×
31.07.2020
220.018.3a6f

Результат интеллектуальной деятельности: Способ диагностики и количественной оценки непроизводительной закачки в нагнетательных скважинах с нестабильными трещинами авто-ГРП

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтедобыче и может быть применено для проведения, интерпретации и анализа результатов промыслово-геофизических и гидродинамических исследований в нагнетательных скважинах с целью последующего обоснования мероприятий по предупреждению и устранению непроизводительной закачки. Способ оценки непроизводительной закачки в нагнетательной скважине включает проведение закачки рабочей жидкости в нагнетательную скважину с осуществлением авто-ГРП, определение расхода рабочей жидкости (Q). Последующую остановку нагнетательной скважины, регистрацию кривой падения давления (КПД) и определение кажущейся проводимости перфорированных пластов (kh') на основе определенного на предшествующем этапе расхода рабочей жидкости (Q) и КПД. Последующую закачку рабочей жидкости в нагнетательную скважину при давлении, при котором трещина авто-ГРП закрыта, регистрацию кривой стабилизации давления (КСД), определение расхода рабочей жидкости (Q), оценку истинной проводимости перфорированных пластов (kh) на основе КСД и расхода рабочей жидкости (Q). Определение расхода рабочей жидкости (Q), поступающей в процессе закачки в перфорированные пласты, на основе Q, kh и kh'; определение расхода рабочей жидкости (Q) непроизводительной закачки на основе Q и Q. Техническим результатом изобретения является повышение точности определения непроизводительной закачки нагнетательной скважины, в частности, в случае подключения трещиной дополнительных невскрытых перфорацией толщин вне зависимости от их энергетического состояния (давления в пласте). 3 н. и 18 з.п. ф-лы, 4 ил.

Изобретение относится к нефтедобыче и может быть применено для проведения, интерпретации и анализа результатов промыслово-геофизических и гидродинамических исследований в нагнетательных скважинах с целью последующего обоснования мероприятий по предупреждению и устранению непроизводительной закачки.

Ведущую роль в диагностике непроизводительной закачки играют промыслово-геофизические исследования, в частности расходометрия скважин [Техническая инструкция по проведению геофизических исследований и работ на кабеле в нефтяных и газовых скважинах. М.: Минэнерго России 2001. - 271 с.]. Этот метод предполагает регистрацию профилей скорости потока флюида в стволе с последующим определением доли совместно вскрытых пластов в закачке. Общими признаками с заявленным изобретением является определение расхода рабочей жидкости при закачке в нагнетательную скважину, проведение геофизических и гидродинамических исследований нагнетательных скважин.

Однако с помощью этого метода оценивать непроизводительную закачку можно лишь в исключительных случаях, в частности при утечке закачиваемой жидкости за пределы эксплуатируемого объекта через негерметичности обсадной колонны и зумпфа. Во всех остальных случаях можно оценить лишь общий объем закачки (полезной и непроизводительной) через перфорированный пласт.

Известен также способ диагностики непроизводительной закачки по результатам нестационарных термических исследований [Ипатов А.И., Кременецкий М.И. Геофизический и гидродинамический контроль разработки месторождений углеводородов - М.: НГИЦ «РХД», 2010, разделы 13.7.3, 13.7.4, рис. 13.7.3.1-13.7.3.3 и 13.7.4.1,13.7.4.2.]. Способ заключается в регистрации серии разновременных термограмм после остановки нагнетательной скважины. По аномально низкому темпу релаксации естественной температуры в пластах судят о долях закачанной в них рабочей жидкости, а о непроизводительной закачке - по наличию и величине аномалий вне вскрытых перфорацией пластов. Общими признаками с заявленным изобретением является проведение гидродинамических исследований нагнетательных скважин, определение расхода закаченной жидкости, определение непроизводительной закачки.

Основным недостатком данного способа является трудно учитываемое тепловое влияние на результаты исследований, так называемое влияние нестабильной трещины авто-ГРП (выравнивание температурных аномалий по высоте трещины).

Наличие нестабильных трещин связано с превышением давления закачки до предела прочности пласта. Распространение данных трещин может происходить как по высоте, так и по длине, в зависимости от темпа нагнетания.

Риск возникновения нестабильных трещин авто-ГРП (авто-гидроразрыв пласта) особенно велик при эксплуатации пластов низкой проницаемости. Их влияние на разработку приводит к негативным последствиям. Так рост трещины по высоте может привести к подключению дополнительных неперфорированных толщин, тем самым существенно изменить распределение закачиваемой жидкости в пласты и привести к существенным непроизводительным потерям нагнетаемой жидкости, так называемой «непроизводительной закачке».

Наиболее близким по технической сущности является способ исследований нагнетательных скважин по патенту РФ №2473804 (дата публикации: 27.01.2013, Е21В 47/117) «Способ гидродинамических исследований нагнетательных скважин», при котором осуществляют:

проведение цикла закачки в нагнетательную скважину рабочей жидкости с постоянным расходом и последующую остановку скважины с регистрацией кривой падения давления (КПД0);

проведению повторного цикла закачки с регистрацией кривой стабилизации давления (КСД) при давлении в цикле выше давления разрыва пласта;

остановки скважины с регистрацией кривой падения давления КПД (данный цикл может не проводиться, тогда для обработки используются данные, полученные в цикле КПД0)

Количественная оценка непроизводительной закачки в рамках данного способа производится следующим образом.

Стандартным способом в двойном логарифмическом масштабе (по результатам log-log диагностики) определяют общую (интегральную) проводимость (khКСД) исследуемых пластов, в цикле закачки КСД.

Стандартным способом в двойном логарифмическом масштабе (по результатам log-log диагностики) определяют общую (интегральную) кажущуюся проводимость (kh'КПД) исследуемых пластов, в цикле КПД.

Отличие циклов КПД и КСД обусловлено тем, что в цикле КПД трещина закрыта и со скважиной гидродинамически связан только перфорированная толщина, а в цикле КСД задействована не только перфорированная толщина, но и пласты, дополнительно подключаемые к закачке по нестабильной трещине (трещина выступает, как канал межпластового перетока).

В отсутствии непроизводительной закачки отношение значений параметров kh'КПД и khКСД одинаковы (в цикле закачки и остановки скважины перфорация гидродинамически связана с одной и той же толщиной пласта). О перетоке судят по отличию этих значений. В результате определяют отношение названных параметров (khКСД/kh'КПД), по которому судят о величине непроизводительной закачки.

Основным недостатком описанного способа является сложность количественной оценки непроизводительной закачки, для которой необходимо определить истинное соотношение проводимостей пефорированных (kh_перф) и неперфорированных (kh_неперф) пластов, т.е. закачка в которые обеспечивается в перфорацию и в зону с отсутствием перфорации по нестабильной трещине. Кроме того, недостатком является низкая точность определения непроизводительной закачки нагнетательной скважины, т.к. непроизводительная закачка определяется по соотношению проводимости, полученным всего по двум циклам КСД и КПД.

Техническое решение по патенту РФ №2473804 содержит общие признаки с заявленной компьютерной системой и машиночитаемым носителем, в частности включение этапов:

регистрация кривой стабилизации давления (КСД) при давлении в цикле выше давления разрыва пласта;

регистрация кривой падения давления (КПД) после остановки нагнетательной скважины;

определение кажущейся проводимости (kh'КПД) исследуемых пластов, в цикле кпд.

Основным недостатком системы и носителя, включающих известный перечень этапов, является сложность количественной оценки непроизводительной закачки, для которой необходимо определить истинное соотношение проводимостей, а также низкая точность определения непроизводительной закачки нагнетательной скважины по полученным данным.

Количественная оценка указанных параметров затруднена, потому что соотношение оцениваемых по гидродинамическим исследованиям скважин (ГДИС) значений kh'КПД и khКСД связано с истинными проводимостями перфорированного kh_перф и неперфорированного kh_неперф (подключаемого к закачке по нестабильной трещине) пластов сложной многопараметрической зависимостью. Для ее корректного использования необходимо знать, как минимум, толщины всех пластов и текущие пластовые давления. Данная информация в промысловой практике чаще всего недоступна или имеет низкую достоверность.

Задача настоящего изобретения заключается в количественной оценке параметров непроизводительной закачки по результатам гидродинамических исследований скважин. К числу определяемых параметров относятся фильтрационно-емкостные свойства пластов вне перфорации, принимающих закачиваемую жидкость и формирующих долю непроизводительных потерь в общей закачке.

Техническим результатом изобретения является повышение точности определения непроизводительной закачки нагнетательной скважины, в частности, в случае подключения трещиной дополнительных невскрытых перфорацией толщин вне зависимости от их энергетического состояния (давления в пласте).

Технический результат достигается за счет того, что способ оценки непроизводительной закачки в нагнетательной скважине включает:

- проведение закачки рабочей жидкости в нагнетательную скважину с осуществлением авто-ГРП, определение расхода рабочей жидкости (QКСД) на данном этапе;

- последующую остановку нагнетательной скважины, регистрацию кривой падения давления (КПД) и определение кажущейся проводимости перфорированных пластов (kh'КПД) на основе определенного на предшествующем этапе расхода рабочей жидкости (QКСД) и КПД на данном этапе;

- последующую закачку рабочей жидкости в нагнетательную скважину при давлении, при котором трещина авто-ГРП закрыта, регистрацию кривой стабилизации давления (КСД*), определение расхода рабочей жидкости (QКСД*) на данном этапе, оценку истинной проводимости перфорированных пластов (khКСД*) на основе КСД* и расхода рабочей жидкости (QКСД*) на данном этапе;

- определение расхода рабочей жидкости (Q1), поступающей в процессе закачки в перфорированные пласты, на основе QКСД, khКСД* и kh'КПД;

- определение расхода рабочей жидкости (Q2) непроизводительной закачки на основе Q1 и QКСД.

Таким образом, предложенные режимы ГДИС и их последовательность дают возможность повысить точность определения объема (расхода) непроизводительной (нецелевой) закачки рабочей жидкости.

Технический результат также достигается за счет того, что компьютерная система содержит по меньшей мере один процессор и программный код, под управлением которого процессор выполняет следующие операции:

- определение расхода рабочей жидкости (QКСД) на этапе проведения закачки рабочей жидкости в нагнетательную скважину с осуществлением авто-ГРП;

- регистрацию кривой падения давления (КПД) и определение кажущейся проводимости перфорированных пластов (kh'КПД) на основе определенного на предшествующем этапе расхода рабочей жидкости (QКСД) и КПД на этапе последующей остановки нагнетательной скважины;

- регистрацию кривой стабилизации давления (КСД*), определение расхода рабочей жидкости (QКСД) на этапе последующей закачки рабочей жидкости в нагнетательную скважину при давлении, при котором трещина авто-ГРП закрыта, оценку истинной проводимости перфорированных пластов (khКСД*) на основе КСД* и расхода рабочей жидкости (QКСД*) на данном этапе;

- определение расхода рабочей жидкости (Q1), поступающей в процессе закачки в перфорированные пласты, на основе QКСД, khКСД* и kh'КПД;

- определение расхода рабочей жидкости (Q2) непроизводительной закачки на основе Q1 и QКСД.

Также технический результат достигается за счет того, что машиночитаемый носитель содержит компьютерную программу, при исполнении которой на компьютере процессор выполняет следующие операции:

- определение расхода рабочей жидкости (QКСД) на этапе проведения закачки рабочей жидкости в нагнетательную скважину с осуществлением авто-ГРП;

- регистрацию кривой падения давления (КПД) и определение кажущейся проводимости перфорированных пластов (kh'КПД) на основе определенного на предшествующем этапе расхода рабочей жидкости (QКСД) и КПД на этапе последующей остановки нагнетательной скважины;

- регистрацию кривой стабилизации давления (КСД*), определение расхода рабочей жидкости (QКСД*) на этапе последующей закачки рабочей жидкости в нагнетательную скважину при давлении, при котором трещина авто-ГРП закрыта, оценку истинной проводимости перфорированных пластов (khКСД*) на основе КСД* и расхода рабочей жидкости (QКСД*) на данном этапе;

- определение расхода рабочей жидкости (Q1), поступающей в процессе закачки в перфорированные пласты, на основе QКСД, khКСД* и kh'КПД;

- определение расхода рабочей жидкости (Q2) непроизводительной закачки на основе Q1 и QКСД.

Проводимость пласта (kh) - это комплексный параметр, зависящий от проницаемости (k) и эффективной рабочей толщины пласта (h).

Стандартным способом в двойном логарифмическом масштабе (по результатам log-log диагностики) определяют общую (интегральную) проводимость (khКСД) исследуемых пластов, в цикле закачки (этапе) КСД

Стандартным способом в двойном логарифмическом масштабе (по результатам log-log диагностики) определяют общую (интегральную) кажущуюся проводимость (kh'КПД) исследуемых пластов, в цикле (этапе) КПД.

Определение расхода рабочей жидкости (Q1), поступающей в процессе закачки в перфорированные пласты, могут осуществлять по формуле:

Определение расхода рабочей жидкости (Q2) непроизводительной закачки могут осуществлять по формуле:

Долю в суммарном расходе непроизводительной закачки могут определять по формуле:

Расход рабочей жидкости (QКСД) на этапе проведения закачки рабочей жидкости в нагнетательную скважину с осуществлением авто-ГРП могут определять по заданному на оборудовании расходу рабочей жидкости, как среднее значение расхода рабочей жидкости на данном этапе, как кривую изменения расхода рабочей жидкости (QКСД) во времени.

Расход рабочей жидкости (QКСД*) на этапе закачки рабочей жидкости в нагнетательную скважину при давлении, при котором трещина авто-ГРП закрыта, могут определять по заданному на оборудовании расходу рабочей жидкости, как среднее значение расхода рабочей жидкости на данном этапе, как кривую изменения расхода рабочей жидкости (QКСД*) во времени.

В основе количественной интерпретации лежит совместный анализ результатов измерений в циклах КСД, КПД и КСД*.

Варианты исполнения способа могут быть скомбинированы между собой и применяться в компьютерной системе и машиночитаемом носителе.

При этом цикл (этап) КСД - это этап проведения закачки рабочей жидкости в нагнетательную скважину до авто-ГРП, регистрации при этом кривой стабилизации давления (КСД) и в результате определение расхода рабочей жидкости (QКСД) на данном этапе), т.е. осуществляется закачка рабочей жидкости при репрессии, превышающей необходимую для гидроразрыва пласта (при которой трещина подключает дополнительные пласты).

Этап (цикл) КПД - это этап остановки нагнетательной скважины, в которой нестабильная трещина закрывается и происходит релаксация поля давления через перфорированные пласты.

Этап (цикл) КСД* - это этап закачки рабочей жидкости в нагнетательную скважину при давлении, при котором трещина авто-ГРП закрыта, при этом осуществляют регистрацию кривой стабилизации давления (КСД*) и определение расхода рабочей жидкости (QКСД*) на данном этапе, т.е. закачка обеспечивается с уменьшенным расходом, при котором гидродинамическая связь происходит только с перфорированными пластами.

Дополнительный учет результатов измерений в цикле закачки КСД* позволяет определить проводимости как перфорированного, так и неперфорированного пластов.

Обоснованием правомерности подобного способа количественной оценки непроизводительной закачки является следующее.

По результатам ГДИС в цикле КСД определяют общие (интегральные) значения проводимостей всех подключенных к закачке пластов как перфорированных, так и неперфорированных, подключенных к зоне перфорации трещиной.

В последующем цикле КПД трещина смыкается, скважина остается гидродинамически связанной только с перфорированным пластом.

В этом случае проводимость перфорированного пласта khКПД определяется следующей теоретической формулой:

следовательно,

где

Q1 - расход жидкости, поступающей в перфорированный пласт в предшествующем КПД цикле закачки,

tg(α) - тангенс угла наклона асимптоты в цикле КПД в полулогарифмическом масштабе в интервале радиального течения;

α - динамическая вязкость пластового флюида.

Однако практическое использование формул (4) и (5) затруднено тем, что распределение жидкости между перфорированным и неперфорированным пластами неизвестно и, следовательно, величина Q1 не может быть определена.

Если, как предусмотрено заявленным способом, выполнить интерпретацию ГДИС формально, считая, что вся закачиваемая жидкость поступает в перфорированный пласт, то полученная в цикле КПД величина khКПД будет «кажущейся», поскольку неправильный учет дебита закачки приводит к неверной оценке истинной проводимости пласта khКПД.

Из (8) и (9) следует:

Соотношение (8) содержит две неизвестные - истинную проводимость перфорированного пласта (khКПД) и расход закачки в перфорированный пласт (Q1) в цикле КСД.

Для определения значения khКПД используют результаты ГДИС в цикле КСД. Если учесть очевидный факт, что в циклах КПД и КСД* на результаты ГДИС воздействует только перфорированный пласт, т.е. проводимости пласта, определяемые по ГДИС, в этих циклах должны совпасть khКСД*=khкпд.

То есть

или

Итак, на основе kh'КПД, khКСД*, определенных по результатам ГДИС в циклах КПД и КСД*, и общем расходе закачки QКСД в цикле КСД возможна оценка расхода жидкости, поступающей в перфорированный пласт в данном цикле Q1, а значит, и оценка расхода непроизводительной закачки Q2=QКСД-Q1.

Дополнение технологии ГДИС циклом КСД* с уменьшенной репрессией (при которой трещина авто-ГРП закрыта) дает возможность определить объем нецелевой закачки. В основе количественной интерпретации лежит совместный анализ результатов измерений в циклах КПД и КСД*. А дополнительный учет результатов измерений в цикле технологической закачки КСД позволяет определить проводимости как перфорированного, так и неперфорированного пластов.

Изобретение поясняется следующими фигурами.

На фиг. 1 - изображено изменение давления и расхода рабочей жидкости в нагнетательной скважине в период проведения измерений. При этом на скважине реализуются циклы КСД, КПД и КСД*.

На представленной зависимости кривая красного цвета обозначает изменение во времени давления (Р) на забое скважины на кровле интервала перфорации, кривая зеленого цвета - изменение расхода (Q) закачки рабочей жидкости.

На фиг. 2 - диагностический график ГДИС для цикла КСД в двойном логарифмическом масштабе (в «log-log» масштабе);

на фиг. 3 - диагностический график ГДИС для цикла КПД в двойном логарифмическом масштабе (в «log-log» масштабе);

на фиг. 4 - диагностический график ГДИС для цикла КСД* в двойном логарифмическом масштабе (в «log-log» масштабе).

На фиг. 2-4 ΔР - приращение давления, ΔP' - логарифмическая производная («Информационное обеспечение и технологии гидродинамического моделирования нефтяных и газовых залежей», М.И. Кременецкий, А.И. Ипатов, Д.Н. Гуляев, стр. 257, формула (5.3.6.25) для цикла КСД, (5.3.6.26) для цикла КВД (в случае добывающей скважины) или КПД (в случае нагнетательной скважины)).

Способ диагностики и количественной оценки непроизводительной закачки в нагнетательных скважинах с нестабильными трещинами авто-ГРП, компьютерная система и машиночитаемый носитель для использования в способе реализуются следующим образом.

Проведение закачки рабочей жидкости в нагнетательную скважину с осуществлением авто-ГРП (выше Р=375 атм.), определение расхода рабочей жидкости (QКСД) на данном этапе. Расход жидкости в процессе проведения закачки рабочей жидкости в нагнетательную скважину на данном этапе составил QКСД=341 м3/сут.

Последующая остановка нагнетательной скважины и регистрация кривой падения давления (КПД) представлена на фиг. 1

Далее осуществляют определение кажущейся проводимости перфорированных пластов (kh'КПД) на основе определенного на предшествующем этапе расхода рабочей жидкости (QКСД) и кривой падения давления (КПД) на данном этапе. По циклу КПД (фиг. 3) оценивают кажущуюся проводимость (kh'КПД) любым из известных методов, в частности методом типовых кривых, асимптотическим или методом совмещения, в том числе с использованием программного обеспечения Сапфир (Saphir). Более подробное описание применения метода совмещения для обработки данных ГДИС приведено в статье «Метод диагностики радиального притока при интерпретации нестационарных гидродинамических исследований скважин», К.С. Гаврилов, В.Л. Сергеев Томский политехнический университет, https://cyberleninka.ru/article/n/metod-diagnostiki-radialnogo-pritoka-pri-interpretatsii-nestatsionarnyh-gidrodinamicheskih-issledovaniy-skvazhin/viewer). В данной статье методом совмещения определяют гидропроводность пласта, которая является отношением проводимости пласта на динамическую вязкость рабочей жидкости. Кажущаяся проводимость с использованием одного из перечисленных методов, например, по среднему расходу рабочей жидкости (QКСД) в цикле КСД (предшествующем остановке скважины) и кривой изменения (падения) давления (КПД). Также значение кажущейся проводимости можно определить по асимптоте к кривой логарифмической производной, что подтверждено методом совмещения (стандартный способ количественной интерпретации результатов гидродинамических исследований). В данном случае для цикла КПД на основе «log-log» диагностики определяются кажущуюся проводимость kh'КПД (фиг. 3). В результате кажущая проводимость равна:

kh'КПД=43,8 мД⋅м

Далее осуществляют последующую закачку рабочей жидкости в нагнетательную скважину при давлении, при котором трещина авто-ГРП закрыта (до Р=375 атм.), регистрацию кривой стабилизации давления (КСД*) - представлена на фиг. 1.

Затем осуществляют оценку истинной проводимости перфорированных пластов (khКСД*) на основе кривой стабилизации давления (КСД*) и расхода рабочей жидкости (QКСД*) на данном этапе. Расход рабочей жидкости (QКСД*) на данном этапе составляет QКСД*=150 м3/сут. По циклу КСД* (фиг. 4), при котором осуществляют закачку с уменьшенным расходом, когда трещина авто-ГРП закрыта и скважина гидродинамически связана только с перфорированными пластами, аналогично фиг. 3, оценена истинная проводимость (khКСД*) перфорированных пластов (фиг. 4). Проводимость перфорированных пластов с использованием одного из перечисленных методов определяется по расходу рабочей жидкости (QКСД*) в цикле КСД (на цикле закачки рабочей жидкости после остановки скважины) и кривой стабилизации давления. При этом динамическая вязкость пластового флюида является постоянной.

khКСД*=32, 2 мД⋅м.

Далее по полученным значениям проводимостей kh'КПД и khКСД* определяют целевую закачку, осуществляемую в цикле КСД, в перфорированные пласты, при этом расход жидкости в процессе проведения закачки рабочей жидкости в нагнетательную скважину до авто-ГРП составляет QКСД=341 м3/сут (фиг. 1):

Q1=QКСД⋅khКСД*/kh'КПД=341⋅32,2/43,8=250,69 м3/сут;

Далее определяют расход рабочей жидкости (Q2) непроизводительной закачки по формуле (2), в данном случае он составляет: Q2=341-250,69=90,31 м3/сут.

Также может быть оценена проводимость (kh*) невскрытых перфорацией работающих пластов по формуле: kh*=khКСД-khКСД*=64,7-32,2=32,5 мД м, где этом khКСД определена по диагностическому графику ГДИС для цикла КСД в двойном логарифмическом масштабе (фиг. 2).

Таким образом, обеспечивается повышение точности определения непроизводительной закачки нагнетательной скважины, в частности, в случае подключения трещиной дополнительных невскрытых перфорацией толщин вне зависимости от их энергетического состояния (давления в пласте).


Способ диагностики и количественной оценки непроизводительной закачки в нагнетательных скважинах с нестабильными трещинами авто-ГРП
Способ диагностики и количественной оценки непроизводительной закачки в нагнетательных скважинах с нестабильными трещинами авто-ГРП
Способ диагностики и количественной оценки непроизводительной закачки в нагнетательных скважинах с нестабильными трещинами авто-ГРП
Способ диагностики и количественной оценки непроизводительной закачки в нагнетательных скважинах с нестабильными трещинами авто-ГРП
Способ диагностики и количественной оценки непроизводительной закачки в нагнетательных скважинах с нестабильными трещинами авто-ГРП
Способ диагностики и количественной оценки непроизводительной закачки в нагнетательных скважинах с нестабильными трещинами авто-ГРП
Способ диагностики и количественной оценки непроизводительной закачки в нагнетательных скважинах с нестабильными трещинами авто-ГРП
Способ диагностики и количественной оценки непроизводительной закачки в нагнетательных скважинах с нестабильными трещинами авто-ГРП
Способ диагностики и количественной оценки непроизводительной закачки в нагнетательных скважинах с нестабильными трещинами авто-ГРП
Способ диагностики и количественной оценки непроизводительной закачки в нагнетательных скважинах с нестабильными трещинами авто-ГРП
Способ диагностики и количественной оценки непроизводительной закачки в нагнетательных скважинах с нестабильными трещинами авто-ГРП
Способ диагностики и количественной оценки непроизводительной закачки в нагнетательных скважинах с нестабильными трещинами авто-ГРП
Источник поступления информации: Роспатент

Показаны записи 1-10 из 43.
27.01.2013
№216.012.206f

Способ гидродинамических исследований нагнетательных скважин

Изобретение относится к нефтедобыче и может быть применено для проведения, интерпретации и анализа результатов промыслово-геофизических и гидродинамических исследований в нагнетательных скважинах. Способ включает проведение цикла закачки в нагнетательную скважину рабочей жидкости с постоянным...
Тип: Изобретение
Номер охранного документа: 0002473804
Дата охранного документа: 27.01.2013
27.02.2013
№216.012.2b86

Способ определения фильтрационных параметров пласта

Изобретение относится технологиям нефтедобычи, а именно к способам проведения, интерпретации и анализа результатов гидродинамических исследований эксплуатационных скважин, оборудованных электрическими центробежными насосами. Техническим результатом является повышение достоверности определения...
Тип: Изобретение
Номер охранного документа: 0002476669
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2b87

Способ определения фильтрационных свойств совместно работающих пластов (варианты)

Изобретение относится к технологиям нефтедобычи, а именно к способам мониторинга добычи и разработки совместно эксплуатируемых нефтяных пластов. Техническим результатом является повышение достоверности оценки индивидуальных фильтрационных свойств каждого из совместно эксплуатируемых нефтяных...
Тип: Изобретение
Номер охранного документа: 0002476670
Дата охранного документа: 27.02.2013
20.04.2013
№216.012.3751

Способ получения трехмерного распределения проницаемости пласта

Изобретение относится к технологиям нефтедобычи, а именно к способам гидродинамического моделирования. Техническим результатом является получение профилей по глубине достоверных значений проницаемости, пригодных для использования в гидродинамической модели. Способ включает определение на основе...
Тип: Изобретение
Номер охранного документа: 0002479714
Дата охранного документа: 20.04.2013
20.05.2013
№216.012.413d

Способ определения относительных фазовых проницаемостей пласта

Изобретение относится к технологиям нефтедобычи, а именно к способам гидродинамического моделирования залежей и проектирования на их основе разработки месторождений. Задачей изобретения является повышение надежности и объективности воспроизведения ОФП путем обеспечения возможности...
Тип: Изобретение
Номер охранного документа: 0002482271
Дата охранного документа: 20.05.2013
20.08.2013
№216.012.60f2

Способ определения работающих интервалов и источников обводнения в горизонтальной нефтяной скважине

Изобретение относится к технологиям нефтедобычи, а именно к способам проведения, интерпретации и анализа результатов промыслово-геофизических исследований в горизонтальных скважинах. Технический результат направлен на повышение точности определения работающих интервалов и источников обводнения...
Тип: Изобретение
Номер охранного документа: 0002490450
Дата охранного документа: 20.08.2013
10.06.2014
№216.012.d0db

Способ эксплуатации скважины с помощью погружной электроцентробежной насосной установки

Изобретение относится к добыче жидкости из скважин с помощью погружных электроцентробежных насосных установок и может быть использовано при эксплуатации добывающих нефтяных скважин, преимущественно малодебитных и среднедебитных. Технический результат - обеспечение производительной и надежной...
Тип: Изобретение
Номер охранного документа: 0002519238
Дата охранного документа: 10.06.2014
20.02.2015
№216.013.27e6

Способ определения работающих интервалов пласта в горизонтальных скважинах

Изобретение относится к нефтедобыче, а именно к технологиям промыслово-геофизических исследований добывающих эксплуатационных скважин. Технический результат направлен на повышение точности определения работающих интервалов пласта в горизонтальных скважинах. Способ заключается в одновременном...
Тип: Изобретение
Номер охранного документа: 0002541671
Дата охранного документа: 20.02.2015
10.10.2015
№216.013.8245

Способ определения концентрации поверхностно-активных веществ анионного типа в технологических жидкостях

Изобретение относится к области анализа качества нефтепромысловых реагентов, в частности технологических жидкостей, содержащих поверхностно-активные вещества (ПАВ) анионного типа. Производят отбор проб и определяют пенообразующие характеристики методом кратности пены. При кратности пены не...
Тип: Изобретение
Номер охранного документа: 0002564946
Дата охранного документа: 10.10.2015
27.08.2016
№216.015.5194

Способ поиска залежей углеводородов в нетрадиционных коллекторах баженовской свиты

Изобретение относится к области геолого-геофизических исследований и может быть использовано для обнаружения углеводородного сырья в нетрадиционных коллекторах баженовской свиты осадочного чехла, а также для оценки площади запасов нефти и газа, содержащихся в нетрадиционных коллекторах....
Тип: Изобретение
Номер охранного документа: 0002596181
Дата охранного документа: 27.08.2016
Показаны записи 1-10 из 17.
27.01.2013
№216.012.206f

Способ гидродинамических исследований нагнетательных скважин

Изобретение относится к нефтедобыче и может быть применено для проведения, интерпретации и анализа результатов промыслово-геофизических и гидродинамических исследований в нагнетательных скважинах. Способ включает проведение цикла закачки в нагнетательную скважину рабочей жидкости с постоянным...
Тип: Изобретение
Номер охранного документа: 0002473804
Дата охранного документа: 27.01.2013
27.02.2013
№216.012.2b86

Способ определения фильтрационных параметров пласта

Изобретение относится технологиям нефтедобычи, а именно к способам проведения, интерпретации и анализа результатов гидродинамических исследований эксплуатационных скважин, оборудованных электрическими центробежными насосами. Техническим результатом является повышение достоверности определения...
Тип: Изобретение
Номер охранного документа: 0002476669
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2b87

Способ определения фильтрационных свойств совместно работающих пластов (варианты)

Изобретение относится к технологиям нефтедобычи, а именно к способам мониторинга добычи и разработки совместно эксплуатируемых нефтяных пластов. Техническим результатом является повышение достоверности оценки индивидуальных фильтрационных свойств каждого из совместно эксплуатируемых нефтяных...
Тип: Изобретение
Номер охранного документа: 0002476670
Дата охранного документа: 27.02.2013
20.04.2013
№216.012.3751

Способ получения трехмерного распределения проницаемости пласта

Изобретение относится к технологиям нефтедобычи, а именно к способам гидродинамического моделирования. Техническим результатом является получение профилей по глубине достоверных значений проницаемости, пригодных для использования в гидродинамической модели. Способ включает определение на основе...
Тип: Изобретение
Номер охранного документа: 0002479714
Дата охранного документа: 20.04.2013
20.05.2013
№216.012.413d

Способ определения относительных фазовых проницаемостей пласта

Изобретение относится к технологиям нефтедобычи, а именно к способам гидродинамического моделирования залежей и проектирования на их основе разработки месторождений. Задачей изобретения является повышение надежности и объективности воспроизведения ОФП путем обеспечения возможности...
Тип: Изобретение
Номер охранного документа: 0002482271
Дата охранного документа: 20.05.2013
20.08.2013
№216.012.60f2

Способ определения работающих интервалов и источников обводнения в горизонтальной нефтяной скважине

Изобретение относится к технологиям нефтедобычи, а именно к способам проведения, интерпретации и анализа результатов промыслово-геофизических исследований в горизонтальных скважинах. Технический результат направлен на повышение точности определения работающих интервалов и источников обводнения...
Тип: Изобретение
Номер охранного документа: 0002490450
Дата охранного документа: 20.08.2013
20.02.2015
№216.013.27e6

Способ определения работающих интервалов пласта в горизонтальных скважинах

Изобретение относится к нефтедобыче, а именно к технологиям промыслово-геофизических исследований добывающих эксплуатационных скважин. Технический результат направлен на повышение точности определения работающих интервалов пласта в горизонтальных скважинах. Способ заключается в одновременном...
Тип: Изобретение
Номер охранного документа: 0002541671
Дата охранного документа: 20.02.2015
13.06.2019
№219.017.81ca

Способ добычи нефти или газа и устройство для его осуществления

Группа изобретений относится к области нефтегазодобычи из многопластовых скважин. Технический результат: устранение пластовых перетоков флюида, замена перетоков извлечением флюида из более слабых пластов, интенсификация добычи, удаление попутных газов. Сущность изобретения: между пластами...
Тип: Изобретение
Номер охранного документа: 0002391493
Дата охранного документа: 10.06.2010
10.07.2019
№219.017.ace5

Способ мониторинга многопластовой скважины

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для мониторинга многопластовой скважины. Техническим результатом является повышение качества и безопасности многопластовой добычи в скважине путем выявления пластовых перетоков и их устранение до начала добычи в...
Тип: Изобретение
Номер охранного документа: 0002387824
Дата охранного документа: 27.04.2010
13.07.2019
№219.017.b3a0

Устройство для добычи нефти и газа

Изобретение относится к нефтегазовой промышленности и используется для добычи нефти и газа из одной скважины как при однопластовой, так и при многопластовой добыче. Техническим результатом является уменьшение рабочего давления жидкости, подаваемой в каждый струйный насос, что повышает...
Тип: Изобретение
Номер охранного документа: 0002398101
Дата охранного документа: 27.08.2010
+ добавить свой РИД