×
27.08.2013
216.012.6512

СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ФИЗИЧЕСКИХ ПОЛЕЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к оптической измерительной технике и может быть использовано для измерения параметров физических полей. Согласно способу генерируют пару сигналов близкой амплитуды со средней частотой, соответствующей определенной частоте полосы пропускания оптического датчика при заданном значении параметра физического поля, и разностной частотой, достаточно узкой, для того чтобы оба сигнала попали в указанную полосу пропускания. Сгенерированную пару сигналов передают к оптическому датчику по первой оптической среде. Принимают пропущенную через оптический датчик и сгенерированную пары сигналов, передаваемые соответственно по второй и третьей оптическим средам, и определяют параметр физического поля. Определение параметра физического поля производят, измеряя разность фаз между огибающей биений сигналов сгенерированной пары и огибающей биений сигналов пары, прошедшей через оптический датчик. Технический результат - повышение точности измерения за счет исключения источников погрешностей измерения. Технический результат - повышение точности измерения за счет исключения источников погрешностей измерения. 1 н. 1 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к технике оптических измерений, в частности к способам для измерения параметров физических полей (температура, давление, натяжение и т.д.) с помощью оптических датчиков, включая датчики в интегральном и волоконно-оптическом исполнении (интерферометры Фабри-Перо, решетки Брэгга, датчики на тонкопленочных фильтрах и т.д.), у которых существует зависимость смещения по частоте их спектральной, как правило, полосовой резонансной характеристики, в зависимости от параметров приложенных физических полей.

Известен способ измерения параметров физических полей (см. электронный ресурс www.forc-photonics.ru, «Волоконно-оптический зондовый термометр», файл termometr_final.pdf, ООО ИП «НЦВО-Фотоника», 14.10.2008), заключающийся в том, что генерируют широкополосное излучение, передают его к оптическому датчику по оптической среде, принимают излучение, преобразованное в датчике, и определяют параметры физического поля, прецизионно регистрируя спектральное смещение резонансной длины волны оптического датчика.

Недостатком указанного способа является необходимость использования сложного дорогостоящего блока спектрального анализа принятого излучения и фотоприемного блока для регистрации спектрального смещения, как правило, это оптические анализаторы спектра. Оптоэлектронная раздельная обработка сигналов, также представляется сложной, и требует наличия либо перестраиваемых лазерных излучателей, либо сложных систем спектральной фильтрациии, либо нескольких фотоприемников, либо, как вариант, системы матричных ПЗС-приемников. Все это приводит к появлению дополнительных источников погрешностей измерения параметров физических полей и снижению их точности в целом.

Прототипом изобретения является способ (см. Патент США №7463832 В2 «Метод и система компенсации тепловых смещений для оптических сетей», 398/196 МПК8 H04J 13/02, 09.08.2005), заключающийся в том, что генерируют пары сигналов заранее установленной близкой амплитуды со средней частотой, соответствующей определенной частоте полосы пропускания оптического датчика при заданном значении параметра физического поля, и разностной частотой, достаточно узкой, для того чтобы оба сигнала попали в указанную полосу пропускания, передают сгенерированную пару сигналов к оптическому датчику по первой оптической среде, принимают пропущенную через него пару сигналов, передаваемую по второй оптической среде, и определяют параметр физического поля, сравнивая разности амплитуд между сигналами пары, принятой после прохождения через оптический датчик, или сравнивая их амплитуды с амплитудами сигналов в сгенерированной паре, переданной к приемному устройству по третьей оптической среде.

Недостатком прототипа способа является необходимость использования сложной оптической системы для раздельного спектрального приема отдельных компонент пар сигналов, требующей, как правило, наличия узкополосных интерференционных фильтров, в свою очередь, обладающих температурной зависимостью спектральных характеристик. Оптоэлектронная раздельная обработка компонент, также представляется сложной и представляет собой обработку абсолютных амплитудных значений принятых сигналов, подверженную воздействию шумов и помех различной природы. Все это приводит к появлению дополнительных источников погрешностей измерения параметров физических полей и снижению их точности в целом.

Решаемая техническая задача заключается в повышении точности измерений, упрощении и удешевлении устройств для практической реализации способа измерения параметров физических полей.

Решаемая техническая задача в способе измерения параметров физических полей, заключающегося в том, что генерируют пару сигналов близкой амплитуды со средней частотой, соответствующей определенной частоте полосы пропускания оптического датчика при заданном значении параметра физического поля, и разностной частотой, достаточно узкой, для того чтобы оба сигнала попали в указанную полосу пропускания, передают сгенерированную пару сигналов к оптическому датчику по первой оптической среде, принимают пропущенную через оптический датчик и сгенерированную пары сигналов, передаваемые соответственно по второй и третьей оптическим средам, и определяют параметр физического поля, достигается тем, что определение параметра физического поля производят, измеряя разность фаз между огибающей биений сигналов сгенерированной пары и огибающей биений сигналов пары, прошедшей через оптический датчик.

В некоторых случаях генерируют пару сигналов одинаковой амплитуды со средней частотой, соответствующей центральной частоте полосы пропускания оптического датчика при заданном значении параметра физического поля, и разностной частотой, равной полуширине полосы пропускания оптического датчика.

На фиг.1 изображена структурная схема устройства для реализации способа измерения параметров физических полей.

На фиг.2 изображена зависимость разности фаз между огибающей биений сигналов сгенерированной пары и огибающей биений сигналов пары, прошедшей через оптический датчик, от обобщенной расстройки полосы пропускания оптического датчика для случая подачи на него пары сигналов одинаковой амплитуды со средней частотой, соответствующей центральной частоте его полосы пропускания при заданном значении параметра физического поля, и разностной частотой, равной полуширине указанной полосы пропускания.

Устройство для реализации способа измерения параметров физических полей (фиг.1, 2) содержит последовательно соединенные двухчастотный лазерный излучатель 1, оптический разветвитель 2, первый волоконно-оптический кабель 3, оптический датчик 4, второй волоконно-оптический кабель 5 и первый фотоприемник 6, второй фотоприемник 7, соединенный через третий волоконно-оптический кабель 8 со вторым выходом оптического разветвителя 2, а также контроллер 9 определения параметра физического поля. В него введен фазометр 10, при этом выходы первого 6 и второго 7 фотоприемников подключены соответственно к первому и второму входам фазометра 10, а выход фазометра 10 к входу контроллера 9 определения параметра физического поля. В различных случаях устройство может быть выполнено с использованием оптического датчика 4 на основе волоконной решетки Брэгга, или интерферометра Фабри-Перо, или тонкопленочного фильтра. Как правило, длина третьего волоконно-оптического кабеля 8 равна сумме длин первого 3 и второго 5 волоконно-оптических кабелей.

На фиг.2 изображена зависимость разности фаз между огибающей биений сигналов пары, сгенерированной двухчастотным лазерным излучателем 1, и огибающей биений сигналов пары, прошедшей через оптический датчик 4, от обобщенной расстроки полосы пропускания оптического датчика 4 для случая подачи на него пары сигналов одинаковой амплитуды со средней частотой, соответствующей центральной частоте его полосы пропускания при заданном значении параметра физического поля, и разностной частотой, равной полуширине указанной полосы пропускания.

Рассмотрим осуществление способа.

Для измерения параметров физических полей с помощью двухчастотного лазерного излучателя 1 генерируют пару сигналов близкой амплитуды со средней частотой, соответствующей определенной частоте полосы пропускания оптического датчика 4 при заданном значении параметра физического поля, и разностной частотой, достаточно узкой, для того чтобы оба сигнала попали в указанную полосу пропускания. Затем передают сгенерированную пару сигналов к оптическому датчику 4 через оптический разветвитель 2 по первой оптической среде, в качестве которой выбран первый волоконно-оптический кабель 3.

В сгенерированной паре сигналов, проходящей через оптический датчик 4, происходит изменение амплитуд отдельных составляющих в зависимости от направления и величины частотного смещения его полосы пропускания, вызванного приложенным физическим полем и однозначно определяемого параметром данного поля.

Далее с помощью первого фотоприемника 6 принимают пропущенную через оптический датчик 4 пару сигналов, передаваемую от него по второй оптической среде, в качестве которой выбран второй волоконно-оптический кабель 5. С помощью второго фотоприемника 7 принимают исходную сгенерированную пару сигналов, поступающую на его вход через второй выход оптического разветвителя 2 и третью оптическую среду, в качестве которой выбран третий волоконно-оптический кабель 8. На выходе фотоприемников 7 и 6 образуются сигналы, соответствующие огибающей биений сигналов пары, сгенерированной двухчастотным лазерным излучением 1, и огибающей биений сигналов пары, прошедшей через оптический датчик 4. Измерение разности фаз огибающей биений между сигналами пары, прошедшей через оптический датчик 4, и огибающей биений между сигналами пары, сгенерированной двухчастотным лазерным излучателем 1, производят в фазометре 10.

По полученному значению и заложенным в контроллере 9 определения параметра физического поля зависимостям разности фаз между огибающей биений сигналов пары, сгенерированной двухчастотным лазерным излучателем 1, и огибающей биений сигналов пары, прошедшей через оптический датчик 4, от обобщенной расстройки полосы пропускания оптического датчика 4 (фиг.2) и зависимости направления и величины частотного смещения полосы пропускания оптического датчика 4 от параметров физического поля однозначно определяют измеряемый параметр физического поля.

На фиг.2 изображена зависимость разности фаз между огибающей биений сигналов пары, сгенерированной двухчастотным лазерным излучателем 1, и огибающей биений сигналов пары, прошедшей через оптический датчик 4, от обобщенной расстройки полосы пропускания оптического датчика 4. Зависимость построена для случая подачи на оптический датчик 4 сгенерированной двухчастотным лазерным излучателем 1 пары сигналов одинаковой амплитуды со средней частотой, соответствующей центральной частоте его полосы пропускания при заданном значении параметра физического поля, и разностной частотой, равной полуширине указанной полосы пропускания. В этом случае обеспечиваются оптимальные по чувствительности и крутизне измерительного преобразования параметры устройства.

В соответствии с фиг.2 средняя обобщенная расстройка полосы пропускания оптического датчика 4 равна «0» и соответствует его центральной частоте и средней частоте сгенерированной двухчастотным лазерным излучателе 1 пары сигналов. Расстройка между составляющими сгенерированной пары сигналов равна «2» и соответствует полуширине полосы пропускания оптического датчика 4. При других значения расстройки между составляющими сгенерированной пары сигналов меняются значения разности фаз огибающих биений, но не меняется характер зависимости.

При заданном (калибровочном) параметре физического поля средняя частота сгенерированной пары сигналов будет соответствовать расстройке «0», а компоненты пары будут расположены одна с расстройкой «-1», другая с расстройкой «1». Их амплитуды будут равны, а разность фаз огибающих биений между сгенерированной и прошедшей через оптический датчик 4 парами сигналов будет равна нулю (фиг.2). При частотном смещении полосы пропускания оптического датчика 4 в зависимости от изменений параметра физического поля положение компонент сгенерированной пары сигналов относительно полосы пропускания будет меняться и будет меняться разность фаз огибающих биений между сгенерированной и прошедшей через оптический датчик 4 парами сигналов в соответствии с представленной зависимостью.

При известной зависимости величины расстройки полосы пропускания оптического датчика от значения параметра приложенного физического поля (например, для волоконно-оптической решетки Брэгга - типичные значения расстройки в зависимости от температуры ~0.01 нм/К и от относительного удлинения световода ~103ΔL/L, (нм) (С.А. Васильев, О.И. Медведков, И.Г. Королев, Е.М. Дианов, Фотоиндуцированные волоконные решетки показателя преломления и их применения, Фотон-Экспресс-Наука, 6, стр.163-183, 2004) определяют значение параметра приложенного физического поля.

Таким образом, по полученной в фазометре 10 информации о разности фаз между огибающей биений сигналов пары, сгенерированной двухчастотным лазерным излучателем 1, и огибающей биений сигналов пары, прошедшей через оптический датчик 4, определяют обобщенную расстройку полосы пропускания оптического датчика 4 и далее по зависимости обобщенной расстройки полосы пропускания оптического датчика 4 от параметра приложенного физического поля в контроллере 9 определяют параметр измеряемого физического поля.

Устройство для реализации способа измерения параметров физических полей может быть реализовано с использованием различных типов оптических датчиков 4, конкретный вид которых определяется в зависимости от решаемых задач и характера приложенного физического поля. Это могут быть волоконная решетка Брэгга, интерферометр Фабри-Перо, тонкопленочный фильтр.

Поскольку существенным для реализации способа является измерение фазовых соотношений, выравнивание фазовых задержек при распространении пар сигналов по волоконно-оптическим кабелям 3, 5, 8 может быть достигнуто использованием в устройстве третьего волоконно-оптического кабеля 8 с длиной, равной сумме длин первого 3 и второго 5 волоконно-оптических кабелей.

Устройство для реализации способа измерения параметров физических полей может быть создано на следующих элементах, рассчитанных на работу на длине волны 1300 нм:

- двухчастотный лазерный излучатель 1 - лазерный диод IDL10S-1300 НИИ «Полюс»;

- оптический разветвитель 2 - оптический разветвитель ТЕЛЕКОМ-ТЕСТ 1×2 фирмы ООО «Производственно-торговая компания СОКОЛ»;

- волоконно-оптические кабели 3, 5, 8 - эталонные шнуры или кабели ТЕЛЕКОМ-ТЕСТ фирмы ООО «Производственно-торговая компания СОКОЛ»;

- оптический датчик 4 - волоконная решетка Брэгга, интерферометр Фабри-Перо, тонкопленочные фильтры ООО ИП «НЦВО-Фотоника»;

- фотоприемник 6, 7 - высокоскоростные волоконно-оптические InGaAs/InP микроволновые широкополосные PIN фотоприемники (приемные модули) НПФ «ДиЛаз», например, ДФДМШ-40-16;

- контроллер 9 - микропроцессорный контроллер на базе чипов фирм Atmel, Microchip и т.д.;

- фазометр 10 - микроволновый фазометр в интегральном исполнении фирмы Booton, компании Вектор.

При реализации способа для построения датчика параметров физических полей все указанные блоки генерации, приема и обработки сигналов могут быть выполнены на едином кристалле или в интегральном исполнении.

По сравнению с существующими способами измерения параметров физических полей с помощью оптических датчиков, включая датчики в интегральном и волоконно-оптическом исполнении, у которых существует зависимость смещения по частоте их спектральной характеристики в зависимости от параметров приложенных физических полей, предложенный способ двухчастотного зондирования оптического датчика с измерением параметра по разности фаз огибающих биений опорного и измерительного сигналов не требует:

во-первых, применения сложных оптических систем определения спектрального смещения или выделения отдельных спектральных компонент для их дальнейшего сравнения, что значительно снижает стоимость устройств;

во-вторых, применения для анализа оптических сигналов избирательных элементов, которые обладают собственной зависимостью от изменений измеряемых физических полей;

в-третьих, использования амплитудного анализа измеряемых величин, который подвержен значительному влиянию шумов и помех различной природы.

Испытания опытного устройства для реализации способа измерения параметров физических полей были проведены на оптических датчиках, выполненных на волоконных решетках Брэгга, изготовленных в НЦВО ИОФ РАН (Москва), откалиброваны на оптических анализаторах спектра ANDO там же, калибровка подтверждена на оптических анализаторах спектра ANDO в лаборатории Поволжского государственного университета телекоммуникаций и информатики (Самара), и показали, что использование способа двухчастотного зондирования оптического датчика с измерением параметра по разности фаз огибающих биений опорного и измерительного сигналов, позволило достичь погрешности измерения температуры 0,01°C в диапазоне ±60°C. При этом погрешность измерения определялась в основном погрешностью АЦП контроллера определения температуры.

Все это позволяет говорить о достижении решения поставленной технической задачи - повышении точности измерений, упрощении и удешевлении устройств для практической реализации способа измерения параметров физических полей.


СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ФИЗИЧЕСКИХ ПОЛЕЙ
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ФИЗИЧЕСКИХ ПОЛЕЙ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 25.
10.09.2013
№216.012.68ec

Способ обработки информации в гидроакустической антенне

Использование: изобретение относится к области гидроакустики, а именно к способу обработки информации в гидроакустической антенне. Сущность: рассматривается способ снижения структурной составляющей помехи в сигнале гидроакустического приемника, жестко закрепленного на корпусе антенны,...
Тип: Изобретение
Номер охранного документа: 0002492507
Дата охранного документа: 10.09.2013
10.10.2013
№216.012.741b

Способ измерения параметров физических полей

Изобретение относится к оптической измерительной технике и может быть использовано для измерения параметров физических полей. Согласно способу генерируют пару сигналов близкой амплитуды со средней частотой, соответствующей определенной частоте полосы пропускания оптического датчика при заданном...
Тип: Изобретение
Номер охранного документа: 0002495380
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.7af8

Приемная гидроакустическая антенна и способ оценки амплитудно-частотных характеристик гидроакустических приемников

Изобретение относится к области гидроакустики и может быть применено для диагностики чувствительных элементов гидроакустических антенн. Технический результат - возможность оперативного контроля работоспособности чувствительных элементов антенны и построение амплитудно-частотных характеристик...
Тип: Изобретение
Номер охранного документа: 0002497142
Дата охранного документа: 27.10.2013
10.04.2014
№216.012.b729

Способ измерения параметров физических полей и устройство для его осуществления

Изобретение относится к технике оптических измерений и может быть использовано для измерения параметров физических полей (температура) с помощью оптических датчиков. Согласно заявленному предложению для определения параметра физического поля находят разность между амплитудами огибающих. По...
Тип: Изобретение
Номер охранного документа: 0002512616
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.bd1f

Способ распознавания ложных целей, вызванных собственными помехами подвижного носителя

Изобретение относится к областям гидроакустики и радиолокации и может быть применено в автоматических системах вторичной обработки радиолокационных и гидроакустических станций, установленных на подвижном носителе. В нем рассматривается способ снижения вероятности ложной тревоги за счет...
Тип: Изобретение
Номер охранного документа: 0002514154
Дата охранного документа: 27.04.2014
27.05.2014
№216.012.c92a

Способ диагностики технического состояния авиационных газотурбинных двигателей

Способ предназначен для испытания, доводки, диагностики и эксплуатации турбореактивных реактивных двигателей, а конкретно для диагностики технического состояния ГТД по акустическим и газодинамическим параметрам потока. Сравнивают поля акустических и газодинамических параметров потока скорости и...
Тип: Изобретение
Номер охранного документа: 0002517264
Дата охранного документа: 27.05.2014
27.06.2014
№216.012.d5e7

Способ измерения характеристик резонансных структур и устройство для его осуществления

Изобретение относится к технике резонансных радиотехнических измерений. Способ включает генерацию зондирующего колебания, подачу на вход и прием с выхода резонансной структуры, перестройку частоты зондирующего колебания в диапазоне измерений, соответствующем полосе частот резонансной структуры,...
Тип: Изобретение
Номер охранного документа: 0002520537
Дата охранного документа: 27.06.2014
27.07.2014
№216.012.e450

Винтовой забойный двигатель

Изобретение относится к забойным двигателям и может быть использовано для бурения нефтяных, газовых и других скважин. Винтовой забойный двигатель состоит из двух секций - верхней и нижней, каждая из которых включает в свой состав винтовые рабочие органы, выполненные на базе многозаходного...
Тип: Изобретение
Номер охранного документа: 0002524238
Дата охранного документа: 27.07.2014
20.10.2014
№216.012.feb1

Способ измерения акустических характеристик газовых струй на срезе выходных устройств гтд и устройство для его осуществления

Группа изобретений относится к области измерительной техники, в частности к способу и устройству диагностирования газотурбинных двигателей по изменению аэроакустических характеристик потока. Способ измерения акустических характеристик газовых струй на срезе выходных устройств газотурбинных...
Тип: Изобретение
Номер охранного документа: 0002531057
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.0103

Бортовое устройство оценки качества топлива

Изобретение относится к области исследования или анализа веществ и материалов путем определения их химических или физических свойств, в частности к рефрактометрическим датчикам оценки качества топлива. Устройство содержит источник оптического излучения, первый отрезок оптического волокна,...
Тип: Изобретение
Номер охранного документа: 0002531657
Дата охранного документа: 27.10.2014
Показаны записи 1-5 из 5.
27.05.2013
№216.012.45cb

Устройство для увеличения пропускной способности волоконно-оптической линии передачи

Изобретение относится к области волоконно-оптической техники связи и может быть использовано при реконструкции протяженных волоконно-оптических линий передачи для увеличения их пропускной способности. Техническим результатом является расширение области применения. Эта сущность достигается тем,...
Тип: Изобретение
Номер охранного документа: 0002483444
Дата охранного документа: 27.05.2013
27.09.2013
№216.012.708a

Способ преобразования цветового пространства

Изобретение относится к преобразованию цветового пространства. За исходное цветовое пространство могут использоваться известные цветовые системы CIE 1931 г. (x, y), CIE 1960 г. (u, v), CIELAB и другие цветовые системы. Техническим результатом является расширение функциональных возможностей за...
Тип: Изобретение
Номер охранного документа: 0002494461
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.741b

Способ измерения параметров физических полей

Изобретение относится к оптической измерительной технике и может быть использовано для измерения параметров физических полей. Согласно способу генерируют пару сигналов близкой амплитуды со средней частотой, соответствующей определенной частоте полосы пропускания оптического датчика при заданном...
Тип: Изобретение
Номер охранного документа: 0002495380
Дата охранного документа: 10.10.2013
10.11.2013
№216.012.8045

Устройство для увеличения пропускной способности волоконно-оптической линии передачи

Изобретение относится к области волоконно-оптической техники связи и может быть использовано при реконструкции протяженных волоконно-оптических линий передачи. Устройство содержит строительные длины оптического кабеля, оптические волокна которых соединены последовательно в муфтах и имеют...
Тип: Изобретение
Номер охранного документа: 0002498510
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8ea0

Устройство для информационной защиты распределенной случайной антенны

Изобретение относится к области защиты конфиденциальной информации и может быть использовано для защиты радиотехнических систем, объединенных термином «распределенные случайные антенны». Сущность изобретения - повышение эффективности защиты распределенной случайной антенны по каналам утечки...
Тип: Изобретение
Номер охранного документа: 0002502195
Дата охранного документа: 20.12.2013
+ добавить свой РИД