×
10.09.2013
216.012.6784

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ ПОДЗЕМНЫХ ВОД ОТ УСТОЙЧИВЫХ ФОРМ ЖЕЛЕЗА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области водоснабжения и может быть использовано в системах водоподготовки для улучшения качества питьевой воды. Способ очистки подземных вод от устойчивых форм железа включает регулирование pH очищаемой воды с последующей фильтрацией и восстановлением pH до нормативных значений. В подлежащую очистке воду вводят углекислый газ перед центробежным насосом и снижают pH раствора до значения 4-5. Создают разрежение над поверхностью обработанной воды. Углекислый газ используют многократно путем откачивания после декарбонизации. Технический результат заключается в повышении эффективности и экологичности процесса очистки подземных вод от устойчивых форм коллоидного железа. 2 ил., 1 табл., 6 пр.
Основные результаты: Способ очистки подземных вод от устойчивых форм железа, включающий регулирование pH очищаемой воды с последующей фильтрацией и восстановлением pH до нормативных значений, отличающийся тем, что углекислый газ вводят в подлежащую очистке воду перед центробежным насосом, снижают pH раствора до значения 4-5, создают разрежение над поверхностью обработанной воды, углекислый газ используют многократно путем откачивания после декарбонизации.

Изобретение относится к области водоснабжения, в частности к очистке подземных вод, содержащих устойчивые формы железа в виде железоорганических соединений, и может быть использовано в системах водоподготовки для улучшения качества питьевой воды.

Подземные воды кроме железа содержат растворенные органические вещества, способствующие образованию устойчивых форм железа в виде устойчивых колодных соединений. Применяемые в настоящее время схемы очистки, включающие аэрацию, отстаивание и фильтрование для воды, содержащей железо и органические вещества, не достаточно эффективны, по следующим причинам. Окисление железа на стадии аэрирования приводит к образованию Fe(OH)3. Растворенные органические вещества в виде гумусовых соединений, образуют на поверхности Fe(OH)3 защитный слой, препятствующий коагуляции окисленного железа и выпадению осадка. Образующиеся железоорганические соединения в виде коллоидных частиц устойчивы в течение длительного времени. На стадии фильтрования, железо в виде устойчивых коллоидных частиц не задерживается на фильтрах, так как их размер находиться в диапазоне от 50 до 450 нм. Единственный способ удаления коллоидного железа на стадии фильтрования - это использование ультра- и нанофильтрационных мембран, что приводит к увлечению стоимости технологии водоподготовки.

Известен способ очистки подземных вод от устойчивых форм железа, заключающийся в аэрирование исходной воды и деструкции железоорганических комплексных соединений в рабочей зоне биореактора за счет метаболизма железоокисляющих микроорганизмов с последующим фильтрованием. [RU 2161594, публ. 10.01.2001]

Недостатками известного способа являются:

- ограниченная область применения для территорий северных регионов России ввиду низких температур;

- высокие эксплуатационные затраты, связанные с условиями содержания железобактерий для обеспечения температурного режима, стабильности химического состава воды, поступающей в биореактор для строгого соблюдения технологического режима очистки;

- затраты на обезвреживание и утилизацию избыточного ила, который образуется при биоочистке.

Наиболее близким к заявляемому способу является способ очистки воды от гумусовых веществ и железа [RU 2158231, публ. 27.10.2000 г.], заключающийся в последовательном пропускании ее в две стадии через фильтрующую загрузку с регулированием pH очищаемой воды на каждой стадии, согласно чему на первую стадию фильтрации подают воду с pH 3,0-4,0 для извлечения гумусовых веществ, а на вторую стадию фильтрации подают воду с pH 6,5-9,0 для извлечения железа. При этом установление pH очищаемой воды осуществляют добавлением кислоты перед первой стадией фильтрации и щелочи перед второй стадией фильтрации. Или установление pH очищаемой воды осуществляют пропусканием воды через анодную камеру электролизера перед первой стадией фильтрации и через катодную камеру электролизера перед второй стадией фильтрации

Недостатком прототипа является то, что для регулирования pH очищаемой воды используют реагенты (кислоты и щелочи), что требует дополнительного оборудования для подачи кислоты и щелочи, причем это оборудование должно быть коррозиционностойким. Кроме того, в настоящее время для очистки воды в питьевых целях наиболее приоритетными являются безреагентные системы, как экологически безопасные, а применение кислот и щелочей, нельзя отнести к экологически безопасным процессам обработки. А использование электролизера для корректировки pH является энергозатратным и сложным в эксплуатации процессом, особенно в удаленных поселках, не имеющих централизованного водоснабжения и при работе любого электролизера с природными водами, содержащими соли жесткости, железа и кремния, даже на переменном токе, происходит постепенная кольматация электродов и резкое снижение эффективности работы установки.

Задача изобретения - создание экологически чистого, эффективного и простого в обслуживании способа очистки подземных вод от устойчивых форм коллоидного железа.

Технический результат изобретения заключается в повышении эффективности и экологичности процесса очистки подземных вод от устойчивых форм коллоидного железа за счет отказа от использования электролизера и применения кислот и щелочей.

Указанный технический результат достигается тем, что в способе очистки подземных вод от устойчивых форм железа, включающем регулирование pH очищаемой воды с последующей фильтрацией и восстановлением pH до нормативных значений, в отличие от прототипа, для регулирования pH используют углекислый газ (CO2), а восстановление pH проводят самопроизвольной декарбонизацией углекислого газа из обработанной воды.

Целесообразно для эффективного перемешивания углекислого газа с очищаемой водой использовать центробежный насос.

Для более эффективного выхода углекислого газа из обработанной воды выгодно создавать разряжение над ее поверхностью.

Для многократного использования углекислого газа целесообразно откачивать его после декарбонизации.

Способ очистки подземных вод от устойчивых форм железа, предусматривает применения углекислого газа для регулирования pH до значений 4,5..5, что позволяет легко удалять коллоиды железа на стадии фильтрации, при этом дальнейшее восстановление pH происходит самопроизвольно путем декарбонизацией углекислого газа из обрабатываемой воды.

На фиг.1 представлена технологическая схема устройства для реализации заявляемого способа временного снижения pH обрабатываемой воды, которое содержит эжектор 1, центробежный насос 2, фильтр 3, резервуар 4 с очищенной водой, патрубок 5 для отвода CO2, насос 6 (инжектор). На фиг.2 приведена зависимость количества углекислого газа в литрах от концентрации коллоидного железа в исходной воде в мг/л.

Предлагаемый способ удаления коллоидного железа из подземных вод используется после полного окисления железа, в результате которого формируются устойчивые соединения железа с органическими веществами в коллоидной форме. Подлежащую очистки воду после полного окисления железа, например аэрацией, подают в центробежный насос 2, где происходит активное растворение CO2, который подается из стандартных баллонов через эжектор 1 со скоростью 4 л/ч. Для гомогенного распределения CO2 в воде наиболее рационально вводить газ перед насосом. Это связано с тем, что при прохождении водовоздушной смеси через насос 2, на концах лопастей крыльчатки насоса 2 возникают критические давления, значения которых достигают до 10 кг/см2. При повышении давления диспергированные пузырьки газа активно растворяются в воде с образованием H2CO3, что приводит к временному снижению pH раствора до значения 4…5 с последующей коагуляцией частиц железа. Далее вода поступает на фильтр 3, где происходит осаждение железа в виде Fe(OH)3 на фильтрующей загрузке. Очищенная вода после фильтра 3 поступает в накопительный резервуар 4, в котором происходит самопроизвольное восстановление pH до значений 7,5 за счет удаления CO2 декарбонизацией. Для уменьшения расхода CO2 предусмотрен соединительный патрубок между накопительным резервуаром 4 и эжектором 1 для возвращения CO2 в цикл. Возвращение CO2 к эжектору 1 происходит с помощью насоса 6, который создает над поверхностью воды разряжение за счет чего CO2 направляется в трубопровод эжектора 1. В этом случае достигаются две цели: снижение временной кислотности исходной воды до нормативных значений и многократное использование CO2.

Примеры 1-4.

Эксперименты проводили на модельном растворе близком по составу к природной воде, в котором концентрация исходного коллоидного железа составляла 1,5 мг/л. В модельный раствор, температура которого составляла 20°С, после стадии полного окисления железа вводили CO2 из баллона под давлением 0,15 МПа. Расход CO2 составлял 4 л/ч. Концентрацию вводимого CO2 контролировали временем обработки раствора, которое варьировалось от 5 до 20 минут. Эксперименты проводили в стационарном режиме. Экспериментальные результаты оценки степени удаления коллоидного железа от времени обработки раствора CO2 приведены в таблице 1. Из таблицы 1 видно, что по мере увеличения времени обработки и достижении pH раствора 4,2 степень очистки от железа достигает 90%, что соответствует концентрации железа 0,15 мг/л в сравнении с исходной равной 1,5 мг/л.

Пример 5.

Был проведен эксперимент для раствора, в котором концентрация коллоидного железа составила 2,8 мг/л. В раствор, температура которого составляла 20°С, после стадии полного окисления железа вводили CO2 из баллона под давлением 0,15 МПа. Расход CO2 составлял 4 л/ч. Время обработки раствора углекислым газом (CO2) составляло 20 минут. В результате обработки концентрация коллоидного железа в растворе составила 0,28 мг/л. Полученное значение соответствует предельно допустимой концентрации железа в питьевой воде (0,3 мг/л). Очевидно, что с увеличением концентрации железа в воде необходимо увеличивать время обработки раствора, т.е. увеличивать концентрацию введенного CO2. На фиг.2 приведена экспериментально полученная зависимость вводимого углекислого газа от концентрации коллоидного железа в исходной воде. Пользуясь данной зависимостью, можно оценить количество CO2, необходимое для удаления коллоидного железа до нормативных значений.

Пример 6.

Предложенный способ удаления устойчивых форм железа в виде железоорганических соединений был апробирован на реальной скважиной воде с концентрацией железа 5,6 мг/л, органических веществ гумусового происхождения 3,8 мг O2/л и кремния 20 мг/л. После стадии окисления железа, дальнейшую обработку воды проводили по схеме, представленной на фиг.1. Температура обрабатываемой воды составляла 7°C, что позволяет увеличить эффективность растворения газа в воде. В реальных условиях концентрация вводимого CO2 определяется расходом воды, а не временем обработки CO2. Поэтому в данном примере расход CO2 не изменялся и соответствовал значению 4 л/ч. Скорость подачи воды составляла 25 л/ч. Вода, поступающая в резервуар 4, после стадии обработки CO2 и фильтрации через фильтр 3, имела значение pH равное 4,2. Время восстановления pH раствора до значения 7,5 с использованием наноса 6 составляет 15 минут, а при самопроизвольном восстановлении pH воды без участия насоса - 80 минут. Концентрация железа в резервуаре 4 после полного цикла обработки составляет 0,2 мг/л. Вода, очищенная по предлагаемой схеме соответствует требованиям, предъявляемым СаНПиН 2.1.4. 1074-01.

Таким образом, в предлагаемом способе для снижения pH среды используется экологически безопасный и достаточно дешевый - углекислый газ, что позволяет упростить технологию водоподготовки за счет исключения дополнительной стадии (тонкой) фильтрации и корректировки pH воды подщелачиванием. Процесс восстановления pH воды происходит самопроизвольно, по мере декарбонизации CO2.

Таблица 1
Способ очистки подземных вод от устойчивых форм железа
Пример № Расход
CO2, л/ч
Время обработки CO2, мин Вводимая концентрация CO2 в раствор, мг/л Концентрация CO2, в воде мг/л Полученное значение pH воды (после обработки
CO2)
Концентра
ция железа после обработки, мг/л
Степень очистки по Fe, %
1 4 5 393 198 5,3 0,84 44,4
2 4 10 600 280 4,8 0,68 54,9
3 4 15 1178 356 4,6 0,24 84,8
4 4 20 1300 386 4,2 0,15 90,0

Способ очистки подземных вод от устойчивых форм железа, включающий регулирование pH очищаемой воды с последующей фильтрацией и восстановлением pH до нормативных значений, отличающийся тем, что углекислый газ вводят в подлежащую очистке воду перед центробежным насосом, снижают pH раствора до значения 4-5, создают разрежение над поверхностью обработанной воды, углекислый газ используют многократно путем откачивания после декарбонизации.
СПОСОБ ОЧИСТКИ ПОДЗЕМНЫХ ВОД ОТ УСТОЙЧИВЫХ ФОРМ ЖЕЛЕЗА
СПОСОБ ОЧИСТКИ ПОДЗЕМНЫХ ВОД ОТ УСТОЙЧИВЫХ ФОРМ ЖЕЛЕЗА
Источник поступления информации: Роспатент

Показаны записи 71-80 из 147.
10.02.2015
№216.013.2617

Устройство для дорнования глубоких отверстий

Изобретение относится к металлообработке. Устройство состоит из корпуса с отверстием для размещения дорна и толкателя его привода. На корпусе закреплено направляющее устройство для толкателя, в корпусе которого выполнены центральное сквозное ромбическое отверстие для направления толкателя и...
Тип: Изобретение
Номер охранного документа: 0002541204
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2675

Устройство для создания зарядов на поверхности тел и способ его применения

Изобретение относится к области измерительной и учебной техники и может быть использовано для изучения явлений электромагнетизма. По периметру диэлектрического диска впрессованы металлические шарики, диаметр которых равен толщине диска. Диск расположен на изолированном основании. Металлический...
Тип: Изобретение
Номер охранного документа: 0002541298
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26c7

Сверхпроводящий выключатель

Сверхпроводящий выключатель может быть использован для коммутации электрических цепей постоянного тока, в системах вывода энергии из индуктивных сверхпроводящих накопителей, для защиты крупных магнитных сверхпроводящих систем, работающих в режиме «замороженного» магнитного поля, сверхпроводящих...
Тип: Изобретение
Номер охранного документа: 0002541380
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26cf

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области машиностроения и касается прогнозирования и контроля износостойкости твердосплавных группы применяемости К режущих инструментов по содержанию водорода в поверхностной и приповерхностной структуре. Отличительная особенность способа прогнозирования износостойкости...
Тип: Изобретение
Номер охранного документа: 0002541388
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.284a

Способ создания модели перекисного окисления лимфоцитов

Изобретение относится к медицине и может быть использовано для оценки эффективности модели перекисного окисления липидов мембран лимфоцитов. Для этого предварительно обрабатывают лимфоциты перекисью водорода в конечной концентрации 0,5 мМ и определяют белково-связанный глутатион. При увеличении...
Тип: Изобретение
Номер охранного документа: 0002541771
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b9c

Парогазовая установка

Изобретение относится к области теплоэнергетики. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой...
Тип: Изобретение
Номер охранного документа: 0002542621
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2dc5

Способ очистки сточных вод от фенолов и нефтепродуктов

Способ очистки сточных вод от фенолов и нефтепродуктов может найти применение для очистки различных вод, в том числе сточных вод нефтехимических и нефтеперерабатывающих производств. Основными операциями способа являются введение в исходную очищаемую воду коагулянта, флотация, создание...
Тип: Изобретение
Номер охранного документа: 0002543185
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e01

Секция механизированной крепи

Изобретение относится к горной промышленности, в частности к секции горной крепи, предназначенной для механизации очистных работ при разработке пластов угля, калийной соли и рудных залежей. Техническим результатом является трансформация энергии обрушающихся пород в электроэнергию, что позволяет...
Тип: Изобретение
Номер охранного документа: 0002543245
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2f9a

Способ получения меченного технецием-99m наноколлоида

Изобретение относится к способу получения меченного технецием-99m наноколлоида для радионуклидной диагностики. Заявленный способ включает приготовление исходной суспензии наноколлоида в 0,1% растворе додецилбензол сульфата натрия и пропускание ее через фильтр с диаметром пор 100 нм, введение в...
Тип: Изобретение
Номер охранного документа: 0002543654
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2fba

Микромеханический акселерометр

Изобретение относится к устройствам для измерения линейных ускорений и может быть использовано для одновременного измерения ускорений вдоль трех взаимно перпендикулярных осей. Сущность: акселерометр содержит инерционную массу (1), которая закреплена во внутренней раме (2) с помощью...
Тип: Изобретение
Номер охранного документа: 0002543686
Дата охранного документа: 10.03.2015
Показаны записи 71-80 из 238.
10.12.2013
№216.012.8a77

Резонансный свч-компрессор

Изобретение относится к области радиотехники и может быть использовано для формирования мощных СВЧ-импульсов наносекундной длительности. Технический результат - увеличение мощности выходных сигналов компрессора за счет увеличения объема накопительного резонатора и количества каналов вывода...
Тип: Изобретение
Номер охранного документа: 0002501129
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e2c

Способ определения параметров асинхронного электродвигателя

Изобретение относится к электротехнике. В течение пуска и торможения выбегом электродвигателя одновременно проводят измерение мгновенных величин токов и напряжений на двух фазах статора и частоты вращения вала электродвигателя, определяют модуль вектора тока статора, преобразуют напряжения из...
Тип: Изобретение
Номер охранного документа: 0002502079
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.8fff

Способ приготовления модельного коллоидного раствора

Изобретение может быть использовано в установках водоподготовки при оценке эффективности их работы и выборе оптимальной последовательности технологического процесса водоочистки. Способ приготовления модельного коллоидного раствора включает внесение в дисперсионную среду при перемешивании...
Тип: Изобретение
Номер охранного документа: 0002502556
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9556

Интегральный микромеханический гироскоп

Изобретение относится к области измерительной техники и интегральной электроники, а именно к интегральным измерительным элементам величины угловой скорости. Гироскоп содержит две инерционные массы, выполненные в виде пластин с гребенчатыми структурами, на которых расположены пластины...
Тип: Изобретение
Номер охранного документа: 0002503924
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.97ed

Способ получения вольфрамата натрия

Изобретение относится к переработке вольфрамсодержащего сырья. В автоклав загружают вольфрамсодержащее сырье и раствор карбоната натрия концентрацией 220 г/л. Процесс выщелачивания ведут не менее 6 часов при температуре 200-225°С с постоянным перемешиванием. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002504592
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9896

Способ количественного определения никеля методом инверсионной вольтамперометрии на органо-модифицированном электроде

Использование: для разработки методик анализа никеля в различных типах вод, эко- и биологических объектах, пищевых продуктах, продовольственном сырье, кормах и кормовых добавках. Сущность: заключается в сочетании кислотной минерализации образца на этапе подготовки проб с последующим...
Тип: Изобретение
Номер охранного документа: 0002504761
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.98b5

Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений

Изобретение относится к области электротехники и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи. Сущность: измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз в начале и в конце линии для одних и тех же моментов...
Тип: Изобретение
Номер охранного документа: 0002504792
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9beb

Способ нанесения медного покрытия

Изобретение относится к получению медных покрытий и может быть использовано для коррозионной защиты, декоративной обработки различных материалов, а также в электронной технике. Способ включает очистку и обезжиривание поверхности изделия, нанесение на нее механическим способом медьсодержащей...
Тип: Изобретение
Номер охранного документа: 0002505621
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9e5b

Способ получения циркониевой керамики

Изобретение относится к порошковой металлургии и может быть использовано в производстве высокопрочных конструктивных и инструментальных материалов и изделий, например, волочильных инструментов. Способ получения циркониевой керамики заключается в том, что порошковый материал на основе диоксида...
Тип: Изобретение
Номер охранного документа: 0002506247
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9eaf

Способ получения вольфрамата аммония

Изобретение относится к переработке вольфрамсодержащего сырья. Вольфрамсодержащий карбонатный раствор подвергают сгущению с помощью флоулянта ВПК-402 для удаления из раствора таких примесей, как ВО , РО , AsO  и SiO . Далее раствор подвергают первой стадии ионного обмена на анионите АВ-17-8 в...
Тип: Изобретение
Номер охранного документа: 0002506331
Дата охранного документа: 10.02.2014
+ добавить свой РИД