×
20.08.2013
216.012.60a4

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГРАДИЕНТНОГО КАТАЛИТИЧЕСКОГО ПОКРЫТИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нанесения покрытий, в частности к каталитическим оксидным покрытиям, а также к электрохимическим производствам, и может быть использовано при изготовлении электродных материалов. Способ получения градиентного каталитического покрытия на подложке из титана или его сплава включает формирование промежуточного пористого подслоя из оксидов титана и нанесение покрытия методом магнетронного напыления. При нанесении упомянутого покрытия магнетронное напыление металлической компоненты систем (Ti-Ru), (Ti-Ru-Ir) или (Zr-Ru) осуществляют в вакуумной камере в среде плазмообразующего газа аргона и реакционного газа кислорода. Давление аргона поддерживают постоянным в течение всего процесса напыления, а парциальное давление кислорода увеличивают по линейному закону от 0 Па до 8·10 Па в течение 10 минут и при установившемся давлении кислорода напыляют указанную металлическую композицию до требуемой толщины с получением градиентного каталитического покрытия, в котором содержание оксидов увеличивается от 0% до 100% от промежуточного слоя к поверхности. Обеспечивается получение коррозионно-стойкого покрытия для увеличения ресурса работы анодов с покрытием с низким содержанием примесей металлов, снижающих коррозионную стойкость покрытия, высокими характеристиками электрокаталитической активности по отношению к процессам, протекающим в системах очистки воды, существенно более высокой механической прочностью самого покрытия и более высокой прочностью сцепления с промежуточным подслоем. 1 табл., 1 пр.
Основные результаты: Способ получения градиентного каталитического покрытия на подложке из титана или его сплава, включающий нанесение покрытия методом магнетронного напыления, отличающийся тем, что перед нанесением упомянутого покрытия формируют промежуточный пористый подслой из оксидов титана, а при нанесении упомянутого покрытия магнетронное напыление металлической компоненты систем (Ti-Ru), (Ti-Ru-Ir) или (Zr-Ru) осуществляют в вакуумной камере в среде плазмообразующего газа аргона и реакционного газа кислорода, причем давление аргона поддерживают постоянным в течение всего процесса напыления, а парциальное давление кислорода увеличивают по линейному закону от 0 Па до 8·10 Па в течение 10 мин и при установившемся давлении кислорода напыляют указанную металлическую композицию до требуемой толщины с получением градиентного каталитического покрытия, в котором содержание оксидов увеличивается от 0% до 100% от промежуточного слоя к поверхности.

Изобретение относится к области нанесения покрытий с функциональными и специальными свойствами, в частности к каталитическим оксидным покрытиям, а также к электрохимическим производствам, в частности к способу изготовления электродов, и может быть использовано при изготовлении электродных материалов для комплексной очистки воды и стоков, для производства хлора и хлорсодержащих соединений и др.

Известно смешанное металлооксидное покрытие [пат. РФ №2379380, опубл. 20.01.2010 г.] на электродной основе из вентильного металла, содержащее оксиды металлов платиновой группы и оксид титана. Недостатком изобретения является сложность процедуры получения покрытия, требующей нанесения нескольких слоев раствора солей металлов и проведения термообработки при температурах от 450°C до 550°C после нанесения каждого слоя. Такие покрытия обладают низкой коррозионной стойкостью вследствие плохой адгезии и характеризуются трещинообразной структурой.

Известен электрод и способ его изготовления [пат. US №6,123,816, опубл. 26.09.2000 г.]. Электрод содержит электрокаталитическое покрытие, нанесенное на подложку из вентильного металла, включающее смесь рутения и/или его оксида и неблагородного металла или его оксида. Покрытие наносится методом конденсации из газовой фазы. Недостатком способа является разность коэффициентов термического расширения (КТР) металла подложки и наносимого покрытия. Разница КТР приводит к возникновению напряжений, являющихся возможной причиной отслоения покрытия в процессе эксплуатации электрода.

В патенте пат. РФ №2288973 [опубл. 10.12.2006 г.] электрод изготавливается из титана или его сплавов с электрокаталитическим покрытием из оксидов титана и рутения при соотношении (мол.%) 25-30:70-75%, при этом он содержит промежуточные подслои из оксидов титана, сформированных методом плазменно-электролитического оксидирования. Электрокаталитическое покрытие из оксидов титана и рутения получают термическим разложением смеси солей рутения и титана - RuCl3·3H2O и TiCl3.

Наиболее близким по техническому решению является пат. РФ №2341587, опубл. 20.12.2008 г. (прототип), в котором методом магнетронного напыления формируют градиентное покрытие на подложке из титана или титанового сплава. Недостатками данного способа являются:

1. Покрытие имеет недостаточно развитую поверхность;

2. Не обеспечивается достаточный уровень электрокаталитической активности покрытия электродов для эффективной работы в системах очистки воды;

3. Не обеспечивается высокая адгезия наносимого покрытия к подложке вследствие разницы в значениях КТР материала подложки и покрытия, что приводит к возникновению внутренних напряжений и возможному отслоению покрытия.

Техническим результатом настоящего изобретения является разработка способа получения градиентных покрытий с предварительным нанесением коррозионностойкого покрытия для увеличения ресурса работы анодов с покрытием с низким содержанием примесей металлов, снижающих коррозионную стойкость покрытия, развитой поверхностью, высокими характеристиками электрокаталитической активности по отношению к процессам, протекающим в системах очистки воды, существенно более высокой механической прочностью самого покрытия и более высокой прочностью сцепления с подложкой.

Технический результат достигается за счет того, что на подложке из титана или титанового сплава формируется пористый подслой из оксидов титана и наносится градиентное оксидное покрытие каталитического класса методом магнетронного напыления металлической композиции систем (Ti-Ru), (Ti-Ru-Ir) или (Zr-Ru) при регулируемом поступлении реакционного газа кислорода в вакуумную камеру по линейному закону изменения давления от 0 Па до 8·10-2 Па в течение 10 мин.

Пористая структура подслоя способствует формированию контакта градиентного оксидного покрытия с подложкой. Содержание оксидов в покрытии увеличивается от 0 до 100%, чем обеспечивается плавное изменение КТР по толщине покрытия, что исключает возникновение внутренних напряжений, приводящих к растрескиванию покрытия и снижению коррозионной стойкости, и обеспечивает высокую адгезию покрытия к подложке.

Формируемый пористый подслой из оксидов титана служит носителем электрокаталитического покрытия и имеет толщину до 10 мкм. Такая структура обеспечивает защиту подложки электрода от коррозии и развитую поверхность электрода.

Пористый подслой из оксидов титана обладает изолирующими свойствами, однако магнетронное напыление покрытий каталитического класса систем (Ti-Ru), (Ti-Ru-Ir) или (Zr-Ru) при регулируемом поступлении реакционного газа кислорода в вакуумную камеру по линейному закону на предварительно полученный на титане или его сплавах пористый подслой из оксидов титана делает подслой проводящим и обеспечивает достаточную электропроводность электрода и его высокую электрокаталитическую активность за счет постепенного увеличения содержания оксидов от промежуточного слоя к поверхности.

Разработанное покрытие обладает высокой эффективностью при работе в системах очистки воды и стоков, принцип действия которых основан на электроуправляемой сорбции. В таблице приводятся результаты анализа проб воды до и после прохождения системы очистки.

Таблица
Результаты анализа проб воды по станции метро «Старая деревня» до и после очистки
№ п/п Показатели Единицы измерения Результаты анализа до очистки Результаты анализа после очистки ПДК по СанПин
1 pH Ед. pH 8,2 8,0 6-9
2 Запах Балл 2 0 2,0
3 Привкус Балл 3 0 2,0
4 Мутность мг/дм3 43 0,28 1,5
5 Цветность град. 39 2,3 20,0
6 Железо общее мг/дм3 1,2 <0,05 0,3
7 Окисляемость мг O2/дм3 8,9 1,7 5,0
8 Ост. акт. хлор мг/дм3 0,50 <0,15 0,8-1,2
9 Ост. алюминий мг/дм3 0,33 <0,04 0,5
10 Аммиак мг/дм3 1,0 0,5 2,0
11 Жесткость мг-экв/дм3 1,3 0,95 7,0
12 Хлороформ мг/дм3 0,03 <0,001 0,2

Сущность способа заключается в следующем. На подготовленной пластине из титана или его сплавов формируют промежуточный пористый оксидный слой, например, методом электрохимического легирования окисляемой поверхности (ЭЛОП). Далее подложку с полученным пористым оксидным подслоем помещают в вакуумную камеру установки магнетронного напыления, предварительно нагревают в вакууме до температуры 400-450°C, затем осуществляют напыление металлической композиции систем (Ti-Ru), (Ti-Ru-Ir) или (Zr-Ru) в среде плазмообразующего газа аргона и реакционного газа кислорода, причем, давление аргона поддерживают постоянным в течение всего процесса напыления, а парциальное давление кислорода изменяют по линейному закону от 0 Па до 8·10-2 Па в течение 10 мин, и по достижению указанного максимального давления кислорода проводят напыление оксидного покрытия требуемой толщины. В результате этого содержание оксидов в покрытии увеличивается от 0% до 100% по тому же закону от промежуточного слоя к поверхности.

Пример осуществления способа.

Пластину из титана марки ВТ 1-0 обезжиривают, промывают дистиллированной водой и высушивают на воздухе.

Подготовленную пластину подвергают электрохимическому легированию окисляемой поверхности в водном растворе солей натрия при pH 8-10 в гальваностатическом режиме при плотности тока 0,1 А/дм, времени оксидирования 15 мин и температуре электролита 25°C. Напряжение изменялось от 0 В до 360 В.

В результате обработки формируется пористый оксидный подслой толщиной 6-8 мкм из диоксида титана.

Далее на подготовленную таким образом поверхность образца на установке магнетронного напыления с использованием металлической мишени композиции (Ti-Ru) производили нанесение градиентного оксидного покрытия. Пластины помещаются в вакуумную камеру установки магнетронного напыления. Камеру откачивают до остаточного давления не выше 2·10-3 Па. Затем образцы нагреваются в вакууме до температуры 400±30°C. После этого в вакуумную камеру подается плазмообразующий газ - аргон до давления (3-5)·10-1 Па и поддерживают на заданном уровне в течение всего процесса напыления. На композиционную мишень (Ti-Ru) подается напряжение и возбуждается плазменный разряд с плотностью тока ~0,25 А/см2. После этого подается реакционный газ кислород в вакуумную камеру при увеличении парциального давления кислорода по линейному закону от 0 Па до 8·10-2 Па в течение 10 мин. Далее покрытие наносится при установившемся давлении кислорода в течение 20 мин.

Заявляемая технология обеспечивает низкое содержание примесей металлов, снижающих коррозионную стойкость покрытия, и однородность состава покрытия, развитую поверхность для обеспечения высокой электрокаталитической активности покрытия при работе в системах очистки воды, отсутствие внутренних напряжений и высокую адгезию покрытия к подложке.

Способ получения градиентного каталитического покрытия на подложке из титана или его сплава, включающий нанесение покрытия методом магнетронного напыления, отличающийся тем, что перед нанесением упомянутого покрытия формируют промежуточный пористый подслой из оксидов титана, а при нанесении упомянутого покрытия магнетронное напыление металлической компоненты систем (Ti-Ru), (Ti-Ru-Ir) или (Zr-Ru) осуществляют в вакуумной камере в среде плазмообразующего газа аргона и реакционного газа кислорода, причем давление аргона поддерживают постоянным в течение всего процесса напыления, а парциальное давление кислорода увеличивают по линейному закону от 0 Па до 8·10 Па в течение 10 мин и при установившемся давлении кислорода напыляют указанную металлическую композицию до требуемой толщины с получением градиентного каталитического покрытия, в котором содержание оксидов увеличивается от 0% до 100% от промежуточного слоя к поверхности.
Источник поступления информации: Роспатент

Показаны записи 221-230 из 265.
18.05.2019
№219.017.59c4

Термопластичный эластомерный материал

Изобретение относится к резиновой промышленности и может быть использовано для изготовления различных экструзионных профилей и формованных гибких деталей. Материал выполнен из композиции, включающей каучук, термопласт, серную вулканизующую систему или смоляную вулканизующую систему на основе...
Тип: Изобретение
Номер охранного документа: 0002470962
Дата охранного документа: 27.12.2012
18.05.2019
№219.017.59f1

Конструкционный радиопоглощающий материал

Изобретение относится к области конструкционных радиопоглощающих материалов, которые используются для обеспечения электромагнитной совместимости бортовой аппаратуры, защиты персонала от электромагнитного излучения в СВЧ диапазоне. Предложенный конструкционный радиопоглощающий материал содержит...
Тип: Изобретение
Номер охранного документа: 0002456722
Дата охранного документа: 20.07.2012
18.05.2019
№219.017.59f5

Фиксатор положения лопастей

Изобретение относится к судостроению и авиастроению, в частности к конструкции систем управления движителем. Фиксатор положения управляемых лопастей включает управляющую тягу, расположенную в полой части вала, и установленный на корпусе гидроцилиндр. Шток гидроцилиндра кинематически связан с...
Тип: Изобретение
Номер охранного документа: 0002457147
Дата охранного документа: 27.07.2012
18.05.2019
№219.017.5b5e

Огнестойкий слоистый звукотеплоизолирующий материал

Изобретение относится к области создания слоистых звукотеплоизолирующих огнестойких материалов авиационного назначения, используемых в бортовой звукотеплоизолирующей конструкции пассажирских самолетов. Огнестойкий слоистый звукотеплоизолирующий материал содержит теплозвукоизолирующий и...
Тип: Изобретение
Номер охранного документа: 0002465145
Дата охранного документа: 27.10.2012
18.05.2019
№219.017.5b73

Способ получения волокнистого керамического материала

Изобретение относится к волокнистым керамическим материалам, которые способны выдерживать вибрационные нагрузки и градиент температур как по толщине материала, так и по его поверхности и которые предназначены для теплоизоляции металлических корпусов камер сгорания газотурбинных двигателей....
Тип: Изобретение
Номер охранного документа: 0002466966
Дата охранного документа: 20.11.2012
18.05.2019
№219.017.5b7e

Способ определения прочностных характеристик полимерных композиционных материалов

Использование: для определения прочностных характеристик полимерных композиционных материалов. Сущность изобретения заключается в том, что в полимерном композиционном материале контролируемого изделия с помощью излучающего преобразователя возбуждают импульсы ультразвуковых колебаний, принимают...
Тип: Изобретение
Номер охранного документа: 0002461820
Дата охранного документа: 20.09.2012
20.05.2019
№219.017.5cca

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя содержит твердотопливный газогенератор с выпускным патрубком и воспламенителем и газификатор, имеющий полый корпус с впускной и выпускной полостями, расположенными на противоположных сторонах корпуса,...
Тип: Изобретение
Номер охранного документа: 0002688054
Дата охранного документа: 17.05.2019
20.05.2019
№219.017.5d69

Судно на подводных крыльях

Изобретение относится к судостроению и касается создания судов на подводных крыльях. Судно на подводных крыльях, имеющее корпус, движительный комплекс и комплекс подводных крыльев, оборудовано расположенным по обе стороны корпуса центропланом брызгозащитной конфигурации, простирающимся вдоль...
Тип: Изобретение
Номер охранного документа: 0002434778
Дата охранного документа: 27.11.2011
29.05.2019
№219.017.681a

Способ летного моделирования ручной визуальной посадки самолета на объект

Изобретение относится к области исследований устойчивости, управляемости и динамики посадки самолетов и может быть использовано в приборном оборудовании летательных аппаратов для повышения безопасности и сокращения сроков и стоимости летного обучения и летной отработки управляемости самолетов...
Тип: Изобретение
Номер охранного документа: 0002471151
Дата охранного документа: 27.12.2012
29.05.2019
№219.017.6909

Многоцелевая подводная станция (мпс)

Изобретение относится к области освоения минеральных ресурсов недр арктического шельфа. Многофункциональная подводная станция имеет семь отсеков, атомную энергетическую установку (7), лебедки, грузовой трюм (5), самоходную спасательную камеру, устройство для разрушения льда (9). В отсеках...
Тип: Изобретение
Номер охранного документа: 0002436705
Дата охранного документа: 20.12.2011
Показаны записи 221-230 из 233.
24.05.2019
№219.017.606d

Способ упрочнения аустенитной немагнитной стали

Изобретение относится к области металлургии, а именно к термической обработке металлов и сплавов, и может быть использовано в машиностроительной и других областях промышленности, которые являются потребителями аустенитных сталей повышенной прочности и пластичности. Для повышения предела...
Тип: Изобретение
Номер охранного документа: 0002405840
Дата охранного документа: 10.12.2010
04.06.2019
№219.017.73c0

Способ получения толстолистового проката из аустенитной немагнитной стали

Изобретение относится к области металлургии, а именно к термической обработке металлов и сплавов, и может быть использовано в машиностроительной и других областях промышленности, которые являются потребителями аустенитных сталей повышенной прочности и пластичности. Способ включает нагрев слябов...
Тип: Изобретение
Номер охранного документа: 0002366728
Дата охранного документа: 10.09.2009
09.06.2019
№219.017.79a8

Суспензия для получения покрытия

Изобретение относится к области стекломатериалов для функциональных покрытий с необходимыми электрофизическими свойствами. Технический результат изобретения заключается в разработке состава суспензии для получения покрытий для снятия статических электрических зарядов, работающего в диапазоне...
Тип: Изобретение
Номер охранного документа: 0002399595
Дата охранного документа: 20.09.2010
09.06.2019
№219.017.7a36

Способ гранулирования флюса

Изобретение относится к методам гранулирования флюсов для сварки низколегированных хладостойких сталей и сплавов, широкого диапазона составов и может быть применено во всех отраслях промышленности, производящих сварочные материалы, для сварки сталей и сплавов широкого диапазона составов, в том...
Тип: Изобретение
Номер охранного документа: 0002387521
Дата охранного документа: 27.04.2010
29.06.2019
№219.017.9c65

Способ производства штрипса для труб магистральных трубопроводов

Изобретение относится к области металлургии, в частности к производству штрипса толщиной 15- 28 мм ответственного назначения. Для повышения прочности, хладостойкости и низкотемпературной вязкости в зоне термического влияния при сварке штрипса получают сталь, содержащую, мас.%: С - 0,03-0,07, Мn...
Тип: Изобретение
Номер охранного документа: 0002397254
Дата охранного документа: 20.08.2010
29.06.2019
№219.017.9c6e

Способ производства толстолистового проката

Изобретение относится к области металлургии, в частности к производству проката ответственного назначения. Для получения проката ответственного назначения с повышенными показателями прочности, при одновременном повышении хладостойкости и низкотемпературной вязкости в зоне термического влияния...
Тип: Изобретение
Номер охранного документа: 0002393236
Дата охранного документа: 27.06.2010
10.07.2019
№219.017.ad15

Способ производства штрипса для труб магистральных трубопроводов

Изобретение относится к области металлургии, конкретнее к производству штрипсовой стали для магистральных трубопроводов диаметром до 1420 мм, толщиной не менее 20 мм и не более 40 мм. Для повышения прочностных свойств и сопротивляемости хрупким разрушениям при температуре до -20°С при...
Тип: Изобретение
Номер охранного документа: 0002383633
Дата охранного документа: 10.03.2010
27.07.2019
№219.017.b9bd

Способ нанесения износостойкого покрытия на сталь

Изобретение относится к формированию функциональных покрытий на стальной поверхности, обладающих высокой стойкостью к коррозионному разрушению и износу. Способ включает последовательное сверхзвуковое холодное газодинамическое напыление композиционных частиц порошка сверхзвуковой газовой струей...
Тип: Изобретение
Номер охранного документа: 0002695718
Дата охранного документа: 25.07.2019
02.10.2019
№219.017.cb6d

Способ получения покрытий с интерметаллидной структурой

Изобретение относится к способу получения покрытий с интерметаллидной структурой из порошковых материалов с высокой адгезионной прочностью. Техническим результатом изобретения является получение интерметаллидного покрытия с регулируемой структурой. Осуществляют послойное нанесение...
Тип: Изобретение
Номер охранного документа: 0002701612
Дата охранного документа: 30.09.2019
22.12.2019
№219.017.f0a6

Способ получения функционального покрытия на основе алюминий-углеродных нановолокон

Изобретение относится к способу получения композиционного материала для изготовления функциональных покрытий из сплава алюминия и углеродного нановолокна и может быть использовано в авиационной, космической, судостроительной и других областях промышленности. Способ получения композиционного...
Тип: Изобретение
Номер охранного документа: 0002709688
Дата охранного документа: 19.12.2019
+ добавить свой РИД