×
20.08.2013
216.012.5f6e

Результат интеллектуальной деятельности: КАТАЛИЗАТОР ДЛЯ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ, СОДЕРЖАЩИХ ЛЕТУЧИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ, СОДЕРЖАЩИХ ЛЕТУЧИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гетерогенного катализа, а именно к катализатору для очистки отходящих производственных газов от летучих органических соединений, и может быть использовано в химической промышленности, например, для полного окисления отходящих газов производства глиоксаля от примесей формальдегида, этиленгликоля, угарного газа. Описан катализатор для очистки отходящих газов, содержащих летучие органические соединения, включающий диоксид церия, оксид марганца, серебро и носитель - мезопористый силикагель. Описан также способ получения катализатора, включающий пропитку мезопористого силикагеля водным раствором, содержащим нитраты марганца и церия, затем после промежуточных сушки и термообработки пропитку аммиачным раствором оксида серебра с последующей окончательной сушкой и термообработкой. Описан способ очистки отходящих газов, содержащих летучие органические соединения, с использованием описанного выше катализатора. Технический эффект - повышение эффективности катализатора за счет более равномерного распределения активного компонента - серебра по поверхности носителя, разработка менее продолжительного способа получения катализатора для очистки отходящих газов, содержащих летучие органические соединения. 3 н. и 9 з.п. ф-лы, 3 табл., 4 пр.

Изобретение относится к области гетерогенного катализа, а именно к очистке отходящих производственных газов от летучих органических соединений, и может быть использовано в химической промышленности, например, для полного окисления отходящих газов производства глиоксаля от примесей формальдегида, этиленгликоля, угарного газа.

Известен способ каталитического окисления формальдегида (летучего органического соединения) кислородом воздуха на катализаторе, содержащем благородный металл, нанесенный на оксидный носитель с переменной степенью окисления [US 5585083 А, 1996]. В качестве металла на таком катализаторе используется платина, в качестве носителя - оксид олова. Содержание благородного металла составляет 1-50% (мас.), а оксида 50-99% (мас.). Процесс ведут при температуре от -5°C до +25°C. При этом оптимальный результат показан на катализаторе, содержащем 15% (мас.) платины на оксиде олова.

Недостатками способа являются: высокое содержание благородных металлов (платина является очень дорогим металлом) в составе катализатора - до 50% (мас.), а также использование в качестве носителя для катализатора нестехиометрического оксида олова (или оксида олова с переменной валентностью). В условиях проведения процесса окисления формальдегида нестехиометрический оксид олова способен восстанавливаться до металлического олова и терять свою активность.

Известен также способ получения нанесенного катализатора [Tang X., Chen J., Li Y. et al. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts // Chem. Ing. J., 2006. - V.118. - P.119-125] путем формирования твердого раствора МпОх-CeO2 и последующим добавлением серебра для использования в процессе полного окисления формальдегида. Способ приготовления катализатора включает добавление раствора NaOH с концентрацией 2 моль/л при постоянном перемешивании и температуре 323 K (50°C) к раствору, содержащему Mn(NO3)2×6H2O и Се(NO3)3×6H2O до достижения рН получаемого раствора 10,5; выдерживание полученного раствора при 323 К (50°С) в течение 2 часов, фильтрацию осадка, промывку осадка дистиллированной водой, высушивание осадка при температуре 383 K (110°C) для удаления воды и прокаливание при 773 K (500°С) в атмосфере воздуха в течение 6 часов; диспергирование полученной пудры MnOx-СеО2 в растворе AgNO3 с последующим добавлением раствора NaOH с концентрацией 0,25 моль/л при постоянном перемешивании и температуре 323 K (50°С) до достижения pH получаемой смеси 10,0; выдерживание полученной смеси при температуре 323 K (50°C) и постоянном перемешивании в течение 3 часов; (фильтрование и промывку дистиллированной водой; высушивание при температуре 383 K (110°C) в течение 12 часов и прокаливание при температуре 773 K (500°C) в атмоссфере воздуха в течение 6 часов, при этом содержание серебра в катализаторе составляет 3% мас. от массы носителя.

К недостаткам катализатора, получаемого по вышеописанному способу, относятся: высокое содержание церия в составе носителя и длительность процесса синтеза катализатора.

Вышеуказанные катализатор и способ его получения по известному источнику [Tang X., Chen J., Li Y. et al. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts // Chem. Ing. J., 2006. - V.118. - P.119-125] выбраны в качестве прототипа заявляемому изобретению.

Технической задачей, на решение которой направлено настоящее изобретение, явилось создание нового более дешевого катализатора для очистки отходящих газов, содержащих летучие органические соединения, за счет дополнительного (основного) использования в качестве носителя мезопористого силикагеля и, тем самым, снижения содержания церия в составе носителя, при одновременном повышении его эффективности за счет более равномерного распределения активного компонента (серебра) по поверхности носителя.

Другой технической задачей, стоящей перед разработчиками, была разработка нового менее продолжительного способа получения катализатора для очистки отходящих газов, содержащих летучие органические соединения.

Следующей технической задачей изобретения была разработка способа очистки отходящих газов, содержащих летучие органические соединения, включающего обеспечение контакта отходящих газов с предлагаемым катализатором.

Задача при осуществлении заявляемой группы изобретений по объекту - катализатор достигается тем, что заявляемый катализатор для очистки отходящих газов, содержащих летучие органические соединения, включает диоксид церия СеО2 и оксид марганца MnOx, а в качестве активного компонента - серебро.

Особенность заключается в том, что катализатор дополнительно в качестве носителя содержит мезопористый силикагель.

Кроме того, он содержит мезопористый силикагель в количестве 80-90% от массы катализатора.

Целесообразно, что в качестве предшественника активного компонента серебро используют в виде аммиачного раствора оксида серебра [Ag(NH3)2]OH в количестве 0,5-5 мас.% от массы катализатора.

При этом носитель пропитан водным раствором, содержащим Mn(NO3)2×6H2O и Ce(NO3)3×6H2O в количестве, соответствующем 5-10 мас.% от массы катализатора в пересчете на оксиды.

Также то, что используют мезопористый силикагель, предварительно прокаленный при 850-900°C.

Катализатор имеет форму сферических гранул, размер которых определяется размером гранул исходного силикагеля.

Задача решаются тем, что способ получения катализатора для очистки отходящих газов, содержащих летучие органические соединения, включает пропитку носителя раствором активного компонента, сушку и термообработку.

Новым является то, что мезопористый силикагель пропитывают водным раствором, содержащим Mn(NO3)2×6H2O и Се(NO3)3×6Н2О, затем после промежуточных сушки и термообработки пропитывают аммиачным раствором оксида серебра [Ag(NH3)2]OH, после чего осуществляют окончательную сушку и термообработку.

Кроме того, аммиачный раствор оксида серебра [Ag(NH3)2]ОН используют в количестве 0,5-5 мас.% от массы катализатора.

При этом водный раствор, содержащий Mn(NO3)2×6H2O и Ce(NO3)3×6H2O, используют в количестве, соответствующем 5-10 мас.% от массы катализатора в пересчете на оксиды.

Кроме того, предварительную сушку проводят при 75-80°C в течение 11-12 часов, а предварительную термообработку проводят прокаливанием при 450-500°C в течение 4,5-5 часов.

Также окончательную сушку проводят при 80-85°C в течение 11-12 часов, а окончательную термообработку проводят прокаливанием при 450-500°C в течение 4,5-5 часов.

Задачи решаются также тем, что способ очистки отходящих газов, содержащих летучие органические соединения, предусматривающий использование катализатора по любому из пп.1-6, полученного способом по любому из пп.7-11.

Сущность предлагаемого изобретения заключается в следующем.

В катализаторе для очистки отходящих газов, содержащем серебро в качестве активного компонента, диоксид церия CeO2 и оксид марганца MnOx, используется технический мезопористый силикагель, предварительно прокаленный при 850-900°С в количестве 80-90% от массы катализатора. Использование силикагеля позволяет снизить количество диоксида церия в составе катализатора или не использовать его вследствие высокой цены.

Способ получения катализатора для очистки отходящих газов, содержащих летучие органические соединения, осуществляют следующим образом.

Мезопористый силикагель, предварительно прокаленный при 850-900°С, пропитывают по влагоемкости водным раствором, содержащим Mn(NO3)2×6H2O и Ce(NO3)3×6H2O в количестве, соответствующем 5-10% (мас.) от массы катализатора в пересчете на оксиды. Мезопористый силикагель, т.е. силикагель с размером пор 2-50 нм, используется для того, чтобы активный компонент равномерно распределялся по поверхности, а процесс протекал в кинетическом режиме и в режиме внешней диффузии (т.е. с достаточно высокой скоростью и непосредственно на поверхности катализатора). Пропитка мезопористого диоксида кремния по влагоемкости способствует более равномерному распределению церия и марганца по поверхности носителя. Далее пропитанный образец подвергают сушке при 75-80°С в течение 11-12 часов и прокалке при 450-500°С в течение 4,5-5 часов. Проведение сушки с использованием меньшего количества времени приводит к неполному удалению влаги из образца. Использование температур прокалки ниже 450°С приводит к неполному разложению солей Се(NO3)3, Mn(NO3)2 и окислению до соответствующих оксидов по реакциям:

1. 2Mn(NO3)2→2MnO+4NO2+O2,

2. 2MnO+O2→MnO2;

3. 4Се(NO3)3→2Ce2O3+12NO2+3O2;

4. 2Ce2O3+O2→4CeO2.

При этом оксиды остаются на поверхности мезопористого силикагеля.

Прокаленный таким образом мезопористый силикагель с нанесенными на его поверхность оксидами MnOx и CeO2 пропитывают по влагоемкости аммиачным раствором оксида серебра [Ag(NH3)2]NO3; в количестве 0,5-5% (мас.) от массы катализатора; сушат при 75-80°C и прокаливают при 450-500°C в течение 4,5-5 часов. Использование аммиачного раствора оксида серебра [Ag(NH3)2]OH за счет его высокой растворимости способствует более равномерному распределению активного компонента (серебра) по поверхности носителя. Использование температур прокалки ниже 450°C приводит к неполному разложению аммиачного комплекса оксида серебра по реакциям:

1. 2[Ag(NH3)2]OH→Ag2O+H2O+4NH3;

2. 2Ag2O→4Ag+O2.

При этом частицы активного компонента - серебра - остаются на поверхности носителя, а аммиак уносится в виде газа.

Предлагаемое изобретение иллюстрируется следующими примерами.

Пример 1. Катализатор состава 5 мас% Ag, 5 мас% CeO2, 90% SiO2 состава получают следующим образом. Силикагель подвергают предварительной прокалке при 900°C в течение 5 часов. Затем 5 г SiO2 пропитывают раствором, содержащим 10 мл воды и 0,63 г Ce(NO3)3×6H2O. Образец высушивают при 80°С в течение 12 часов, а затем прокаливают при 500°С в течение 5 часов. Полученный силикагель, модифицированный диоксидом церия, пропитывают раствором, содержащим 9 мл воды, 0,396 г AgNO3 и 1 мл 25%-ного раствора аммиака. Образец высушивают при 80°С в течение 12 часов, а затем подвергают обработке в атмосфере воздуха до 500°C.

Пример 2. Катализатор состава 5 мас.% Ag, 5 мас.% MnO2, 90 мас.% SiO2 получают следующим образом. Силикагель подвергают предварительной прокалке при 900°С в течение 5 часов. Затем 5 г SiO2 пропитывают раствором, содержащим 10 мл воды и 0,51 г Mn(NO3)2. Образец высушивался при 80°C в течение 12 часов, а затем прокаливался при 500°C в течение 5 часов. Полученный силикагель, модифицированный диоксидом марганца, пропитывался раствором, содержащим 9 мл воды, 0,396 г AgNO3 и 1 мл 25%-ного раствора аммиака. Образец высушивался при 80°С в течение 12 часов, а затем подвергался обработке в атмосфере воздуха до 500°C.

Пример 3. Катализатор состава 5 мас.% Ag, 5 мас.% MnO2+CeO2, 90 мас.% SiO2 получают следующим образом. Силикагель подвергают предварительной прокалке при 900°C в течение 5 часов. Затем 5 г SiO2 пропитывают раствором, содержащим 10 мл воды, 0,42 г Ce(NO3)3×6H2O и 0,18 г Mn(NO3)2. Образец высушивают при 80°С в течение 12 часов, а затем прокаливают при 500°C в течение 5 часов. Полученный силикагель, модифицированный диоксидом церия и диоксидом марганца, пропитывают раствором, содержащим 9 мл воды, 0,396 г AgNO3 и 1 мл 25%-ного раствора аммиака. Образец высушивают при 80°C в течение 12 часов, а затем подвергают обработке в атмосфере воздуха до 500°C.

Пример 4. Способ очистки газовой смеси, содержащей формальдегид, проводят при следующих условиях. В проточный реактор загружают навеску катализатора так, чтобы достичь необходимого времени контакта при объемной скорости реагентов 10 л/час. Реактор нагревают до температуры 120°C и подают газовую смесь, содержащую формальдегид. Подачу формальдегида осуществляют путем пропускания потока воздуха над слоем параформа при 100°C.

При этом получают результаты по окислению формальдегида, представленные в таблицах 1, 2, 3.

Таблица 1
Влияние времени контакта на каталитические характеристик 5%Ag/5%CeO2/SiO2 при 120°C
Время контакта, сек Количество формальдегида, об.% Конверсия формальдегида, % Селективность по CO2, %
0.1 1.00 39.0 90.2
0.2 1.05 49.5 95.3
0.7 1.03 90.3 98.9
1.0 1.00 98.4 100.0

Таблица 2
Каталитические характеристики образцов при времени контакта 1 сек
Катализатор Температура, °C Количество формальдегида, об.% Конверсия формальдегида, % Селективность по CO2, %
5%Ag/5%CeO2/SiO2 120 1.35 97.2 99.5
130 1.50 99.7 100.0
150 1.35 100.0 100.0
5%Ag/5%MnOx/SiO2 130 1.90 71.1 97.2
140 1.81 95.2 100.0
150 1.81 100.0 100.0
5%Ag/5%Ce0.5Mn0.5O2-δ/SiO2 120 2.13 72.7 99.5
130 2.13 98.2 100.0
150 2.00 100.0 100.0

Таблица 3
Влияние паров воды на каталитические характеристики 5%Ag/5%CeO2/SiO2 при времени контакта 1 сек
Температура, °C Количество паров воды, об.% Количество формальдегида, об.% Конверсия формальдегида, % Селективность по CO2, %
120 - 0.85 96.7 99.5
3 0.87 95.0 100.0
130 - 0.80 99.5 100.0
3 0.79 99.3 100.0

Источник поступления информации: Роспатент

Показаны записи 41-46 из 46.
20.01.2018
№218.016.0f7c

Бесконтактный многофазный генератор переменного тока

Изобретение относится к электротехнике, к электрическим машинам переменного тока. Технический результат состоит в улучшении массогаборитных показателей и упрощении изготовления. Бесконтактном многофазный генератор переменного тока содержит корпус, подвозбудитель, состоящий из аксиальных...
Тип: Изобретение
Номер охранного документа: 0002633374
Дата охранного документа: 12.10.2017
17.02.2018
№218.016.2bf5

Аксиальный бесконтактный генератор переменного тока

Изобретение относится к электротехнике и может быть использовано для генерирования электрической энергии. Технический результат состоит в уменьшении осевых размеров ротора, повышении жесткости его конструкции и упрощении технологии сборки. Аксиальный бесконтактный генератор переменного тока...
Тип: Изобретение
Номер охранного документа: 0002643196
Дата охранного документа: 01.02.2018
17.02.2018
№218.016.2cd8

Стабилизированный радиально-аксиальный бесконтактный электрический генератор

Изобретение относится к электротехнике. Технический результат состоит в расширении эксплуатационных возможностей. Стабилизированный радиально-аксиальный бесконтактный электрический генератор содержит корпус. В нижней части корпуса установлен стабилизатор напряжения, содержащий блок питания для...
Тип: Изобретение
Номер охранного документа: 0002643514
Дата охранного документа: 02.02.2018
08.03.2019
№219.016.d526

Способ получения формальдегидсодержащей смолы с пониженной эмиссией формальдегида и функциональных материалов на ее основе

Изобретение относится к химической промышленности и может быть использовано для снижения содержания в материалах, получаемых на основе формальдегидосодержащих смол, несвязанного формальдегида. Способ получения глиоксальсодержащей карбамидоформальдегидной смолы с пониженной эмиссией фенола...
Тип: Изобретение
Номер охранного документа: 0002413737
Дата охранного документа: 10.03.2011
20.05.2023
№223.018.65e6

Способ получения огнезащитной добавки на основе гликолурила

Изобретение может быть использовано для производства материалов с пониженной горючестью. Способ получения огнезащитной добавки на основе гликолурила включает смешение гликолурила и трифенилфосфита с алифатическим или ароматическим альдегидом. Реакцию ведут в присутствии катализатора кислоты...
Тип: Изобретение
Номер охранного документа: 0002778788
Дата охранного документа: 24.08.2022
20.05.2023
№223.018.65e7

Способ получения огнезащитной добавки на основе гликолурила

Изобретение может быть использовано для производства материалов с пониженной горючестью. Способ получения огнезащитной добавки на основе гликолурила включает смешение гликолурила и трифенилфосфита с алифатическим или ароматическим альдегидом. Реакцию ведут в присутствии катализатора кислоты...
Тип: Изобретение
Номер охранного документа: 0002778788
Дата охранного документа: 24.08.2022
Показаны записи 51-60 из 75.
19.04.2019
№219.017.330c

Способ получения 2,4,6,8-тетраазабицикло[3.3.0]октан-3,7-диона

Изобретение относится к способу получения 2,4,6,8-тетраазабицикло[3.3.0]октан-3,7-диона (гликолурила), реакцию ведут при 80°С, в течение 60 мин, причем используют концентрированную серную кислоту в водной среде и реагенты берут в следующих мольных соотношениях: глиоксаль 2,0; мочевина 4,0;...
Тип: Изобретение
Номер охранного документа: 0002439072
Дата охранного документа: 10.01.2012
20.04.2019
№219.017.3532

Стабилизированная двухвходовая ветро-солнечная аксиально-радиальная электрическая машина-генератор

Изобретение относится к области электротехники и может быть использовано в преобразователях кинетической энергии ветра и световой энергии Солнца в суммарную электрическую энергию переменного тока. Технический результат - обеспечение возможности суммирования механической энергии и световой...
Тип: Изобретение
Номер охранного документа: 0002685424
Дата охранного документа: 18.04.2019
24.05.2019
№219.017.5dc1

Стабилизированный вентильный аксиально-конический ветрогенератор постоянного тока

Изобретение относится к электротехнике и может быть использовано, например, в качестве преобразователя механической энергии воздушного потока (например, энергии набегающего воздушного потока при использовании на подвижных локальных объектах, энергии ветра при использовании на неподвижных...
Тип: Изобретение
Номер охранного документа: 0002688925
Дата охранного документа: 23.05.2019
29.05.2019
№219.017.6223

Стабилизированный вентильный аксиально-радиальный ветрогенератор постоянного тока

Изобретение относится к электротехнике, и может быть использовано, например, в качестве преобразователя механической энергии воздушного потока (например, энергии набегающего воздушного потока при использовании на подвижных локальных объектах, энергии ветра при использовании на неподвижных...
Тип: Изобретение
Номер охранного документа: 0002689211
Дата охранного документа: 27.05.2019
29.05.2019
№219.017.6288

Двухвходовая ветро-солнечная аксиально-радиальная электрическая машина-генератор

Изобретение относится к области электротехники и может быть использовано в преобразователе механической энергии вращения, например энергии ветра, подаваемой на механический вход машины, и электрической энергии постоянного тока, например световой энергии Солнца, преобразованной...
Тип: Изобретение
Номер охранного документа: 0002688211
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.67f9

Способ получения сложных эфиров из отходов производства капролактама

Изобретение относится к области синтеза сложных эфиров из спиртовой фракции капролактама. Способ получения сложных эфиров из отходов производства капролактама осуществляется путем реакции этерификации органической кислоты и спирта в условиях автокаталитического выделения тепла, поддерживающего...
Тип: Изобретение
Номер охранного документа: 0002422434
Дата охранного документа: 27.06.2011
03.09.2019
№219.017.c6c1

Катализатор для жидкофазной конверсии биовозобновляемого сырья и способ его получения

Изобретение относится к области создания новых каталитически активных материалов, в частности материалов, содержащих в своем составе каталитически активные центры различной природы. Изобретение касается катализатора для жидкофазной конверсии биовозобновляемого сырья, содержащего пористый...
Тип: Изобретение
Номер охранного документа: 0002698912
Дата охранного документа: 02.09.2019
06.12.2019
№219.017.ea23

Трехвходовая двухмерная ветро-солнечная аксиально-радиальная электрическая машина-генератор

Изобретение относится к электротехнике. Технический результат – повышение выходного напряжения. Трехвходовая двухмерная ветро-солнечная аксиально-радиальная электрическая машина-генератор содержит корпус, в верхней части которого установлен фотоэлектрический преобразователь, полый вал,...
Тип: Изобретение
Номер охранного документа: 0002707963
Дата охранного документа: 03.12.2019
21.12.2019
№219.017.efff

Апоптозиндуцирующие средства и способ их получения

Изобретение относится к способу получения аддуктов пиколиновой либо никотиновой кислоты с аскорбиновой кислотой, характеризующийся тем, что к водному раствору аскорбиновой кислоты добавляют пиколиновую кислоту либо никотиновую кислоту (предварительно обработанную микроволновым излучением) в...
Тип: Изобретение
Номер охранного документа: 0002709498
Дата охранного документа: 18.12.2019
21.01.2020
№220.017.f76a

Быстрый и масштабируемый способ получения микропористого 2-метилимидазолата кобальта(ii)

Предложен способ получения микропористого 2-метилимидазолата кобальта(II), включающий этапы, на которых смешивают 1,1-1,5% щелочи, 2,7-3,1% соли кобальта(II) и 4-6% 2-метилимидазола в воде (остальное), при температуре 15-30°C в течение 0,1–3 часа, выделяют осадок посредством фильтрования или...
Тип: Изобретение
Номер охранного документа: 0002711317
Дата охранного документа: 16.01.2020
+ добавить свой РИД