×
27.09.2013
216.012.6e5a

СПОСОБ ОЧИСТКИ ВЕНТИЛЯЦИОННЫХ ВЫБРОСОВ ОТ ТОКСИЧНЫХ ГАЗОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технологии очистки вентиляционных выбросов из производственных помещений от содержащихся в них токсичных веществ. Для очистки вентиляционных газов от фтористого водорода применяют волокнистый материал ФИБАН с влажностью 60-100%. Для очистки от фтористого водорода используют волокнистый сорбент типа ФИБАН А-5 и А-6N. В момент проскока фтористого водорода через сорбент увеличивают его содержание не более чем на 2,5-4,0% от его исходного содержания. Для улавливания гексафторида урана применяют ионитные материалы ФИБАН А-5 и ФИБАН АК-22. Изобретение позволяет снизить количество стадий очистки. 4 табл.
Основные результаты: Способ очистки вентиляционных выбросов от токсичных газов, отличающийся тем, что для очистки вентиляционных выбросов применяют волокнистый материал ФИБАН с влажностью 60-100%, для очистки от фтористого водорода используют ионитный волокнистый сорбент типа ФИБАН А-5 и A-6N, причем в момент проскока фтористого водорода через сорбент увеличивают его содержание не более чем на 2,5-4,0% от его исходного содержания, а для улавливания гексафторида урана применяют ионитные материалы ФИБАН А-5 и ФИБАН АК-22.
Реферат Свернуть Развернуть

Изобретение относится к технологии очистки вентиляционных выбросов из производственных помещений от содержащихся в них токсичных веществ и, в частности, к применению для этой цели органических ионитных волокнистых сорбентов типа «ФИБАН», производство которых осуществляется в Белоруссии на опытно-промышленной установке «Института физико-органической химии Национальной Академии Наук» [Материалы для очистки воздуха от табачного дыма - г.Минск, ИФХ НАН Белоруссии, 2011 г.]. Волокнистые ионитные материалы применяются для очистки вентиляционных выбросов от токсичных газов (NO, NO2, SO3, SO2, HCl), металлических аэрозольных частиц и табачного дыма.

Актуальность рассматриваемой проблемы обусловлена тем, что в России и других странах загрязнение атмосферы происходит в основном за счет выбросов из цехов производственных предприятий больших объемов вентиляционных газов, которые содержат токсичные вещества.

Очистку от токсичных веществ вентиляционных и сбросных технологических газов осуществляют абсорбционными (водными) или адсорбционными (сухими) методами.

Попытки решить проблему очистки вентиляционных газов традиционными методами не дали желаемого результата. Так, применение для этой цели водных методов путем орошения вентвыбросов в скрубберах водой или слабощелочными растворами NaOH, КОН или Na2CO3 не дают желаемого результата из-за низкой эффективности этого способа: степень очистки вентгазов от токсичных выбросов за одну стадию составляет в среднем лишь 50-60%.

Повышение эффективности улавливания токсичных газов возрастает при использовании нескольких последовательных стадий газоочистки. Так, согласно патенту №2074015 (1997 г.) очистку сбросных газов от фтористого водорода и диоксида серы осуществляют в 3-х последовательно установленных абсорберах с заданным расходом воды; в первых двух абсорберах очистку осуществляют водой с возвратом воды со второй стадии на первую. На третьей стадии абсорбцию осуществляют 5-10% раствором Na2CO3. По данным авторов патента суммарная степень очистки от HF составляет 92-99%, от SO2 - 95-99%. Аналогично в 3 стадии осуществляют процесс абсорбции HF в производстве фтористого водорода на АЭХК. Недостаток метода - его сложность и недостаточная степень очистки.

Лучшие показатели достигнуты при использовании сухих методов,

Так, согласно патенту №2342982 (2006 г.) предложен способ синтеза химического поглотителя состава 66-90% СаСО3+10-30% Са(ОН)2+4% NaOH, применение которого обеспечивает очистку сбросных технологических газов в одну стадию от HF, F2 и UF6 на 98-99%.

В соответствии с патентом №2408420 (2006 г.) предложен способ приготовления гранулированного смешанного сорбента на основе фторида натрия состава 80-95% NaF+5-20% CaF2. Способ позволяет повысить прочность сорбента, его пористость и емкость по UF6. Последующие испытания сорбента во ВНИИХТ и на УЭХК показали, что сорбент обеспечивает за одну стадию степень улавливания UF6 более чем на 99%.

На практике, в заводских условиях на изотопно-разделительных заводах (УЭХК, АЭХК) в связи со сложным составом сбросных газов применяют двойную схему очистки сбросных технологических газов: вначале в адсорберах с гранулированным фторидом натрия для улавливания UF6 и HF, затем в адсорберах с ХП-И для улавливания F2 и остатков UF6 и HF. Схема обеспечивает практически 100% поглощение HF, UF6 и F2. На некоторых установках УЭХК и АЭХК применяют тройную схему газоочистки в двух последовательно установленных адсорберах с гранулами NaF и контрольном адсорбере с ХП-И.

Таким образом, для эффективной очистки сбросных технологических газов водным или сухим методом требуется двойная или тройная очистка.

Многократная очистка экологически и экономически оправдана при улавливании ценных и особо токсичных веществ и широко применяется в случае обезвреживания небольших по объему сбросных технологических газов. В случае очистки вентиляционных газов обычно применяют однократную схему улавливания токсичных веществ.

Однако адсорберы, применяемые для очистки технологических газов, имеют низкую производительность по объему очищаемых газов, а поскольку объем вентиляционных выбросов на промышленных предприятиях достигает сотен тысяч и даже миллионов м3/час, использование адсорберов для очистки вентвыбросов сухим методом приводит к большим капитальным затратам. В связи с этим, сухие методы нашли широкое применение лишь для очистки небольших объемов сбросных технологических газов [Галкин Н.П., Зайцев В.А., Серегин М.Б. «Улавливание фторсодержащих газов», М., Атомиздат, 1975 г.]

Поиски новых эффективных методов очистки вентвыбросов привели к разработке новых эффективных органических ионитных сорбентов, изготавливаемых в виде волокнистых материалов ФИБАН с влажностью 60-100% и загружаемых плотным слоем в фильтры.

Техническим результатом предлагаемого решения является снижение количества стадий очистки. Кроме того, оно обеспечивает высокую скорость улавливания токсичных газов благодаря их быстрому поглощению влагой волокнистого материала с мгновенной передачей (в доли секунд) поглощенных анионов ионитному волокнистому материалу за счет анодного или катодного ионного обмена. Разработанный способ обеспечивает большую производительность аппаратов (десятки тысяч м3/час) и высокую степень поглощения токсичных газов (96-98%).

Технический результат достигается тем, что для очистки вентиляционных газов применяют волокнистый материал ФИБАН с влажностью 60-100%.Для очистки от фтористого водорода применяют ионитный волокнистый сорбент типа ФИБАН А-5 и A-6N, причем в момент проскока фтористого водорода через сорбент увеличивают его содержание не более чем на 2,5-4,0% от его исходного содержания. Для улавливания гексафторида урана применяют ионитные материалы ФИБАН А-5 и ФИБАН АК-22.

Сорбенты типа ФИБАН А-5 и A-6N обладают высокой равновесной емкостью по фтористому водороду (10,7-10,1%) и наибольшей степенью улавливания фтористого водорода в динамическом режиме (до 99,0-99,6%). Сорбенты типа ФИБАН А-5 и ФИБАН АК-22 обладают наибольшей равновесной емкостью по гексафториду урана (24,6-22,7).

Для определения возможности применения ионитных волокнистых материалов «ФИБАН» по новому назначению, а именно, для очистки вентиляционных газов от фтористого водорода и гексафторида урана, авторами заявки выполнены исследования по взаимодействию этих токсичных газов с различными марками ионитных материалов «ФИБАН», производимых в Белоруссии. Их свойства приведены в таблице 1.

Таблица 1
Основные характеристики волокнистых материалов «ФИБАН»
Марка волокна Функциональные группы Тип Оптимальная статистическая обменная емкость, мг·экв/г Оптимальное набухание, г H2O/г ионита Рабочий интервал рН Максимальная температура работоспособ-
ности, °С
ФИБАН А-5 -N(СН3)2 полифункциональный с преобладанием третичных аминогрупп 4,2 (по -NR2) 1,4 1-8 80
=NH
-СООН 0,5 (по -СООН)
ФИБАН A-6N -(C2H4OH)(СН3)2N+Cl полифункциональный с сильно- и слабоосновными аминогруппами 2,1 (по -N+) 0,8 1,6 0-13 80 (Cl)
-N(CH3)2 (по -NR2)
ФИБАН А-6 -(C3H5O)(СН3)2N+Cl полифункциональный с сильно- и 2,0 (по -N+) 0,8 1,2 0-13 80 (Cl)
-N(CH3)2 слабоосновными аминогруппами (по -NR2)
ФИБАН АК-22 =N, =NH, полифункциональный 4,5 0,7 1-8 80
-СООН 1,0
ФИБАН АК-22В -СООН, =NH, =NH2 полифункциональный 0,5 (по -COOH) 2,0 (по =NH) 0,6 1-12 80

Пример 1. Опыты проводили при давлении 760 мм рт.ст., температуре 25-30°С, концентрациях HF в воздухе 2200 мг/м3 и 100 мг/м3 и влажности воздуха 60% до достижения полного насыщения различных материалов по HF.

Результаты опытов приведены в таблице 2.

Таблица 2
Равновесная емкость волокнистых материалов «ФИБАН» по HF при различном содержании его в вентиляционном воздухе
Марка материала Емкость по HF (мас.%) при его исходном содержании 2200 мг/м3 Емкость по HF (мас.%) при его исходном содержании 100 мг/м3
ФИБАН А-5 10,71 10,40
ФИБАН A-6N 10,07 9,40
ФИБАН А-6 9,74 9,10
ФИБАН АК-22 8,25 8,03
ФИБАН АК-22В 7,83 7,51

Максимальной равновесной емкостью по HF обладают ФИБАН А-5 (10,71-10,40 масс.%) и ФИБАН A-6N (10,07-9,40 масс.%), причем емкость материалов мало зависит от исходной концентрации HF в воздухе.

Пример 2.

В таблице 3 приведены результаты опытов по взаимодействию газообразного UF6, содержащегося в вентиляционном воздухе, с различными марками материала «ФИБАН».

Таблица 3
Равновесная емкость волокнистых материалов «ФИБАН» по UF6 при его исходном содержании 785 мг/м3, температуре 20°С, давлении 760 мм рт.ст. и относительной влажности воздуха 70%
Марка материала Емкость по UF6 (мас.%)
ФИБАН А-5 24,06
ФИБАН A-6N 22,66
ФИБАН А-6 20,60
ФИБАН АК-22 19,87
ФИБАН АК-22В 16,80

Из результатов экспериментов видно, что максимальную равновесную емкость имеют марки ФИБАН А-5 (24,06 мас.%) и ФИБАН A-6N (22,66 мас.%).

Пример 3.

Были проведены дополнительные опыты по улавливанию HF из вентиляционного газа в динамических условиях:

- диаметр фильтра: 5 см;

- площадь фильтра: 20 см2;

- высота слоя волокнистого материала: 6 см;

- объем фильтра: 120 см3;

- расход воздуха: 3 и 12 л/мин; линейная скорость воздуха через слой волокнистого материала: 2,5 и 10 см/с соответственно;

- содержание HF в воздухе - 110 мг/м3;

- относительная влажность воздуха: 70-80%.

Таблица 4
Результаты определения динамической емкости ионита ФИБАН А-5 при различных линейных скоростях вентиляционных газов через слой волокнистого материала
Линейная скорость 2,5 см/с Линейная скорость 10 см/с
Продолжитель-
ность, часы
Емкость, масс.% Степень улавливания HF, % Продолжи-
тельность,
часы
Емкость, мас.% Степень улавливания HF, %
в данный момент средняя в данный момент средняя
10,0 1,33 100,0 100,0 1 0,55 100,0 100,0
20,0 2,72 100,0 100,0 2 1,10 100,0 100,0
30,0 4,03 100,0 100,0 3 1,63 100,0 100,0
40,0 5,26 100,0 100,0 4 2,17 100,0 100,0
45,0 5,88 99,5 99,95 5 2,70 100,0 100,0
50,0 6,47 98,5 99,79 6 3,22 100,0 100,0
55,0 7,07 98,0 99,66 7 3,73 100,0 100,0
57,5 7,36 97,5 99,56 8 4,24 99,75 99,9
60,0 7,63 97,0 99,41 9 4,74 99,40 99,7
62,5 7,93 96,4 99,28 10 5,23 98,70 99,4
65,0 8,22 96,0 99,16 11 5,71 97,50 99,0
67,5 8,49 94,5 98,60 12 6,18 96,00 98,5
70,0 8,71 90,3 98,0 13 6,61 90,2 98,0

Из экспериментальных данных следует, что в первый период процесса наблюдается полное поглощение HF, а в дальнейшем степень улавливания фтористого водорода уменьшается и составляет:

- 99,0-99,56% при проскоке HF в данный момент 2,5% от исходного содержания;

- 99,0-99,16% при проскоке HF в данный момент 4% от исходного содержания;

- 98% при проскоке HF в данный момент 10% от исходного содержания.

Рекомендуется применять ионит «ФИБАН» А-5 до проскока HF 2,5-4,0%, что обеспечивает суммарную степень очистки за весь период процесса 99,0-99,6%. Некоторое снижение емкости ионита по HF не имеет большого значения, так как материал в любом случае будет подвергаться водно-щелочной регенерации для повторного использования в многократных циклах сорбции-десорбции.

Способ очистки вентиляционных выбросов от токсичных газов, отличающийся тем, что для очистки вентиляционных выбросов применяют волокнистый материал ФИБАН с влажностью 60-100%, для очистки от фтористого водорода используют ионитный волокнистый сорбент типа ФИБАН А-5 и A-6N, причем в момент проскока фтористого водорода через сорбент увеличивают его содержание не более чем на 2,5-4,0% от его исходного содержания, а для улавливания гексафторида урана применяют ионитные материалы ФИБАН А-5 и ФИБАН АК-22.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 56.
10.03.2013
№216.012.2e14

Способ комплексной переработки углерод-кремнеземистых черносланцевых руд

Изобретение относится к способу комплексной переработки углерод-кремнеземистых черносланцевых руд, содержащих ванадий, уран, молибден, редкоземельные элементы (РЗЭ). Способ включает измельчение руды до крупности частиц не более 0,2 мм и две стадии выщелачивания. Сернокислотное окислительное...
Тип: Изобретение
Номер охранного документа: 0002477327
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2ee7

Способ очистки жидких радиоактивных отходов и установка для его осуществления

Группа изобретений относится к области очистки жидких сред, содержащих радиоактивные отходы. Предложен способ, предусматривающий очистку жидких отходов путем предварительного нагрева и испарения с образованием пара и рассола при поддержании в испарительной камере давления ниже атмосферного....
Тип: Изобретение
Номер охранного документа: 0002477538
Дата охранного документа: 10.03.2013
10.05.2013
№216.012.3de4

Способ переработки урановых руд

Изобретение относится к области переработки урансодержащего сырья и может быть использовано при гидрометаллургической переработке урановых руд. Способ переработки урановых руд включает дробление и измельчение руды, серно-кислотное выщелачивание с добавлением азотной кислоты в качестве...
Тип: Изобретение
Номер охранного документа: 0002481411
Дата охранного документа: 10.05.2013
10.06.2013
№216.012.4806

Способ переработки фосфатного редкоземельного концентрата, выделенного из апатита

Изобретение относится к способам выделения дезактивированных редкоземельных элементов (РЗЭ) при азотно-кислотной переработке апатитового концентрата из азотно-фосфорнокислых растворов. Способ переработки фосфатного редкоземельного концентрата, выделенного из апатита, включает разложение...
Тип: Изобретение
Номер охранного документа: 0002484018
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4c0b

Способ извлечения скандия

Изобретение относится к гидрометаллургической переработке минерального сырья, в частности к скандийсодержащим «хвостам», полученным при обогащении титаномагнетитовых руд методом мокрой магнитной сепарации. Способ извлечения скандия представляет собой трехстадийное сернокислотное выщелачивание...
Тип: Изобретение
Номер охранного документа: 0002485049
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.544e

Способ извлечения редкоземельных металлов из фосфогипса

Изобретение предназначено для использования в химической технологии извлечения редкоземельных металлов (РЗМ) из фосфогипса, получаемом в производстве фосфорных удобрений при сернокислотной переработке апатита. Способ извлечения редкоземельных металлов из фосфогипса включает конверсию...
Тип: Изобретение
Номер охранного документа: 0002487185
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d50

Способ переработки кобальтсодержащих отходов

Изобретение относится к гидрометаллургии. Отходы самарий-кобальтовых магнитов растворяют в азотной кислоте, полученный раствор обрабатывают аммиаком до рН не менее 3 с окислением кобальта(II) до кобальта(III) с образованием аммиаката кобальта. Затем осаждают оксалат самария оксалатом аммония...
Тип: Изобретение
Номер охранного документа: 0002489509
Дата охранного документа: 10.08.2013
10.09.2013
№216.012.6781

Способ переработки металлических бериллиевых отходов

Изобретение относится к переработке бериллийсодержащих металлических отходов. Способ включает растворение металлических бериллиевых отходов в щелочном растворе в присутствии нитрата натрия или калия. Вводят в процесс азотную кислоту в количестве 2,09-2,26 моль/моль бериллия. Азотная кислота...
Тип: Изобретение
Номер охранного документа: 0002492144
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6b3a

Способ переработки отходов металлического бериллия и спецкерамики на основе оксида бериллия

Изобретение относится к гидрометаллургии и может быть использовано для переработки отходов с получением соединений бериллия и других металлов высокой чистоты. Очистка фторбериллата аммония осуществляется в режиме перекристаллизации ФБА методом изменения состава микропримесей. Изменение...
Тип: Изобретение
Номер охранного документа: 0002493101
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.6e68

Способ получения легкорегенерируемого ионита

Изобретение относится к методам синтеза селективных сорбентов для извлечения золота из растворов и пульп. Способ осуществляют аминолизом диэтилентриамином пористого сополимера акрилонитрила, дивинилбензола и стирола при массовом содержании акрилонитрила 34-45%, дивинилбензола 12,5-20%, стирола...
Тип: Изобретение
Номер охранного документа: 0002493915
Дата охранного документа: 27.09.2013
Показаны записи 1-10 из 41.
10.03.2013
№216.012.2e14

Способ комплексной переработки углерод-кремнеземистых черносланцевых руд

Изобретение относится к способу комплексной переработки углерод-кремнеземистых черносланцевых руд, содержащих ванадий, уран, молибден, редкоземельные элементы (РЗЭ). Способ включает измельчение руды до крупности частиц не более 0,2 мм и две стадии выщелачивания. Сернокислотное окислительное...
Тип: Изобретение
Номер охранного документа: 0002477327
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2ee7

Способ очистки жидких радиоактивных отходов и установка для его осуществления

Группа изобретений относится к области очистки жидких сред, содержащих радиоактивные отходы. Предложен способ, предусматривающий очистку жидких отходов путем предварительного нагрева и испарения с образованием пара и рассола при поддержании в испарительной камере давления ниже атмосферного....
Тип: Изобретение
Номер охранного документа: 0002477538
Дата охранного документа: 10.03.2013
10.05.2013
№216.012.3de4

Способ переработки урановых руд

Изобретение относится к области переработки урансодержащего сырья и может быть использовано при гидрометаллургической переработке урановых руд. Способ переработки урановых руд включает дробление и измельчение руды, серно-кислотное выщелачивание с добавлением азотной кислоты в качестве...
Тип: Изобретение
Номер охранного документа: 0002481411
Дата охранного документа: 10.05.2013
10.06.2013
№216.012.4806

Способ переработки фосфатного редкоземельного концентрата, выделенного из апатита

Изобретение относится к способам выделения дезактивированных редкоземельных элементов (РЗЭ) при азотно-кислотной переработке апатитового концентрата из азотно-фосфорнокислых растворов. Способ переработки фосфатного редкоземельного концентрата, выделенного из апатита, включает разложение...
Тип: Изобретение
Номер охранного документа: 0002484018
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4c0b

Способ извлечения скандия

Изобретение относится к гидрометаллургической переработке минерального сырья, в частности к скандийсодержащим «хвостам», полученным при обогащении титаномагнетитовых руд методом мокрой магнитной сепарации. Способ извлечения скандия представляет собой трехстадийное сернокислотное выщелачивание...
Тип: Изобретение
Номер охранного документа: 0002485049
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.544e

Способ извлечения редкоземельных металлов из фосфогипса

Изобретение предназначено для использования в химической технологии извлечения редкоземельных металлов (РЗМ) из фосфогипса, получаемом в производстве фосфорных удобрений при сернокислотной переработке апатита. Способ извлечения редкоземельных металлов из фосфогипса включает конверсию...
Тип: Изобретение
Номер охранного документа: 0002487185
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d50

Способ переработки кобальтсодержащих отходов

Изобретение относится к гидрометаллургии. Отходы самарий-кобальтовых магнитов растворяют в азотной кислоте, полученный раствор обрабатывают аммиаком до рН не менее 3 с окислением кобальта(II) до кобальта(III) с образованием аммиаката кобальта. Затем осаждают оксалат самария оксалатом аммония...
Тип: Изобретение
Номер охранного документа: 0002489509
Дата охранного документа: 10.08.2013
10.09.2013
№216.012.6781

Способ переработки металлических бериллиевых отходов

Изобретение относится к переработке бериллийсодержащих металлических отходов. Способ включает растворение металлических бериллиевых отходов в щелочном растворе в присутствии нитрата натрия или калия. Вводят в процесс азотную кислоту в количестве 2,09-2,26 моль/моль бериллия. Азотная кислота...
Тип: Изобретение
Номер охранного документа: 0002492144
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6b3a

Способ переработки отходов металлического бериллия и спецкерамики на основе оксида бериллия

Изобретение относится к гидрометаллургии и может быть использовано для переработки отходов с получением соединений бериллия и других металлов высокой чистоты. Очистка фторбериллата аммония осуществляется в режиме перекристаллизации ФБА методом изменения состава микропримесей. Изменение...
Тип: Изобретение
Номер охранного документа: 0002493101
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.6e68

Способ получения легкорегенерируемого ионита

Изобретение относится к методам синтеза селективных сорбентов для извлечения золота из растворов и пульп. Способ осуществляют аминолизом диэтилентриамином пористого сополимера акрилонитрила, дивинилбензола и стирола при массовом содержании акрилонитрила 34-45%, дивинилбензола 12,5-20%, стирола...
Тип: Изобретение
Номер охранного документа: 0002493915
Дата охранного документа: 27.09.2013
+ добавить свой РИД