×
20.08.2013
216.012.60f2

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ РАБОТАЮЩИХ ИНТЕРВАЛОВ И ИСТОЧНИКОВ ОБВОДНЕНИЯ В ГОРИЗОНТАЛЬНОЙ НЕФТЯНОЙ СКВАЖИНЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологиям нефтедобычи, а именно к способам проведения, интерпретации и анализа результатов промыслово-геофизических исследований в горизонтальных скважинах. Технический результат направлен на повышение точности определения работающих интервалов и источников обводнения в условиях эксплуатации горизонтальных скважин. Способ включает доставку в окончание скважины хвостовика с набором пакеров и штуцеров, глубинного геофизического комплексного прибора на кабеле. Закачку в скважину жидкости, содержащей термоконтрастирующие и нейтроноконтрастирующие вещества, и периодическое выполнение замеров. Закачку контрастной жидкости производят несколькими порциями, объемы которых составляют не менее внутреннего объема горизонтальной части ствола, поочередно подключая к работе разные, перекрытые пакерами, интервалы пласта путем управления открытием и закрытием пропускных штуцеров. В качестве контрастной жидкости вместо воды используют нефть. Движение контрастной жидкости по стволу при закачке отслеживают с помощью модулей гамма-каротажа, резистивиметра или термокондуктивного расходомера. 4 з.п. ф-лы, 6 ил.

Изобретение относится к технологиям нефтедобычи, а именно к способам проведения, интерпретации и анализа результатов промыслово-геофизических исследований в горизонтальных скважинах (ГС).

Известны технологии проведения промыслово-геофизических исследований, включающие доставку в ствол скважины глубинного геофизического прибора и последующую регистрацию температуры и давления (например, заявки на изобретения РФ №2004100732, 08.01.2004 или №2005127125, 29.08.2005).

В случае исследований ГС этими способами невозможно оценить профиль распределения по стволу расходных фазовых параметров и выявить место преимущественного поступления воды в ствол, из-за того, что скважина имеет синусоидальную траекторию, компоненты продукции скважины расслаиваются в стволе под действием гравитации и ствол скважины заполняется неравномерно в зависимости от угла его наклона. Поэтому при исследовании ГС этими способами наблюдается несоответствие истинных и расходных профилей притока, что, в свою очередь, не позволяет проводить эффективные ремонтно-восстановительные работы в скважине.

Известен способ контроля продуктивности углеводородосодержащих интервалов (АС СССР №1805213, 27.01.1989), при котором в скважину закачивают жидкость, содержащую термоконтрастирующие и нейтронноконтрастирующие вещества, с помощью которых по термическим и нейтронным аномалиям вдоль ствола скважины судят об обводненности и продуктивности пласта.

Однако эффективность данного способа в горизонтальной скважине является низкой. Это связано, во-первых, с невозможностью обеспечить равномерное поглощение закачиваемой жидкости из-за большой длины ствола, и, во-вторых, со сложностью в определении интервала времени, когда жидкость достигнет исследуемого интервала.

Указанный недостаток может быть устранен при применении способа одновременно-раздельной и поочередной эксплуатации и освоения нескольких пластов одной скважиной (патент РФ №2350742, 21.05.2007). Данный способ является наиболее близким к предлагаемому и включает доставку в окончание скважины хвостовика с набором пакеров и пропускных штуцеров между ними, что способствует выравниванию профиля притока (поглощения). Однако качество выравнивания не всегда бывает удовлетворительным из-за невозможности непосредственной дистанционной (в процессе проведения работ на скважине) регулировки расхода и отсутствия оперативного контроля распределения притекающего (поглощаемого флюида) по длине хвостовика.

Задачей изобретения является повышение точности определения работающих интервалов и источников обводнения в условиях эксплуатации ГС.

Для решения указанной задачи предлагается способ, включающий доставку в окончание скважины хвостовика с набором, пакеров и штуцеров, глубинною геофизического комплексного прибора на кабеле, закачку в скважину жидкости, содержащей термоконтрастирующие и нейтронноконтрастирующие вещества, и периодическое выполнение замеров на режимах: закачки, отбора продукции скважины и остановки, при этом закачку контрастной жидкости производят несколькими порциями, объемы которых составляют не менее внутреннего объема горизонтальной части ствола, что обеспечивается за счет поочередной работы перекрытых пакерами интервалов пласта, управляемых путем открытия и закрытия пропускных штуцеров.

Предлагаемый способ имеет следующие дополнительные особенности.

1) В качестве контрастной жидкости вместо воды используют нефть, что дает возможность сохранить первоначальные свойства нефтенасыщенного коллектора и обеспечить более выраженный эффект выделения обводненных интервалов.

2) С целью последующей интерпретации учет движения контрастной жидкости по стволу при закачке отслеживают с помощью модулей гамма-каротажа, резистивиметра или термокондуктивного расходомера.

3) Потенциальные интервалы обводнения и интенсивности поглощения в пласт оценивают с помощью модулей гамма-каротажа, термометра и импульсного (или стационарного) нейтронного каротажа;

4) Для измерений при закачке, остановке или вызове притока вместо геофизического прибора на кабеле применяют распределенный оптоволоконный датчик теплового поля.

На представленных иллюстрациях показаны схемы работы по способам, выбранным в качестве аналогов и предлагаемого способа.

Фиг.1 иллюстрирует случай, когда в горизонтальном стволе, в который производится закачка контрастной жидкости, отсутствует специальное оборудование.

На схеме обозначены: 1 - насосно-компрессорные трубки, 2 - насос, 3 - ствол скважины, в который опущен хвостовик с фильтром, 4 - пласт, I - распределение контрольного геофизического параметра по длине ствола, свидетельствующее, что контрастная жидкость распределяется по стволу и поступает в пласт неравномерно.

Фиг.2 соответствует случаю, когда в окончание ствола скважины доставлен хвостовик с набором пакеров и штуцеров.

На схеме обозначены: 1 - насосно-компрессорные трубки, 2 - насос, 3 - ствол скважины, в который опущен хвостовик с фильтром, 4 - пласт, 5 - пакеры, разделяющие ствол скважины на секции, 6', 6'', 6''' - штуцеры (мандрели) соответственно первой, второй и третьей секций, находящиеся при технологическом режиме работы скважины в открытом положении, 7 - распределение контрольного геофизического параметра по длине горизонтального ствола.

Предварительной регулировкой открытия штуцеров достигают более равномерного распределения контрастной жидкости по длине ствола. Однако качество выравнивания неудовлетворительно из-за невозможности непосредственной дистанционной регулировки расхода и отсутствия оперативного контроля распределения флюида по длине хвостовика.

Степень выравнивания зависит от особенностей настройки мандрелей. Поскольку оперативный контроль распределения флюида по длине хвостовика отсутствует, выравнивание расхода также является неудовлетворительным, что иллюстрируется неравномерным по пластам распределением контрольного геофизического параметра (7 на фиг.2).

Фиг.3 иллюстрирует реализацию заявляемого способа.

На схеме обозначены: 1 - насосно-компрессорные трубки, 2 - насос, 3 - ствол скважины, в который опущен хвостовик с фильтром, 4 - пласт, 5 - пакеры, разделяющие ствол скважины на секции, 6', 6''' - мандрели первой и третьей секций, находящиеся при технологическом режиме работы скважины в закрытом положении, 6" - мандрели второй (средней) секции, 7 - система геофизических приборов на кабеле, 8-16 - распределение контрольных геофизических параметров по длине ствола.

В этом случае к работе поочередно подключают разные части пласта. Состояние мандрелей оперативно регулируют с поверхности по результатам геофизических измерений.

В данном примере ствол разделен на три секции. Мандрели первой и третьей секции (6',6''' на фиг.3) закрыты. Мандрели второй (средней) секции (6'' на фиг.3) открыты. Именно через них осуществляется сообщение пласта и ствола скважины. Дистанционный контроль движения констрастной жидкости осуществляют с помощью системы геофизических приборов на кабеле, размещаемых под приемом насоса (7 на фиг.3).

Таким образом, регулируя движение контрастной жидкости, обеспечивают необходимое качество ее выравнивания.

В качестве контрастной жидкости используют нефть, что повышает точность контроля движения контрастной жидкости с помощью геофизических приборов. Точность контроля увеличивается также, за счет того, что при каждом измерении работает только одна из мандрелей, а не все три одновременно.

Движение нефти при закачке отслеживается с помощью методов гамма-каротажа (для привязки к разрезу), резистивиметра или термокондуктивного расходомера.

Включение в комплекс методов геофизических исследований гамма каротажа связано с небходимостью детальной привязки к разрезу горизонтальной части ствола (кривая 8 на фиг.3).

Включение в комплекс геофизических исследований резистивиметра связано с необходимостью контролировать интервал движения контрастной жидкости в стволе. Контроль возможен из-за аномально низкой проводимости нефти по сравнению с другими заполнителями ствола и пластовыми флюидами (кривая 9 на фиг.3).

Включение в комплекс геофизических исследований термоанемометра связано с необходимостью контролировать интервал поступления контрастной жидкости в пласт (кривая 10 на фиг.3).

Потенциальные интервалы обводнения и интенсивности поглощения контрастной жидкости в пласт оценивают в остановленной скважине с помощью модулей гамма каротажа (для привязки к разрезу), термометра и импульсного (или стационарного) нейтронного каротажа.

Включение в комплекс геофизических исследований термометра и нейтронного каротажа связано с необходимостью контролировать работающие толщины пласта, поглотившие контрастную жидкость (кривые 11-15 и 16 на фиг.3).

Стандартная технология термических исследований предусматривает серию дискретных измерений, отличающихся временем, прошедшим после остановки скважины и режимом работы скважины. В примере практической реализации способа это фоновая термограмма (11), термограмма в процессе закачки (12), простаивающей после закачки скважине (13), в процессе отбора (14) и после прекращения отбора (15).

Эффективность данного метода термических исследований в условиях применения предлагаемого способа низка из-за слабого различия между термограммами вследствие малой продолжительности закачки (отбора). Поэтому для этой цели используют распределенный оптоволоконный датчик. Преимущество данного датчика в том, что температура может измеряться практически непрерывно, то есть с максимальной достоверностью.

В результате за счет обеспечения более равномерной работы ствола и контроля притока (поглощения) повышается точность определения работающих интервалов и источников обводнения в условиях эксплуатации ГС.

Техническая возможность проведения исследований в горизонтальном стволе и управления секциями по предлагаемому способу подтверждается работой способов, выбранных в качестве аналогов и прототипа.

Эффективность отсечения водоносных интервалов, обнаруженных путем поочередного подключения к работе разных частей пластов, разделенных секциями, подтверждена результатами цифрового гидродинамического моделирования.

На фиг.4 представлены геометрические особенности модели. На рисунке обозначены: 1 - ствол моделируемой эксплуатационной горизонтальной скважины, 2 - распределение коллекторов во вскрытом скважиной пласте (интенсивность цвета характеризует величину коэффициента пористости), I, II, III - интервалы поочередной раздельной закачки, оборудованные согласно заявляемому способу.

Фиг.5 иллюстрирует эффект отсечения водоносного интервала в подошве залежи. На данном рисунке: 1 и 2 - соответственно дебит жидкости и нефти при стандартном способе эксплуатации скважины, 1* и 2* - то же при отсечении интервалов, диагностированных, как водоносные. Видно, что в последнем случае производительность скважины падает во времени менее резко, повышается количество добытой нефти и снижается дебит жидкости.

При этом падает обводненность продукции. Этот факт иллюстрирует фиг.6, где 1 и 1* обводненности до и после интервалов притока воды.


СПОСОБ ОПРЕДЕЛЕНИЯ РАБОТАЮЩИХ ИНТЕРВАЛОВ И ИСТОЧНИКОВ ОБВОДНЕНИЯ В ГОРИЗОНТАЛЬНОЙ НЕФТЯНОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ РАБОТАЮЩИХ ИНТЕРВАЛОВ И ИСТОЧНИКОВ ОБВОДНЕНИЯ В ГОРИЗОНТАЛЬНОЙ НЕФТЯНОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ РАБОТАЮЩИХ ИНТЕРВАЛОВ И ИСТОЧНИКОВ ОБВОДНЕНИЯ В ГОРИЗОНТАЛЬНОЙ НЕФТЯНОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ РАБОТАЮЩИХ ИНТЕРВАЛОВ И ИСТОЧНИКОВ ОБВОДНЕНИЯ В ГОРИЗОНТАЛЬНОЙ НЕФТЯНОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ РАБОТАЮЩИХ ИНТЕРВАЛОВ И ИСТОЧНИКОВ ОБВОДНЕНИЯ В ГОРИЗОНТАЛЬНОЙ НЕФТЯНОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ РАБОТАЮЩИХ ИНТЕРВАЛОВ И ИСТОЧНИКОВ ОБВОДНЕНИЯ В ГОРИЗОНТАЛЬНОЙ НЕФТЯНОЙ СКВАЖИНЕ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 44.
21.11.2018
№218.016.9f08

Способ прогнозирования морфометрических параметров русловых тел (палеоканалов)

Изобретение относится к способам геологической интерпретации сейсмических данных. Сущность: картируют палеорусло посредством выполнения объектно-ориентированной интерпретации. Анализируют форму излучины по сейсмообразу путем фиксирования формы излучины в виде криволинейной линии....
Тип: Изобретение
Номер охранного документа: 0002672766
Дата охранного документа: 19.11.2018
13.01.2019
№219.016.af59

Установка для отбензинивания попутного нефтяного газа

Изобретение относится к холодильной технике, а именно к устройствам для разделения газов с помощью обработки холодом, и может быть использовано на нефтяных месторождениях для создания мобильных модульных комплексов для разделения попутного нефтяного газа на газовый конденсат, который может быть...
Тип: Изобретение
Номер охранного документа: 0002676829
Дата охранного документа: 11.01.2019
14.03.2019
№219.016.df36

Способ и инструмент для выбора параметров эксплуатации скважин на этапе заводнения зрелых нефтяных месторождений

Группа изобретений относится к разработке зрелых нефтяных месторождений, находящихся на третьей и четвертой стадиях разработки и, в частности, к выбору параметров эксплуатации скважин при добыче углеводородов на таких месторождениях. Технический результат – повышение коэффициента извлечения...
Тип: Изобретение
Номер охранного документа: 0002681778
Дата охранного документа: 12.03.2019
26.06.2019
№219.017.9256

Система выбора адаптации плана бурения куста скважин на стадии опр в условиях неопределенностей

Изобретение относится к разработке месторождения полезных ископаемых. Техническим результатом является повышение продуктивности недавно разработанных месторождений полезных ископаемых, ускоренная адаптация планов разработки месторождений полезных ископаемых, надежное принятие решений,...
Тип: Изобретение
Номер охранного документа: 0002692379
Дата охранного документа: 24.06.2019
02.07.2019
№219.017.a2d0

Способ использования углеводородного газа и модульная компрессорная установка для его осуществления

Изобретение относится к нефтегазодобывающей промышленности, к системам сбора, подготовки и транспортировки низконапорного газа. Технический результат достигается за счет решения задач поддержания постоянного избыточного давления всасывания, распределением газовых потоков между оборудованием...
Тип: Изобретение
Номер охранного документа: 0002692859
Дата охранного документа: 28.06.2019
25.07.2019
№219.017.b865

Способ определения геометрии трещин при гидроразрыве пласта (грп)

Изобретение относится к нефтегазовой области, операциям гидроразрыва, в частности к средствам идентификации трещин. Техническим результатом является повышение точности определения геометрии трещины ГРП, определения ее длин на разных высотах. Способ определения геометрии трещин при гидроразрыве...
Тип: Изобретение
Номер охранного документа: 0002695411
Дата охранного документа: 23.07.2019
02.09.2019
№219.017.c65d

Способ получения сверхтвердого материала и сверхтвердый материал на основе пентаборида вольфрама

Изобретение относится к области синтеза новых материалов и может быть использовано в деятельности, связанной с добычей полезных ископаемых, с обрабатывающими производствами, с медицинской промышленностью, для элементов конструкций и механизмов, требующих высокой износостойкости поверхностей....
Тип: Изобретение
Номер охранного документа: 0002698827
Дата охранного документа: 30.08.2019
02.10.2019
№219.017.cc8a

Способ количественной оценки профиля притока в горизонтальных нефтяных скважинах с многостадийным грп

Изобретение относится к нефтедобыче, а именно к контролю разработки нефтяных месторождений промыслово-геофизическими методами исследований скважин (ПГИ), и может быть использовано для проведения и интерпретации промыслово-геофизических исследований эксплуатационных горизонтальных нефтяных...
Тип: Изобретение
Номер охранного документа: 0002701272
Дата охранного документа: 25.09.2019
02.10.2019
№219.017.cdba

Способ прогноза насыщения коллекторов на основе комплексного анализа данных срр, 3сб, гис

Изобретение относится к комбинированным способам геофизических исследований при поиске и разведке месторождений углеводородов и может быть использовано для прогнозирования и оценки свойств коллекторов по результатам проведения сейсморазведки, электроразведки и геофизических исследований...
Тип: Изобретение
Номер охранного документа: 0002700836
Дата охранного документа: 23.09.2019
05.10.2019
№219.017.d288

Способ количественной оценки профиля притока в мало- и среднедебитных горизонтальных нефтяных скважинах с мгрп

Изобретение относится к нефтедобыче, а именно к контролю разработки нефтяных месторождений промыслово-геофизическими методами (ПГИ). Изобретение может быть использовано для проведения долговременного мониторинга профиля притока и приемистости в мало- и среднедебитных горизонтальных нефтяных...
Тип: Изобретение
Номер охранного документа: 0002702042
Дата охранного документа: 03.10.2019
Показаны записи 11-20 из 21.
10.07.2019
№219.017.ace5

Способ мониторинга многопластовой скважины

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для мониторинга многопластовой скважины. Техническим результатом является повышение качества и безопасности многопластовой добычи в скважине путем выявления пластовых перетоков и их устранение до начала добычи в...
Тип: Изобретение
Номер охранного документа: 0002387824
Дата охранного документа: 27.04.2010
13.07.2019
№219.017.b3a0

Устройство для добычи нефти и газа

Изобретение относится к нефтегазовой промышленности и используется для добычи нефти и газа из одной скважины как при однопластовой, так и при многопластовой добыче. Техническим результатом является уменьшение рабочего давления жидкости, подаваемой в каждый струйный насос, что повышает...
Тип: Изобретение
Номер охранного документа: 0002398101
Дата охранного документа: 27.08.2010
17.07.2019
№219.017.b575

Установка для глубоководного бурения и способ глубоководного бурения

Группа изобретений относится к области глубоководного бурения и может быть использована при структурно-картировочном, поисковом и разведочном бурении. На подготовительном этапе, предусматривающем спуск забойного механизма, бурение под кондуктор, его установку и цементирование и установку...
Тип: Изобретение
Номер охранного документа: 0002694669
Дата охранного документа: 16.07.2019
02.10.2019
№219.017.cc8a

Способ количественной оценки профиля притока в горизонтальных нефтяных скважинах с многостадийным грп

Изобретение относится к нефтедобыче, а именно к контролю разработки нефтяных месторождений промыслово-геофизическими методами исследований скважин (ПГИ), и может быть использовано для проведения и интерпретации промыслово-геофизических исследований эксплуатационных горизонтальных нефтяных...
Тип: Изобретение
Номер охранного документа: 0002701272
Дата охранного документа: 25.09.2019
05.10.2019
№219.017.d288

Способ количественной оценки профиля притока в мало- и среднедебитных горизонтальных нефтяных скважинах с мгрп

Изобретение относится к нефтедобыче, а именно к контролю разработки нефтяных месторождений промыслово-геофизическими методами (ПГИ). Изобретение может быть использовано для проведения долговременного мониторинга профиля притока и приемистости в мало- и среднедебитных горизонтальных нефтяных...
Тип: Изобретение
Номер охранного документа: 0002702042
Дата охранного документа: 03.10.2019
17.10.2019
№219.017.d711

Система долговременного распределенного мониторинга профиля притока в горизонтальной скважине, оборудованной эцн

Изобретение относится к нефтедобывающей промышленности, в частности к системе, устройству и способу для измерения и контроля эксплуатационных параметров горизонтальных нефтяных скважин, оборудованных электроцентробежным насосом (ЭЦН). Система долговременного распределенного мониторинга профиля...
Тип: Изобретение
Номер охранного документа: 0002703055
Дата охранного документа: 15.10.2019
24.10.2019
№219.017.da47

Способ оценки межпластовых внутриколонных перетоков в скважине

Изобретение относится к нефтедобыче, а именно к контролю разработки нефтяных месторождений промыслово-геофизическим методами (ПГИ). Оно может быть использовано для диагностики и предупреждения неравномерной выработки многопластовых залежей низкой проницаемости мониторинга профиля с целью...
Тип: Изобретение
Номер охранного документа: 0002704068
Дата охранного документа: 23.10.2019
29.11.2019
№219.017.e77d

Способ оценки профиля фазовой проницаемости в нефтяных и газовых эксплуатационных скважинах

Изобретение относится к области нефтедобывающей промышленности и предназначено для определения проницаемости продуктивных интервалов, вскрывающих низкопроницаемые коллекторы. Технической результат заключается в получение глубинного профиля достоверных значений фазовых проницаемостей, пригодных...
Тип: Изобретение
Номер охранного документа: 0002707311
Дата охранного документа: 26.11.2019
29.06.2020
№220.018.2c78

Способ количественной оценки профиля и состава притока в малодебитных обводненных нефтяных скважинах

Изобретение относится к нефтедобывающей промышленности, в частности к способам определения фазового профиля притока и устройствам для измерения и контроля эксплуатационных параметров малодебитной нефтяной скважины. Техническим результатом является количественная оценка профиля расходных...
Тип: Изобретение
Номер охранного документа: 0002724814
Дата охранного документа: 25.06.2020
31.07.2020
№220.018.3a6f

Способ диагностики и количественной оценки непроизводительной закачки в нагнетательных скважинах с нестабильными трещинами авто-грп

Изобретение относится к нефтедобыче и может быть применено для проведения, интерпретации и анализа результатов промыслово-геофизических и гидродинамических исследований в нагнетательных скважинах с целью последующего обоснования мероприятий по предупреждению и устранению непроизводительной...
Тип: Изобретение
Номер охранного документа: 0002728032
Дата охранного документа: 28.07.2020
+ добавить свой РИД