×
20.08.2013
216.012.5f6e

Результат интеллектуальной деятельности: КАТАЛИЗАТОР ДЛЯ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ, СОДЕРЖАЩИХ ЛЕТУЧИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ, СОДЕРЖАЩИХ ЛЕТУЧИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гетерогенного катализа, а именно к катализатору для очистки отходящих производственных газов от летучих органических соединений, и может быть использовано в химической промышленности, например, для полного окисления отходящих газов производства глиоксаля от примесей формальдегида, этиленгликоля, угарного газа. Описан катализатор для очистки отходящих газов, содержащих летучие органические соединения, включающий диоксид церия, оксид марганца, серебро и носитель - мезопористый силикагель. Описан также способ получения катализатора, включающий пропитку мезопористого силикагеля водным раствором, содержащим нитраты марганца и церия, затем после промежуточных сушки и термообработки пропитку аммиачным раствором оксида серебра с последующей окончательной сушкой и термообработкой. Описан способ очистки отходящих газов, содержащих летучие органические соединения, с использованием описанного выше катализатора. Технический эффект - повышение эффективности катализатора за счет более равномерного распределения активного компонента - серебра по поверхности носителя, разработка менее продолжительного способа получения катализатора для очистки отходящих газов, содержащих летучие органические соединения. 3 н. и 9 з.п. ф-лы, 3 табл., 4 пр.

Изобретение относится к области гетерогенного катализа, а именно к очистке отходящих производственных газов от летучих органических соединений, и может быть использовано в химической промышленности, например, для полного окисления отходящих газов производства глиоксаля от примесей формальдегида, этиленгликоля, угарного газа.

Известен способ каталитического окисления формальдегида (летучего органического соединения) кислородом воздуха на катализаторе, содержащем благородный металл, нанесенный на оксидный носитель с переменной степенью окисления [US 5585083 А, 1996]. В качестве металла на таком катализаторе используется платина, в качестве носителя - оксид олова. Содержание благородного металла составляет 1-50% (мас.), а оксида 50-99% (мас.). Процесс ведут при температуре от -5°C до +25°C. При этом оптимальный результат показан на катализаторе, содержащем 15% (мас.) платины на оксиде олова.

Недостатками способа являются: высокое содержание благородных металлов (платина является очень дорогим металлом) в составе катализатора - до 50% (мас.), а также использование в качестве носителя для катализатора нестехиометрического оксида олова (или оксида олова с переменной валентностью). В условиях проведения процесса окисления формальдегида нестехиометрический оксид олова способен восстанавливаться до металлического олова и терять свою активность.

Известен также способ получения нанесенного катализатора [Tang X., Chen J., Li Y. et al. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts // Chem. Ing. J., 2006. - V.118. - P.119-125] путем формирования твердого раствора МпОх-CeO2 и последующим добавлением серебра для использования в процессе полного окисления формальдегида. Способ приготовления катализатора включает добавление раствора NaOH с концентрацией 2 моль/л при постоянном перемешивании и температуре 323 K (50°C) к раствору, содержащему Mn(NO3)2×6H2O и Се(NO3)3×6H2O до достижения рН получаемого раствора 10,5; выдерживание полученного раствора при 323 К (50°С) в течение 2 часов, фильтрацию осадка, промывку осадка дистиллированной водой, высушивание осадка при температуре 383 K (110°C) для удаления воды и прокаливание при 773 K (500°С) в атмосфере воздуха в течение 6 часов; диспергирование полученной пудры MnOx-СеО2 в растворе AgNO3 с последующим добавлением раствора NaOH с концентрацией 0,25 моль/л при постоянном перемешивании и температуре 323 K (50°С) до достижения pH получаемой смеси 10,0; выдерживание полученной смеси при температуре 323 K (50°C) и постоянном перемешивании в течение 3 часов; (фильтрование и промывку дистиллированной водой; высушивание при температуре 383 K (110°C) в течение 12 часов и прокаливание при температуре 773 K (500°C) в атмоссфере воздуха в течение 6 часов, при этом содержание серебра в катализаторе составляет 3% мас. от массы носителя.

К недостаткам катализатора, получаемого по вышеописанному способу, относятся: высокое содержание церия в составе носителя и длительность процесса синтеза катализатора.

Вышеуказанные катализатор и способ его получения по известному источнику [Tang X., Chen J., Li Y. et al. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts // Chem. Ing. J., 2006. - V.118. - P.119-125] выбраны в качестве прототипа заявляемому изобретению.

Технической задачей, на решение которой направлено настоящее изобретение, явилось создание нового более дешевого катализатора для очистки отходящих газов, содержащих летучие органические соединения, за счет дополнительного (основного) использования в качестве носителя мезопористого силикагеля и, тем самым, снижения содержания церия в составе носителя, при одновременном повышении его эффективности за счет более равномерного распределения активного компонента (серебра) по поверхности носителя.

Другой технической задачей, стоящей перед разработчиками, была разработка нового менее продолжительного способа получения катализатора для очистки отходящих газов, содержащих летучие органические соединения.

Следующей технической задачей изобретения была разработка способа очистки отходящих газов, содержащих летучие органические соединения, включающего обеспечение контакта отходящих газов с предлагаемым катализатором.

Задача при осуществлении заявляемой группы изобретений по объекту - катализатор достигается тем, что заявляемый катализатор для очистки отходящих газов, содержащих летучие органические соединения, включает диоксид церия СеО2 и оксид марганца MnOx, а в качестве активного компонента - серебро.

Особенность заключается в том, что катализатор дополнительно в качестве носителя содержит мезопористый силикагель.

Кроме того, он содержит мезопористый силикагель в количестве 80-90% от массы катализатора.

Целесообразно, что в качестве предшественника активного компонента серебро используют в виде аммиачного раствора оксида серебра [Ag(NH3)2]OH в количестве 0,5-5 мас.% от массы катализатора.

При этом носитель пропитан водным раствором, содержащим Mn(NO3)2×6H2O и Ce(NO3)3×6H2O в количестве, соответствующем 5-10 мас.% от массы катализатора в пересчете на оксиды.

Также то, что используют мезопористый силикагель, предварительно прокаленный при 850-900°C.

Катализатор имеет форму сферических гранул, размер которых определяется размером гранул исходного силикагеля.

Задача решаются тем, что способ получения катализатора для очистки отходящих газов, содержащих летучие органические соединения, включает пропитку носителя раствором активного компонента, сушку и термообработку.

Новым является то, что мезопористый силикагель пропитывают водным раствором, содержащим Mn(NO3)2×6H2O и Се(NO3)3×6Н2О, затем после промежуточных сушки и термообработки пропитывают аммиачным раствором оксида серебра [Ag(NH3)2]OH, после чего осуществляют окончательную сушку и термообработку.

Кроме того, аммиачный раствор оксида серебра [Ag(NH3)2]ОН используют в количестве 0,5-5 мас.% от массы катализатора.

При этом водный раствор, содержащий Mn(NO3)2×6H2O и Ce(NO3)3×6H2O, используют в количестве, соответствующем 5-10 мас.% от массы катализатора в пересчете на оксиды.

Кроме того, предварительную сушку проводят при 75-80°C в течение 11-12 часов, а предварительную термообработку проводят прокаливанием при 450-500°C в течение 4,5-5 часов.

Также окончательную сушку проводят при 80-85°C в течение 11-12 часов, а окончательную термообработку проводят прокаливанием при 450-500°C в течение 4,5-5 часов.

Задачи решаются также тем, что способ очистки отходящих газов, содержащих летучие органические соединения, предусматривающий использование катализатора по любому из пп.1-6, полученного способом по любому из пп.7-11.

Сущность предлагаемого изобретения заключается в следующем.

В катализаторе для очистки отходящих газов, содержащем серебро в качестве активного компонента, диоксид церия CeO2 и оксид марганца MnOx, используется технический мезопористый силикагель, предварительно прокаленный при 850-900°С в количестве 80-90% от массы катализатора. Использование силикагеля позволяет снизить количество диоксида церия в составе катализатора или не использовать его вследствие высокой цены.

Способ получения катализатора для очистки отходящих газов, содержащих летучие органические соединения, осуществляют следующим образом.

Мезопористый силикагель, предварительно прокаленный при 850-900°С, пропитывают по влагоемкости водным раствором, содержащим Mn(NO3)2×6H2O и Ce(NO3)3×6H2O в количестве, соответствующем 5-10% (мас.) от массы катализатора в пересчете на оксиды. Мезопористый силикагель, т.е. силикагель с размером пор 2-50 нм, используется для того, чтобы активный компонент равномерно распределялся по поверхности, а процесс протекал в кинетическом режиме и в режиме внешней диффузии (т.е. с достаточно высокой скоростью и непосредственно на поверхности катализатора). Пропитка мезопористого диоксида кремния по влагоемкости способствует более равномерному распределению церия и марганца по поверхности носителя. Далее пропитанный образец подвергают сушке при 75-80°С в течение 11-12 часов и прокалке при 450-500°С в течение 4,5-5 часов. Проведение сушки с использованием меньшего количества времени приводит к неполному удалению влаги из образца. Использование температур прокалки ниже 450°С приводит к неполному разложению солей Се(NO3)3, Mn(NO3)2 и окислению до соответствующих оксидов по реакциям:

1. 2Mn(NO3)2→2MnO+4NO2+O2,

2. 2MnO+O2→MnO2;

3. 4Се(NO3)3→2Ce2O3+12NO2+3O2;

4. 2Ce2O3+O2→4CeO2.

При этом оксиды остаются на поверхности мезопористого силикагеля.

Прокаленный таким образом мезопористый силикагель с нанесенными на его поверхность оксидами MnOx и CeO2 пропитывают по влагоемкости аммиачным раствором оксида серебра [Ag(NH3)2]NO3; в количестве 0,5-5% (мас.) от массы катализатора; сушат при 75-80°C и прокаливают при 450-500°C в течение 4,5-5 часов. Использование аммиачного раствора оксида серебра [Ag(NH3)2]OH за счет его высокой растворимости способствует более равномерному распределению активного компонента (серебра) по поверхности носителя. Использование температур прокалки ниже 450°C приводит к неполному разложению аммиачного комплекса оксида серебра по реакциям:

1. 2[Ag(NH3)2]OH→Ag2O+H2O+4NH3;

2. 2Ag2O→4Ag+O2.

При этом частицы активного компонента - серебра - остаются на поверхности носителя, а аммиак уносится в виде газа.

Предлагаемое изобретение иллюстрируется следующими примерами.

Пример 1. Катализатор состава 5 мас% Ag, 5 мас% CeO2, 90% SiO2 состава получают следующим образом. Силикагель подвергают предварительной прокалке при 900°C в течение 5 часов. Затем 5 г SiO2 пропитывают раствором, содержащим 10 мл воды и 0,63 г Ce(NO3)3×6H2O. Образец высушивают при 80°С в течение 12 часов, а затем прокаливают при 500°С в течение 5 часов. Полученный силикагель, модифицированный диоксидом церия, пропитывают раствором, содержащим 9 мл воды, 0,396 г AgNO3 и 1 мл 25%-ного раствора аммиака. Образец высушивают при 80°С в течение 12 часов, а затем подвергают обработке в атмосфере воздуха до 500°C.

Пример 2. Катализатор состава 5 мас.% Ag, 5 мас.% MnO2, 90 мас.% SiO2 получают следующим образом. Силикагель подвергают предварительной прокалке при 900°С в течение 5 часов. Затем 5 г SiO2 пропитывают раствором, содержащим 10 мл воды и 0,51 г Mn(NO3)2. Образец высушивался при 80°C в течение 12 часов, а затем прокаливался при 500°C в течение 5 часов. Полученный силикагель, модифицированный диоксидом марганца, пропитывался раствором, содержащим 9 мл воды, 0,396 г AgNO3 и 1 мл 25%-ного раствора аммиака. Образец высушивался при 80°С в течение 12 часов, а затем подвергался обработке в атмосфере воздуха до 500°C.

Пример 3. Катализатор состава 5 мас.% Ag, 5 мас.% MnO2+CeO2, 90 мас.% SiO2 получают следующим образом. Силикагель подвергают предварительной прокалке при 900°C в течение 5 часов. Затем 5 г SiO2 пропитывают раствором, содержащим 10 мл воды, 0,42 г Ce(NO3)3×6H2O и 0,18 г Mn(NO3)2. Образец высушивают при 80°С в течение 12 часов, а затем прокаливают при 500°C в течение 5 часов. Полученный силикагель, модифицированный диоксидом церия и диоксидом марганца, пропитывают раствором, содержащим 9 мл воды, 0,396 г AgNO3 и 1 мл 25%-ного раствора аммиака. Образец высушивают при 80°C в течение 12 часов, а затем подвергают обработке в атмосфере воздуха до 500°C.

Пример 4. Способ очистки газовой смеси, содержащей формальдегид, проводят при следующих условиях. В проточный реактор загружают навеску катализатора так, чтобы достичь необходимого времени контакта при объемной скорости реагентов 10 л/час. Реактор нагревают до температуры 120°C и подают газовую смесь, содержащую формальдегид. Подачу формальдегида осуществляют путем пропускания потока воздуха над слоем параформа при 100°C.

При этом получают результаты по окислению формальдегида, представленные в таблицах 1, 2, 3.

Таблица 1
Влияние времени контакта на каталитические характеристик 5%Ag/5%CeO2/SiO2 при 120°C
Время контакта, сек Количество формальдегида, об.% Конверсия формальдегида, % Селективность по CO2, %
0.1 1.00 39.0 90.2
0.2 1.05 49.5 95.3
0.7 1.03 90.3 98.9
1.0 1.00 98.4 100.0

Таблица 2
Каталитические характеристики образцов при времени контакта 1 сек
Катализатор Температура, °C Количество формальдегида, об.% Конверсия формальдегида, % Селективность по CO2, %
5%Ag/5%CeO2/SiO2 120 1.35 97.2 99.5
130 1.50 99.7 100.0
150 1.35 100.0 100.0
5%Ag/5%MnOx/SiO2 130 1.90 71.1 97.2
140 1.81 95.2 100.0
150 1.81 100.0 100.0
5%Ag/5%Ce0.5Mn0.5O2-δ/SiO2 120 2.13 72.7 99.5
130 2.13 98.2 100.0
150 2.00 100.0 100.0

Таблица 3
Влияние паров воды на каталитические характеристики 5%Ag/5%CeO2/SiO2 при времени контакта 1 сек
Температура, °C Количество паров воды, об.% Количество формальдегида, об.% Конверсия формальдегида, % Селективность по CO2, %
120 - 0.85 96.7 99.5
3 0.87 95.0 100.0
130 - 0.80 99.5 100.0
3 0.79 99.3 100.0

Источник поступления информации: Роспатент

Показаны записи 11-20 из 46.
10.09.2014
№216.012.f2fb

Способ получения диметридазола

Изобретение относится к способу получения 1,2-диметил-5-нитроимидазола, который заключается в реакции синтеза 2-метил-4(5)-нитроимидазола с диметилсульфатом в присутствии муравьиной кислоты при нагревании и под давлением, в дальнейшем удалении из реакционной смеси муравьиной кислоты и...
Тип: Изобретение
Номер охранного документа: 0002528025
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f78d

Аксиальный бесконтактный двигатель-генератор

Изобретение относится к электротехнике, в частности к электрическим машинам постоянного тока. Предлагаемый аксиальный бесконтактный двигатель-генератор содержит корпус и ротор, на котором установлены постоянный аксиальный многополюсный магнит индуктора подвозбудителя и аксиальные вращающиеся...
Тип: Изобретение
Номер охранного документа: 0002529210
Дата охранного документа: 27.09.2014
27.10.2014
№216.013.00da

Способ получения метронидазола

Изобретение относится к области органической химии, а именно к способу получения метронидазола путем алкилирования 2-метил-4(5)-нитроимидазола этиленхлоргидрином при нагревании в присутствии соляной кислоты, избыток алкилирующего агента удаляют при пониженном давлении, а непрореагировавший...
Тип: Изобретение
Номер охранного документа: 0002531616
Дата охранного документа: 27.10.2014
20.02.2015
№216.013.2751

Способ получения карбамидоформальдегидной смолы

Изобретение относится к способу получения карбамидоформальдегидной смолы, используемой для изготовления древесностружечных плит. Способ проводят в несколько стадий в среде с переменной кислотностью. Способ заключается в том, что проводят слабощелочную конденсацию карбамида и...
Тип: Изобретение
Номер охранного документа: 0002541522
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.285d

Способ получения гликолевой кислоты

Изобретение относится к усовершенствованному способу получения гликолевой кислоты. Гликолевая кислота находит широкое применение в различных отраслях промышленности: пищевой, кожевенной, нефтегазовой, обрабатывающей, текстильной, строительной и т.д. Данная кислота обладает рядом важных свойств,...
Тип: Изобретение
Номер охранного документа: 0002541790
Дата охранного документа: 20.02.2015
27.06.2015
№216.013.59bd

Способ получения натриевой соли глиоксалевой кислоты из продуктов окисления глиоксаля

Изобретение относится к химической промышленности, в частности к способу получения натриевой соли глиоксалевой кислоты, которая широко применяется в органическом синтезе, например является исходным продуктом для получения ванилина. Способ получения натриевой соли глиоксалевой кислоты из...
Тип: Изобретение
Номер охранного документа: 0002554514
Дата охранного документа: 27.06.2015
20.07.2015
№216.013.6452

Катализатор низкотемпературного окисления монооксида углерода и способ его применения

Изобретение относится к области гетерогенного катализа, а именно к низкотемпературному окислению CO, и может быть использовано для систем очистки воздуха в замкнутых помещениях, например в салонах автотранспорта, производственных, офисных и жилых помещениях. Предложен катализатор...
Тип: Изобретение
Номер охранного документа: 0002557229
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.68bf

Катализатор переработки этанола и способ получения ацетальдегида и водорода из этанола с использованием этого катализатора

Изобретение относится к катализатору получения ацетальдегида и водорода из этанола. Данный катализатор представляет собой мезопористый силикагель (S =100-300 м/г) с нанесенным на его поверхность серебром в количестве 1-8% от массы катализатора, находящимся в высокодисперсном (наноразмерном)...
Тип: Изобретение
Номер охранного документа: 0002558368
Дата охранного документа: 10.08.2015
10.11.2015
№216.013.8bad

Способ предпосевной обработки семян зерновых культур

Изобретение относится к области сельского хозяйства, в частности к растениеводству, и может быть использовано для предпосевной обработки семян зерновых культур (пшеницы, ячменя, овса). Способ предпосевной подготовки семян зерновых культур включает обработку семян гликолурилом путем их...
Тип: Изобретение
Номер охранного документа: 0002567364
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.93a7

Способ зеленого черенкования плодовых и ягодных культур

Изобретение относится к области сельского хозяйства, в частности к садоводству. Способ включает размножение черенков годичного прироста длиной 15-20 см с 3-4 почками и двумя-тремя целыми листьями с последующей обработкой черенков перед посадкой. При этом черенки после оводнения в течение 1 часа...
Тип: Изобретение
Номер охранного документа: 0002569418
Дата охранного документа: 27.11.2015
Показаны записи 11-20 из 75.
27.09.2014
№216.012.f78d

Аксиальный бесконтактный двигатель-генератор

Изобретение относится к электротехнике, в частности к электрическим машинам постоянного тока. Предлагаемый аксиальный бесконтактный двигатель-генератор содержит корпус и ротор, на котором установлены постоянный аксиальный многополюсный магнит индуктора подвозбудителя и аксиальные вращающиеся...
Тип: Изобретение
Номер охранного документа: 0002529210
Дата охранного документа: 27.09.2014
27.10.2014
№216.013.00da

Способ получения метронидазола

Изобретение относится к области органической химии, а именно к способу получения метронидазола путем алкилирования 2-метил-4(5)-нитроимидазола этиленхлоргидрином при нагревании в присутствии соляной кислоты, избыток алкилирующего агента удаляют при пониженном давлении, а непрореагировавший...
Тип: Изобретение
Номер охранного документа: 0002531616
Дата охранного документа: 27.10.2014
20.02.2015
№216.013.2751

Способ получения карбамидоформальдегидной смолы

Изобретение относится к способу получения карбамидоформальдегидной смолы, используемой для изготовления древесностружечных плит. Способ проводят в несколько стадий в среде с переменной кислотностью. Способ заключается в том, что проводят слабощелочную конденсацию карбамида и...
Тип: Изобретение
Номер охранного документа: 0002541522
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.285d

Способ получения гликолевой кислоты

Изобретение относится к усовершенствованному способу получения гликолевой кислоты. Гликолевая кислота находит широкое применение в различных отраслях промышленности: пищевой, кожевенной, нефтегазовой, обрабатывающей, текстильной, строительной и т.д. Данная кислота обладает рядом важных свойств,...
Тип: Изобретение
Номер охранного документа: 0002541790
Дата охранного документа: 20.02.2015
27.06.2015
№216.013.59bd

Способ получения натриевой соли глиоксалевой кислоты из продуктов окисления глиоксаля

Изобретение относится к химической промышленности, в частности к способу получения натриевой соли глиоксалевой кислоты, которая широко применяется в органическом синтезе, например является исходным продуктом для получения ванилина. Способ получения натриевой соли глиоксалевой кислоты из...
Тип: Изобретение
Номер охранного документа: 0002554514
Дата охранного документа: 27.06.2015
20.07.2015
№216.013.6452

Катализатор низкотемпературного окисления монооксида углерода и способ его применения

Изобретение относится к области гетерогенного катализа, а именно к низкотемпературному окислению CO, и может быть использовано для систем очистки воздуха в замкнутых помещениях, например в салонах автотранспорта, производственных, офисных и жилых помещениях. Предложен катализатор...
Тип: Изобретение
Номер охранного документа: 0002557229
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.68bf

Катализатор переработки этанола и способ получения ацетальдегида и водорода из этанола с использованием этого катализатора

Изобретение относится к катализатору получения ацетальдегида и водорода из этанола. Данный катализатор представляет собой мезопористый силикагель (S =100-300 м/г) с нанесенным на его поверхность серебром в количестве 1-8% от массы катализатора, находящимся в высокодисперсном (наноразмерном)...
Тип: Изобретение
Номер охранного документа: 0002558368
Дата охранного документа: 10.08.2015
10.11.2015
№216.013.8bad

Способ предпосевной обработки семян зерновых культур

Изобретение относится к области сельского хозяйства, в частности к растениеводству, и может быть использовано для предпосевной обработки семян зерновых культур (пшеницы, ячменя, овса). Способ предпосевной подготовки семян зерновых культур включает обработку семян гликолурилом путем их...
Тип: Изобретение
Номер охранного документа: 0002567364
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.93a7

Способ зеленого черенкования плодовых и ягодных культур

Изобретение относится к области сельского хозяйства, в частности к садоводству. Способ включает размножение черенков годичного прироста длиной 15-20 см с 3-4 почками и двумя-тремя целыми листьями с последующей обработкой черенков перед посадкой. При этом черенки после оводнения в течение 1 часа...
Тип: Изобретение
Номер охранного документа: 0002569418
Дата охранного документа: 27.11.2015
27.01.2016
№216.014.bc7e

Способ выделения глиоксалевой кислоты из продуктов окисления глиоксаля

Изобретение относится к химической промышленности, в частности к способу выделения глиоксалевой кислоты (ГК), которая широко применяется в органическом синтезе, например является исходным продуктом для получения ванилина, аллантоина и биоразлагаемых полимеров. Способ выделения глиоксалевой...
Тип: Изобретение
Номер охранного документа: 0002573839
Дата охранного документа: 27.01.2016
+ добавить свой РИД