×
27.09.2013
216.012.6f6d

Результат интеллектуальной деятельности: СПОСОБ ВЫРАЩИВАНИЯ КРИСТАЛЛА МЕТОДОМ КИРОПУЛОСА

Вид РИД

Изобретение

Аннотация: Изобретение относится к выращиванию крупных кристаллов, предназначенных для использования в приборах квантовой электроники. Способ выращивания кристалла методом Киропулоса из расплава или из раствор-расплава включает рост кристалла на затравку, зафиксированную в кристаллодержателе и расположенную сверху в центральной точке поверхности расплава, разращивание кристалла в ростовом тигле при медленном снижении температуры и охлаждение выросшего кристалла, при этом по окончании ростового цикла оставшийся в тигле расплав или раствор-расплав сливают через нагретую с помощью дополнительного нагревателя трубку, расположенную в донной части тигля, а выросший кристалл, сохраняющий свое положение после окончания ростового цикла, охлаждают в тигле, освобожденном от расплава. Технический результат - предотвращение растрескивания выросшего кристалла из-за термоупругих напряжений, возникающих в момент подъема кристалла, а также деформации платинового тигля расплавом при его медленном охлаждении. Получают кристалл, например, трибората лития размером 150×130×80 мм, оптически качественная часть которого составляет 80-90% объема выросшего кристалла. 2 ил.
Основные результаты: Способ выращивания кристалла методом Киропулоса из расплава или из раствор-расплава, включающий рост кристалла на затравку, зафиксированную в кристаллодержателе и расположенную сверху в центральной точке поверхности расплава, разращивание кристалла в ростовом тигле при медленном снижении температуры и охлаждение выросшего кристалла, отличающийся тем, что по окончании ростового цикла оставшийся в тигле расплав или раствор-расплав сливают через нагретую с помощью дополнительного нагревателя трубку, расположенную в донной части тигля, а выросший кристалл, сохраняющий свое положение после окончания ростового цикла, охлаждают в тигле, освобожденном от расплава.

Изобретение относится к способу выращивания крупных кристаллов из расплава или из раствор-расплава методом Киропулоса, предназначенных для использования в приборах квантовой электроники.

При выращивании кристаллов методом Киропулоса кристаллизацию начинают на поверхности расплава с дальнейшим прорастанием кристалла вглубь расплава. Расплав готовят в ростовом платиновом тигле из исходной сырьевой смеси нагреванием до температуры плавления. После гомогенизации расплава в центральную точку поверхности расплава помещают закрепленный на охлаждаемом стержне затравочный кристалл. На границе раздела: кристалл - расплав за счет отвода тепла через стержень и медленного снижения температуры создается переохлаждение, и на затравке растет монокристалл. Выросший кристалл поднимают (автоматически или вручную) над расплавом. Первоначально метод был применен для выращивания галогенидов щелочных металлов [Вильке К.Т. Выращивание кристаллов - Ленинград, «Недра», 1977, с.329].

В последнее время метод успешно применен для роста кристаллов из раствор-расплавных сред [Nishioka M. and et all Growth of CsLiB6O10 crystals with high laser damage tolerance - J.Crystal Growth, 2005, 279, p.76-81]. При выращивании кристаллов методом Киропулоса путем роста кристалла на затравку, зафиксированную в кристаллодержателе и расположенную сверху в центральной точке поверхности расплава, разращивания кристалла при медленном снижении температуры, подъема кристалла из расплава или раствор-расплава и охлаждения выросшего кристалла, значительная часть растущего кристалла находится под поверхностью расплава, что благоприятствует формированию крупных кристаллов.

Однако подъем кристалла из раствор-расплава для его охлаждения сопряжен с целым рядом трудностей.

Во-первых, возможно растрескивание затравки в подзатравочной области, что приводит к потере кристалла из-за падения его в раствор-расплав.

Во-вторых, при выращивании кристаллов методом Киропулоса над расплавом необходимо создавать перепад температуры. При перемещении кристалла в эту область возникают термоупругие напряжения, которые зачастую приводят к растрескиванию кристалла и уменьшают выход материала, пригодного для изготовления оптических элементов.

В-третьих, при медленном остывании поднятого кристалла на поверхности остаточного раствор-расплава начинается спонтанная кристаллизация, что приводит к деформации тигля.

Кроме того, растущий кристалл ограничен стенками тигля и, в случае ассиметричного роста, возможен контакт кристалла со стенками тигля, что делает невозможным его подъем над расплавом. В кристалле, охлаждаемом совместно с расплавом, образуются многочисленные трещины вследствие сильного давления кристаллизующегося расплава.

Задачей изобретения является получение качественных объемных кристаллов.

Технический результат заключается в том, что изобретение позволяет избежать растрескивания кристалла из-за термоупругих напряжений, возникающих в момент подъема кристалла, а также деформацию платинового тигля расплавом при его медленном охлаждении.

Кроме того, в предложенном способе можно использовать более низкие тигли, т.к. отсутствует необходимость в верхнем пространстве над раствор-расплавом, предназначенном для подъема кристалла при его охлаждении в известном способе. Это дает возможность создать более стабильные тепловые условия в зоне роста кристалла. Отсутствие деформации стенок тигля позволяет использовать для выращивания кристаллов более тонкостенные тигли. Эти два фактора делают процесс выращивания кристалла более эффективным из-за значительного уменьшения веса дорогостоящих платиновых контейнеров

Для достижения технического результата по окончании ростового процесса оставшийся в тигле расплав или раствор-расплав сливают через нагретую с помощью дополнительного нагревателя трубку, расположенную в донной части тигля, а выросший кристалла, сохраняющий свое положение после окончания ростового цикла, охлаждают в освобожденном от расплава тигле.

Из патентов [RU 2304620, опубл. 20.08.2007; JP 3183682 (А), опубл. 08.09.1991] известно, по сути, о сливе расплава через донную часть ростового тигля. Однако в описанных патентах в ростовом тигле сделаны отверстия для удаления в процессе роста кристалла, излишнего количества расплава образующегося из-за разницы плотностей жидкой и твердой фаз кристаллизующегося материала, т.к. при плотности жидкой фазы, большей, чем твердой фазы, кристаллизация идет с увеличением объема.

В предлагаемом решении установленная в донной части ростового тигля нагретая трубка предназначена для слива раствор-расплава, оставшегося после роста кристалла. Удаление остаточного раствор-расплава позволяет эффективно извлекать выросшие кристаллы из тигля по окончании ростового цикла, что обеспечивает получение качественных объемных кристаллов без растрескивания, исключая деформацию тигля раствор-расплавом при медленном охлаждении кристалла.

Рост крупных кристаллов методом Киропулоса с предлагаемым приемом охлаждения выросшего кристалла продемонстрирован на примере кристаллов трибората лития (LiB3O5). Однако он может быть применен для любых кристаллов, выращиваемых в объеме расплава или раствор-расплава.

На фиг.1 представлена схема установки для выращивания кристаллов методом Киропулоса со сливом расплава или раствор-расплава из ростового тигля в дополнительный тигель.

На фиг.2 представлена фотография кристалла трибората лития размером 150×130×80 мм.

Пример. В платиновый ростовой тигель 1 (фиг.1) диаметром 170 мм загружают шихту для получения 6 кг готового расплава 2 для выращивания LiB6O5. Соотношения компонентов флюса 2Li2O:3В2О3:3МоО3 позволяют выращивать кристаллы весом 1320 г. После гомогенизации раствор-расплава в течение 5-7 суток в печь 3 опускают затравку LiB3O5 4, зафиксированную в кристаллодержателе 5, и определяют температуру насыщения по скорости оплавления затравки после ее касания поверхности расплава. Т.к. раствор-расплав электропроводен, то момент соприкосновения затравки с поверхностью расплава устанавливают по падению сопротивления в электроцепи тигель - раствор-расплав - затравка - шток. При касании затравкой поверхности расплава цепь замыкается и сопротивление уменьшается на 2-3 порядка. После затравления температуру снижают, охлаждая систему со скоростью 1 -2 град/сутки. По окончании ростового процесса включают встроенный дополнительный нагреватель 6, разогревая платиновую трубку 7 в донной части ростового тигля 1 до появления первых капель расплава. Оптимальная скорость вытекающего расплава составляет, примерно 1 кап/сек. Раствор-расплав стекает в дополнительный платиновый тигель 8 размером 150×100 мм2. Процедуру слива раствор-расплава с момента включения встроенного нагревателя осуществляют в течение 1,5-2 час. Получают кристалл трибората лития размером 150×130×80 мм (Фиг.2), оптически качественная часть которого составляет 80-90% объема выросшего кристалла с возможностью изготовления нелинейно-оптического элемента диаметром 60-70 мм и толщиной 15-10 мм для преобразования лазерного излучения с длиной волны 1064 нм во вторую гармонику.

Способ выращивания кристалла методом Киропулоса из расплава или из раствор-расплава, включающий рост кристалла на затравку, зафиксированную в кристаллодержателе и расположенную сверху в центральной точке поверхности расплава, разращивание кристалла в ростовом тигле при медленном снижении температуры и охлаждение выросшего кристалла, отличающийся тем, что по окончании ростового цикла оставшийся в тигле расплав или раствор-расплав сливают через нагретую с помощью дополнительного нагревателя трубку, расположенную в донной части тигля, а выросший кристалл, сохраняющий свое положение после окончания ростового цикла, охлаждают в тигле, освобожденном от расплава.
СПОСОБ ВЫРАЩИВАНИЯ КРИСТАЛЛА МЕТОДОМ КИРОПУЛОСА
СПОСОБ ВЫРАЩИВАНИЯ КРИСТАЛЛА МЕТОДОМ КИРОПУЛОСА
Источник поступления информации: Роспатент

Показаны записи 11-20 из 33.
25.08.2017
№217.015.baac

Материал для дихроичной поляризации света - кристалл liba(bo)f

Изобретение относится к материалам для поляризационных оптических устройств, которые могут быть использованы для получения линейно-поляризованного света в оптико-электронных приборах: поляриметрах, эллипсометрах, дихрометрах, фотоэлектрических автоколлиматорах, модуляторах световых потоков,...
Тип: Изобретение
Номер охранного документа: 0002615691
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.c0ba

Применение нелинейного кристалла трибората лития (lbo) для фазосогласованной генерации излучения терагерцового диапазона

Изобретение относится к нелинейной оптике. Нелинейный анизотропный кристалл трибората лития LiBO (LBO) применяют в качестве активной среды для генерации излучения терагерцового диапазона 0.3-10 ТГц (1000-30 мкм) путем обеспечения выполнения условий фазового синхронизма при генерации разностной...
Тип: Изобретение
Номер охранного документа: 0002617561
Дата охранного документа: 25.04.2017
20.11.2017
№217.015.ef96

Способ получения частиц хлорида серебра

Изобретение может быть использовано в неорганической химии, в производстве фотокатализаторов, полупроводников и сенсорных материалов. Способ получения частиц хлорида серебра включает обменную реакцию между солями, одна из которых - серебросодержащая, а вторая – хлорсодержащая. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002629080
Дата охранного документа: 24.08.2017
19.01.2018
№218.016.0419

Кристаллический материал для регистрации рентгеновского излучения

Изобретение относится к технологии получения кристаллического материала, являющегося твердым раствором общей формулы ВаSr(ВО)F, где 0≤x≤1 и 0≤y≤0,5, пригодного для регистрации рентгеновского излучения. Кристаллический материал ВаSr(ВО)F имеет центры окраски, образованные под воздействием...
Тип: Изобретение
Номер охранного документа: 0002630511
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0bba

Устройство для получения конденсата водяного пара из горючего природного газа и попутного нефтяного газа в полевых условиях для анализа содержания трития

Изобретение относится к области радиоэкологического мониторинга районов мирных подземных ядерных взрывов в пределах нефтегазоносных бассейнов, в частности к малогабаритным устройствам пробоподготовки горючих природных газовых проб в полевых условиях и перевода опасных для транспортировки...
Тип: Изобретение
Номер охранного документа: 0002632453
Дата охранного документа: 04.10.2017
04.04.2018
№218.016.369f

Способ измерения характеристики изотопной системы образца при поэтапном выделении анализируемого вещества (варианты)

Группа изобретений относится к области аналитических методов изотопной геохронологии и геохимии. Способ включает измерение количества каждого из изотопов в анализируемом веществе, выделенном из навески образца на каждом из этапов выделения анализируемого вещества из навески образца; введение в...
Тип: Изобретение
Номер охранного документа: 0002646461
Дата охранного документа: 05.03.2018
14.03.2019
№219.016.df06

Способ выращивания кристалла трибората лития (варианты)

Изобретение относится к области получения кристалла трибората лития LiBO (LBO), являющегося высокоэффективным нелинейно-оптическим материалом, применяющимся для пассивного преобразования частоты лазерного излучения. Способ выращивания кристалла трибората лития включает загрузку начальной шихты...
Тип: Изобретение
Номер охранного документа: 0002681641
Дата охранного документа: 11.03.2019
31.05.2019
№219.017.7137

Дихроичный материал - фторидоборат с "антицеолитной" структурой

Изобретение относится к материалам для поляризационных оптических устройств. Дихроичный материал представляет собой фторидоборат с «антицеолитной» структурой с общей формулой ; при х=0, у=(0÷0.1) в виде каркаса [Ва(ВО)], сложенного чередующимися слоями (АВАВ) вдоль направления...
Тип: Изобретение
Номер охранного документа: 0002689596
Дата охранного документа: 28.05.2019
12.08.2019
№219.017.be7d

Способ определения объемной активности трития в горючем природном газе или попутном нефтяном газе скважин нефтяных и газовых месторождений

Изобретение относится к области радиационного мониторинга районов мирных подземных ядерных взрывов в пределах нефтегазоносных бассейнов, в частности к получению количественных данных об объемной активности трития. Способ определения объемной активности трития в горючем природном газе или...
Тип: Изобретение
Номер охранного документа: 0002696811
Дата охранного документа: 06.08.2019
08.09.2019
№219.017.c941

Нелинейный монокристалл литиевых халькогенидов общей формулы ligainte и способ его получения

Изобретение относится к монокристаллам литиевых халькогенидов, предназначенных к применению в нелинейной оптике для реализации перестройки лазерного излучения видимого и ближнего ИК-диапазона в средний ИК-диапазон. Получен нелинейный монокристалл литиевых халькогенидов общей формулы LiGaInTe,...
Тип: Изобретение
Номер охранного документа: 0002699639
Дата охранного документа: 06.09.2019
Показаны записи 11-20 из 29.
25.08.2017
№217.015.baac

Материал для дихроичной поляризации света - кристалл liba(bo)f

Изобретение относится к материалам для поляризационных оптических устройств, которые могут быть использованы для получения линейно-поляризованного света в оптико-электронных приборах: поляриметрах, эллипсометрах, дихрометрах, фотоэлектрических автоколлиматорах, модуляторах световых потоков,...
Тип: Изобретение
Номер охранного документа: 0002615691
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.c0ba

Применение нелинейного кристалла трибората лития (lbo) для фазосогласованной генерации излучения терагерцового диапазона

Изобретение относится к нелинейной оптике. Нелинейный анизотропный кристалл трибората лития LiBO (LBO) применяют в качестве активной среды для генерации излучения терагерцового диапазона 0.3-10 ТГц (1000-30 мкм) путем обеспечения выполнения условий фазового синхронизма при генерации разностной...
Тип: Изобретение
Номер охранного документа: 0002617561
Дата охранного документа: 25.04.2017
20.11.2017
№217.015.ef96

Способ получения частиц хлорида серебра

Изобретение может быть использовано в неорганической химии, в производстве фотокатализаторов, полупроводников и сенсорных материалов. Способ получения частиц хлорида серебра включает обменную реакцию между солями, одна из которых - серебросодержащая, а вторая – хлорсодержащая. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002629080
Дата охранного документа: 24.08.2017
19.01.2018
№218.016.0419

Кристаллический материал для регистрации рентгеновского излучения

Изобретение относится к технологии получения кристаллического материала, являющегося твердым раствором общей формулы ВаSr(ВО)F, где 0≤x≤1 и 0≤y≤0,5, пригодного для регистрации рентгеновского излучения. Кристаллический материал ВаSr(ВО)F имеет центры окраски, образованные под воздействием...
Тип: Изобретение
Номер охранного документа: 0002630511
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.0bba

Устройство для получения конденсата водяного пара из горючего природного газа и попутного нефтяного газа в полевых условиях для анализа содержания трития

Изобретение относится к области радиоэкологического мониторинга районов мирных подземных ядерных взрывов в пределах нефтегазоносных бассейнов, в частности к малогабаритным устройствам пробоподготовки горючих природных газовых проб в полевых условиях и перевода опасных для транспортировки...
Тип: Изобретение
Номер охранного документа: 0002632453
Дата охранного документа: 04.10.2017
04.04.2018
№218.016.369f

Способ измерения характеристики изотопной системы образца при поэтапном выделении анализируемого вещества (варианты)

Группа изобретений относится к области аналитических методов изотопной геохронологии и геохимии. Способ включает измерение количества каждого из изотопов в анализируемом веществе, выделенном из навески образца на каждом из этапов выделения анализируемого вещества из навески образца; введение в...
Тип: Изобретение
Номер охранного документа: 0002646461
Дата охранного документа: 05.03.2018
14.03.2019
№219.016.df06

Способ выращивания кристалла трибората лития (варианты)

Изобретение относится к области получения кристалла трибората лития LiBO (LBO), являющегося высокоэффективным нелинейно-оптическим материалом, применяющимся для пассивного преобразования частоты лазерного излучения. Способ выращивания кристалла трибората лития включает загрузку начальной шихты...
Тип: Изобретение
Номер охранного документа: 0002681641
Дата охранного документа: 11.03.2019
20.03.2019
№219.016.e81d

Способ получения ag-au халькогенида

Изобретение относится к технологии высокотемпературного синтеза халькогенидов золота и серебра, а именно AgAuX, где X=S, Se, - ютенбогаардтита (α-AgAuS) и фишессерита (α-AgAuSe). Au-Ag халькогениды получают из высокотемпературных расплавов стехиометрического состава смеси элементарных...
Тип: Изобретение
Номер охранного документа: 0002458190
Дата охранного документа: 10.08.2012
08.11.2019
№219.017.df02

Способ выращивания кристалла метабората бария β-babo(bbo)

Изобретение относится к получению монокристаллов метабората бария ΒaΒO (ВВО), применяемых в лазерных системах. Рост кристалла ВВО осуществляют в прецизионной нагревательной печи, обладающей высокой симметрией и стабильностью теплового поля из высокотемпературного раствора-расплава, включающего...
Тип: Изобретение
Номер охранного документа: 0002705341
Дата охранного документа: 06.11.2019
10.12.2019
№219.017.ebdb

Способ получения цветного хромдиопсидового стекла (варианты)

Изобретение относится к использованию минерального сырья хромдиопсида (магний-кальциевый силикат состава MgCaSiO, содержащий примесь хрома) для получения ювелирного поделочного материала в виде плавленых цветных однородных окрашенных стеклообразных образцов. Зеленое хромдиопсидовое стекло...
Тип: Изобретение
Номер охранного документа: 0002708438
Дата охранного документа: 06.12.2019
+ добавить свой РИД