг.1. небронированного стержневого образца -1 сечением 16×16 мм была измерена его длина Lo=72 мм. Затем образец опускался в бронестаканчик - 2, внутренним диаметром 23 мм и глубиной 72 мм. заполненный неотвержденным бронесоставом. Этот бронесостав полностью закрыл боковую поверхность образца и отверждался в течение суток. После этого на открытом торце бронированного образца выполнялся перпендикулярный этому торцу пропил - 3 и измерялась его глубина, Lп=4,9 мм. Затем в пропил устанавливался запальный проводник - 4, соединенный с гермовыводом - 5.

В камере сгорания, Фиг.2, монтировался бронированный образец с гермовыводом. После герметизации крышкой - 13 корпуса камеры сгорания - 12 в нее подавалось вентилем подачи давления - 15 начальное давление из внешнего источника - 6 до уровня Рн=37 ата, контролируемое по манометру - 7. Это начальное давление обеспечивало горение образца при среднем давлении Роп, близком к заданному давлению Рз=50 ата.

Поджиг образца осуществлялся подачей на запал электрического напряжения из блока запала - 8. В процессе горения образца изменение давления P(t) непрерывно фиксировалось системой регистрации: датчиком - 9, преобразователем сигналов - 10 и компьютером - 11. Испытатель поддерживал давление в камере сгорания, контролируемое по манометру, на уровне заданного давления Рз=50 ата, сбрасывая избыточное давление через вентиль сброса - 14. Сразу после момента времени tc=15 с (рассчитанному в соответствии с прогнозируемым законом горения U=0.068*P0.98 для испытуемого ТРТ) вентиль сброса закрывался. После достижения максимального давления Рмах=51.8 ата, испытатель снова открывал вентиль сброса, окончательно сбрасывая давление из камере сгорания.

По формуле (2) и данным системы регистрации, определялось среднее давление Роп=49,5 ата, при котором происходило горение образца. Начало горения tн=0.2 с было зафиксировано на кривой давления по началу подъема давления при зажжении образца, а окончание - по времени достижения максимального давления tк=19.2 с. Средняя скорость горения образца U(50)=3.5 мм/с, соответствующая заданному давлению Pз=50 ата, была определена по формуле (3). В испытаниях моменты времени tн и tк фиксировались достаточно точно автоматически на компьютере специально разработанной программой обработки осциллограммы давления.

Абсолютная погрешность определения базы Lб=Lо-Lп в данном способе не хуже погрешности определения базы для прототипа и аналогов. Это объясняется тем, что непараллельность торцов образца или между сверлениями для проволочек в некоторых случаях достигает 1…2 мм, тогда как в предлагаемом способе (при использовании пропилов) она не более 0,5 мм. В то же время, относительная погрешность определения скорости горения при испытаниях данным способом снижается за счет увеличения базы в 1.5…2 раза по сравнению с прототипом.

Данные, полученные при испытаниях описанным способом, могут использоваться для прогнозирования скорости горения в натурных РДТТ. Проведенные работы по определению скорости горения различных ТРТ полностью подтвердили высокую технико-экономическую эффективность предлагаемого способа.

Использованные литературные источники

1. Ю.М. Милехин, М.А. Кондаков, С.А. Гусев. Б.В. Кононов. А.Т. Завьялов. В.И. Калашников. «Установка для определения скорости горения твердого ракетного топлива». Патент РФ №2395480 от 27.07.2010.

2. Ю.М. Милехин, Ю.П. Бабаков, В.А. Гамий, В.И. Калашников, В.С. Куренков. «Способ определения скорости горения твердого ракетного топлива». Патент РФ №2267636 от 10.01.06.

3. М. Баррер и др. "Ракетные двигатели", Оборонгиз. М., 1962, стр.207.

4. "Исследование РДТТ" под редакцией М. Саммерфилда, Иностранная литература, М., 1963, стр.120-136.

5. Strand L.D., Schultz A.D., Reedy G.K. "Метод микроволнового эффекта Допплера для определения нестационарной скорости горения". Journal of Spacecraft and Rockets. 1974. vol.11. N=2.

6. Ю.М. Милехин, Ю.П. Бабаков, В.И. Калашников, А.Н. Ключников, «Установка для определения скорости горения ТРТ». Патент РФ №2194874 от 20.12.2002.

7. Ю.М. Милехин, Н.В. Сало, В.И. Калашников, А.Н. Ключников, В.М.Меркулов, «Модельный двигатель для определения скорости горения ТРТ». Патент РФ №2215170 от 27.10.2003.

Способ определения скорости горения твердого ракетного топлива (ТРТ), включающий монтаж и сжигание стержневого образца ТРТ с запальным проводником в камере сгорания, имеющей систему регистрации давления, а также вентили подачи и сброса давления, отличающийся тем, что перед монтажом измеряют длину Lo небронированного образца, опускают его в бронестаканчик, предварительно заполненный неотвержденным бронесоставом таким образом, чтобы этот бронесостав полностью закрыл боковую поверхность образца, отверждают бронесостав, после чего выполняют на открытом торце бронированного образца пропил, перпендикулярный этому торцу, глубиной 5…8% от длины образца, измеряют глубину пропила Lп, устанавливают в него запальный проводник, соединяют концы проводника с гермовыводом, затем монтируют образец вместе с гермовыводом в камере сгорания, герметизируют и подают в нее начальное давление из внешнего источника вентилем подачи давления, поджигают образец и поддерживают давление в камере сгорания на уровне заданного давления Pз, сбрасывая избыточное давление через вентиль сброса в течение времени сброса давленияtc=(Lo-Lп)/(U1·Pз)·Кс,где U1 и ν - прогнозируемые параметры закона скорости горения испытуемого ТРТ,Кс=0,8…0,9 - коэффициент времени сброса давления,затем закрывают этот вентиль и после момента времени tк, соответствующего максимальному давлению в камере сгорания, снова открывают вентиль сброса, после чего определяют среднее давление Pоп по данным системы регистрации где tн - время начала подъема давления при зажигании образца,и определяют скорость горения ТРТ, соответствующую давлению Pз, по формулеU(Рз)=(Lo-Lп)/(tк-tн)·(Рз/Роп).
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ГОРЕНИЯ ТВЕРДОГО РАКЕТНОГО ТОПЛИВА
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ГОРЕНИЯ ТВЕРДОГО РАКЕТНОГО ТОПЛИВА
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ГОРЕНИЯ ТВЕРДОГО РАКЕТНОГО ТОПЛИВА
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ГОРЕНИЯ ТВЕРДОГО РАКЕТНОГО ТОПЛИВА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 28.
20.06.2013
№216.012.4c2a

Устройство для фильтрации высоковязкого раствора каучука в токсичном и пожароопасном органическом растворителе

Изобретение относится к области оборудования для фильтрации высоковязких (до 200 Па·с) растворов каучуков в токсичном и пожароопасном органическом растворителе (легковоспламеняющейся жидкости) от сгустков геля и посторонних предметов. Устройство включает герметичный корпус, в котором установлен...
Тип: Изобретение
Номер охранного документа: 0002485080
Дата охранного документа: 20.06.2013
27.01.2014
№216.012.9c39

Способ определения скорости горения твердого ракетного топлива

При определении скорости горения твердого ракетного топлива производят монтаж и сжигание стержневого образца с запальным проводником в камере сгорания, имеющей систему регистрации давления. Перед монтажом небронированный образец опускают в бронестаканчик с неотвержденным бронесоставом и...
Тип: Изобретение
Номер охранного документа: 0002505699
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f21

Экспериментальный ракетный двигатель твердого топлива

Экспериментальный ракетный двигатель твердого топлива содержит корпус из композитного материала с передним и сопловым днищами, соединенными между собой посредством цилиндрического участка, скрепленный с корпусом заряд твердого топлива и утопленное сопло. На переднем днище установлен глухой...
Тип: Изобретение
Номер охранного документа: 0002506445
Дата охранного документа: 10.02.2014
10.12.2014
№216.013.0d6f

Пирозамок с расположением стяжного болта под углом к оси

Изобретение относится к машиностроительной технике, в частности к разъемным соединениям, разделяемым в процессе эксплуатации. Пирозамок содержит основание, стяжной болт, сухари со штифтами, поршень, цилиндр, крышку и пиропатрон. Основание имеет кольцевой выступ, на который опираются сухари....
Тип: Изобретение
Номер охранного документа: 0002534856
Дата охранного документа: 10.12.2014
27.10.2015
№216.013.895d

Композиция боридов алюминия и способ ее получения

Изобретения могут быть использованы в химической отрасли. Композиция боридов алюминия в качестве энергетической добавки к смесевым ракетным топливам имеет формульный состав бор:алюминий, равный 2-33:1, и следующие характеристики: средний размер частиц (d) 1,5-4,5 мкм; насыпную плотность (ρ)...
Тип: Изобретение
Номер охранного документа: 0002566768
Дата охранного документа: 27.10.2015
27.11.2015
№216.013.9524

Экспериментальный газогенератор

Экспериментальный газогенератор для определения параметров продуктов сгорания твердых топлив, включающий корпус, переднюю крышку, сопловой блок и заряд торцевого горения из твердого топлива, а также датчик тяги, выполненный с возможностью упора в опорную плиту. В корпусе экспериментального...
Тип: Изобретение
Номер охранного документа: 0002569799
Дата охранного документа: 27.11.2015
10.02.2016
№216.014.c3ec

Сырьевая смесь для изготовления крупнопористого бетона

Изобретение относится к строительству и может быть использовано при производстве конструкций и изделий из крупнопористого бетона для гражданского, промышленного, гидротехнического и мелиоративного назначения, а также для изготовления каркаса в каркасных бетонных конструкциях. Сырьевая смесь для...
Тип: Изобретение
Номер охранного документа: 0002574746
Дата охранного документа: 10.02.2016
27.02.2016
№216.014.ced2

Сырьевая смесь для изготовления крупнопористого бетона

Изобретение относится к строительству и может быть использовано при производстве конструкций и изделий из крупнопористого бетона для гражданского, промышленного, гидротехнического и мелиоративного назначения, а также для изготовления каркаса в каркасных бетонных конструкциях. Сырьевая смесь для...
Тип: Изобретение
Номер охранного документа: 0002575953
Дата охранного документа: 27.02.2016
25.08.2017
№217.015.bdcd

Способ противопожарной защиты резервуаров для хранения жидких горючих веществ и система для его осуществления

Изобретение относится к способам тушения больших площадей горения горючих и легковоспламеняющихся жидкостей, хранящихся в емкостных хранилищах и резервуарах. Сущность заявляемого способа заключается в том, что в способе противопожарной защиты резервуаров для хранения жидких горючих веществ,...
Тип: Изобретение
Номер охранного документа: 0002616848
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.ce11

Способ тушения горючих жидкостей

Изобретение относится к способам поверхностного пожаротушения горючих жидких веществ пенами и предназначено для использования в пожарной технике и системах противопожарной защиты различных объектов. Способ включает подготовку раствора пенообразователя с дополнительным насыщением его под...
Тип: Изобретение
Номер охранного документа: 0002620705
Дата охранного документа: 29.05.2017
Показаны записи 1-10 из 27.
20.06.2013
№216.012.4c2a

Устройство для фильтрации высоковязкого раствора каучука в токсичном и пожароопасном органическом растворителе

Изобретение относится к области оборудования для фильтрации высоковязких (до 200 Па·с) растворов каучуков в токсичном и пожароопасном органическом растворителе (легковоспламеняющейся жидкости) от сгустков геля и посторонних предметов. Устройство включает герметичный корпус, в котором установлен...
Тип: Изобретение
Номер охранного документа: 0002485080
Дата охранного документа: 20.06.2013
27.01.2014
№216.012.9c39

Способ определения скорости горения твердого ракетного топлива

При определении скорости горения твердого ракетного топлива производят монтаж и сжигание стержневого образца с запальным проводником в камере сгорания, имеющей систему регистрации давления. Перед монтажом небронированный образец опускают в бронестаканчик с неотвержденным бронесоставом и...
Тип: Изобретение
Номер охранного документа: 0002505699
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f21

Экспериментальный ракетный двигатель твердого топлива

Экспериментальный ракетный двигатель твердого топлива содержит корпус из композитного материала с передним и сопловым днищами, соединенными между собой посредством цилиндрического участка, скрепленный с корпусом заряд твердого топлива и утопленное сопло. На переднем днище установлен глухой...
Тип: Изобретение
Номер охранного документа: 0002506445
Дата охранного документа: 10.02.2014
10.12.2014
№216.013.0d6f

Пирозамок с расположением стяжного болта под углом к оси

Изобретение относится к машиностроительной технике, в частности к разъемным соединениям, разделяемым в процессе эксплуатации. Пирозамок содержит основание, стяжной болт, сухари со штифтами, поршень, цилиндр, крышку и пиропатрон. Основание имеет кольцевой выступ, на который опираются сухари....
Тип: Изобретение
Номер охранного документа: 0002534856
Дата охранного документа: 10.12.2014
27.10.2015
№216.013.895d

Композиция боридов алюминия и способ ее получения

Изобретения могут быть использованы в химической отрасли. Композиция боридов алюминия в качестве энергетической добавки к смесевым ракетным топливам имеет формульный состав бор:алюминий, равный 2-33:1, и следующие характеристики: средний размер частиц (d) 1,5-4,5 мкм; насыпную плотность (ρ)...
Тип: Изобретение
Номер охранного документа: 0002566768
Дата охранного документа: 27.10.2015
27.11.2015
№216.013.9524

Экспериментальный газогенератор

Экспериментальный газогенератор для определения параметров продуктов сгорания твердых топлив, включающий корпус, переднюю крышку, сопловой блок и заряд торцевого горения из твердого топлива, а также датчик тяги, выполненный с возможностью упора в опорную плиту. В корпусе экспериментального...
Тип: Изобретение
Номер охранного документа: 0002569799
Дата охранного документа: 27.11.2015
10.02.2016
№216.014.c3ec

Сырьевая смесь для изготовления крупнопористого бетона

Изобретение относится к строительству и может быть использовано при производстве конструкций и изделий из крупнопористого бетона для гражданского, промышленного, гидротехнического и мелиоративного назначения, а также для изготовления каркаса в каркасных бетонных конструкциях. Сырьевая смесь для...
Тип: Изобретение
Номер охранного документа: 0002574746
Дата охранного документа: 10.02.2016
27.02.2016
№216.014.ced2

Сырьевая смесь для изготовления крупнопористого бетона

Изобретение относится к строительству и может быть использовано при производстве конструкций и изделий из крупнопористого бетона для гражданского, промышленного, гидротехнического и мелиоративного назначения, а также для изготовления каркаса в каркасных бетонных конструкциях. Сырьевая смесь для...
Тип: Изобретение
Номер охранного документа: 0002575953
Дата охранного документа: 27.02.2016
25.08.2017
№217.015.bdcd

Способ противопожарной защиты резервуаров для хранения жидких горючих веществ и система для его осуществления

Изобретение относится к способам тушения больших площадей горения горючих и легковоспламеняющихся жидкостей, хранящихся в емкостных хранилищах и резервуарах. Сущность заявляемого способа заключается в том, что в способе противопожарной защиты резервуаров для хранения жидких горючих веществ,...
Тип: Изобретение
Номер охранного документа: 0002616848
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.ce11

Способ тушения горючих жидкостей

Изобретение относится к способам поверхностного пожаротушения горючих жидких веществ пенами и предназначено для использования в пожарной технике и системах противопожарной защиты различных объектов. Способ включает подготовку раствора пенообразователя с дополнительным насыщением его под...
Тип: Изобретение
Номер охранного документа: 0002620705
Дата охранного документа: 29.05.2017
+ добавить свой РИД