×
10.08.2013
216.012.5cba

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНОГО СОЕДИНЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в неорганической химии. Для получения магнитоактивного соединения путем окислительной конденсации раствора соли железа (II) конденсацию проводят в присутствии нитрозированных лигносульфонатов в условиях воздействия магнитного поля. Изобретение позволяет ускорить синтез и получить магнитоактивное соединение с высокой относительной магнитной восприимчивостью. 1 табл., 22 пр.
Основные результаты: Способ получения магнитоактивного соединения путем окислительной конденсации раствора соли железа (II), отличающийся тем, что конденсацию проводят в присутствии нитрозированных лигносульфонатов в условиях воздействия магнитного поля.

Изобретение относится к способам получения магнитоактивных соединений. Наноразмерные частицы магнитоактивных соединений являются основой магнитных жидкостей, обладающих уникальным сочетанием текучести и способностью взаимодействовать с магнитным полем. Их свойства определяются совокупностью характеристик твердой магнитной фазы, дисперсионной среды и стабилизатора.

Механическое диспергирование частиц магнетита в шаровых мельницах в течение 1000 ч явилось первым способом получения магнитных жидкостей. [Papell S.S. Low viskosity magnetic fluid obtaned by the colloidal suspension of magnetic particles. Patent USA №3215572, USA C1. 149-2. 1965] путем мокрого механического измельчения.

Способ получения магнитоактивного соединения из природного минерала - сидерита [Общая и неорганическая химия. М.Х. Карапетьянц. С.И. Дракин - с.571], также отличается низкой производительностью и, кроме того, он проводится при высокой температуре.

Кроме низкой производительности недостатками диспергирования в шаровой мельнице является загрязнение магнитной жидкости продуктами истирания шаров при работе мельницы и значительный разброс размеров частиц.

Кайзер усовершенствовал описанный Пейпелом процесс и получил магнитные жидкости, в которых дисперсной средой были вода, ароматические углеводороды и эфиры [Kaiser R., Miskolczy G. // J.Appl. Phys., 1970, V. 41, N3, P.1064-1072. Kaiser R. Ferrofluid composition. Patent USA №3700595, Int. C1. H01F 1/10, 1972].

Магнитоактивные частицы коллоидных размеров можно формировать за счет конденсации отдельных молекул. На размер образующихся частиц существенно влияют условия конденсации, поэтому для получения коллоидных частиц магнитных материалов используют различные варианты метода.

Химическая реакция (1) служит основой многих методов конденсации магнитоактивных соединений:

.

Например, для получения магнетита 10%-ные растворы FeCl2·4H2O и FeCl3·6H2O, взятые в таких объемах, чтобы соотношение солей F было 2 к 1, смешивают при 70°C и при постоянном перемешивании к ним добавляют избыток 10%-ного раствора NaOH. Для ограничения размера частиц конденсацию проводят при интенсивном перемешивании [Elmore W.С. // Phys. Rew., 1938, V. 54, P.309].

Замена при конденсации магнетита гидроксида натрия на гидроксид аммония позволяет проводить соосаждение солей при 25…40°C. (пат. СССР №568598, 861321, 966015, 978860).

Для стабилизации в водной среде частиц магнетита со средним размером около 10 нм, полученных химической конденсацией, Нилом предложено использовать - лигносульфонат натрия. Недостатками метода являются необходимость применения двух солей железа и продолжительная выдержка при повышенных температурах. Продукт, полученный при низких температурах, не обладает магнитной активностью. [Neal J.A. Clarification process. Patent USA 4088779 C02B 1/20, 1978.; Neal J.A. Clarification process. Patent USA 4110208 C02B 1/20, 1978].

Кроме того, известен способ, в соответствии с которым из раствора соли железа (II) осаждают карбонат железа (II), который в дальнейшем в течение 1 ч подвергают окислительной обработке при температуре 55…60°С. В результате карбонат железа(II) превращается в магнитоактивный магнетит. Продукт реакции промывают декантацией до рН 7 [пат. РФ №2230705. МПК7 C01G 49/08. Способ получения магнитоактивного соединения // Беликов В.Г., Курегян А.Г., Шахшаев Ш.О., Зилфикаров И.Н. Заявка: 2000109795/02, 19.04.2000. Опубликовано: 20.06.2004].

Наиболее близким к предлагаемому способу является получение чистого черного пигмента оксида железа (патент CN 102139927 High-purity iron oxide black pigment and production method thereof) из сульфата железа (II) в щелочной среде. Способ осуществляется следующим образом. Водный раствор FeSO4 первоначально подщелачивают раствором гидроксида натрия при нормальной температуре и выдерживают в течение 0,5…2 ч, контролируя рН 10…10,5. Далее проводят окисление кислородом воздуха при температуре 90…97°C в течение 1 ч. После завершения окисления из пигмента удаляют примеси тяжелых металлов, промывают на фильтр-прессе и сушат.

Недостатком указанного способа является большая продолжительность синтеза магнитоактивного соединения.

Целью является ускорение синтеза магнитоактивного соединения. Это достигается тем, что конденсацию магнитоактивного соединения из раствора солей железа производят в условиях воздействия магнитного поля.

Способ реализуется следующим образом. К раствору соли железа (II) добавляется расчетное, количество нитрозированных лигносульфоновых кислот, полученный раствор подщелачивается и выдерживается в условиях действия внешнего магнитного поля. Выделяющийся бирюзовый осадок быстро уплотняется и через некоторое время превращается в магнитоактивное соединение с высокой относительной магнитной восприимчивостью.

Пример 1. Для осаждения магнитоактивного соединения смешивали 10 мл раствора нитрозированных лигносульфонатов, концентрацией 0,74 мг/мл, 0,8 мл раствора сульфата железа (II), концентрацией 27,8 мг/мл и 2 мл раствора NaOH, концентрацией 40 г/л.

Нитрозирование лигносульфонатов проводили следующим образом. В мерную колбу вместимостью 200 мл вносили 8 мл раствора исходных лигносульфонатов, концентрацией 1,86 г/л, 7,5 мл раствора нитрита натрия, концентрацией 2,5 г/л (расход нитрита натрия по отношению к лигносульфонатам составил 12,6%) и 1 мл раствора азотной кислоты концентрацией 10%, объем раствора доводили до метки дистиллированной водой. Реакцию нитрозирования проводили в течение 60 мин.

Пробирку с реакционной смесью выдерживали на постоянном магните в течение 15 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 90,7%, ОМВ 14,8 г/гFe.

Пример 2. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 30 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 92,9%, ОМВ 17,6 г/гFe.

Пример 3. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 60 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 22,1 г/гFe.

Пример 4. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 90 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 24,1 г/гFe.

Пример 5. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что пробирку с реакционной смесью выдерживали на постоянном магните в течение 120 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 26,6 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 6. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 180 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 27,1 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 7. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 1200 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 37,3 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 8. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что конденсацию МС проводили без воздействия магнитного поля в течение 15 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 77,9%, ОМВ 7,6 г/гFe.

Пример 9. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 30. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 84,2%, ОМВ 11,3 г/гFe.

Пример 10. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 60. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 87,1%, ОМВ 18,3 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 11. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 90. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 88,6%, ОМВ 21,4 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 12. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 120. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 88,6%, ОМВ 23,8 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 13. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 180. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 88,6%, ОМВ 26,1 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 14. Осаждение магнитоактивного соединения проводили в условиях примера 8, отличающихся тем, что измерение объема осадка и ОМВ проводили через 1200. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 26,1%, ОМВ 30,8 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 15. Осаждение магнитоактивного соединения проводили в условиях примера 1, отличающихся тем, что реакцию нитрозирования лигносульфонатов проводили в течение 180 мин.

Пробирку с реакционной смесью выдерживали на постоянном магните в течение 15 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 90,0%, ОМВ 13,2 г/гFe.

Пример 16. Осаждение магнитоактивного соединения проводили в условиях примера 15, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 30 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 92,9%, ОМВ 17,1 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 17. Осаждение магнитоактивного соединения проводили в условиях примера 15, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 60 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 20,9 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 18. Осаждение магнитоактивного соединения проводили в условиях примера 15, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 90 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 94,3%, ОМВ 22,9 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 19. Осаждение магнитоактивного соединения проводили в условиях примера 15, отличающихся тем, что конденсацию МС проводили без воздействия магнитного поля в течение 15 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 61,4%, ОМВ 4,1 г/гFe.

Пример 20. Осаждение магнитоактивного соединения проводили в условиях примера 19, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 30 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 77,1%, ОМВ 5,9 г/гFe.

Пример 21. Осаждение магнитоактивного соединения проводили в условиях примера 19, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 60 мин. Измеряли объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 82,9%, ОМВ 8,9 г/гFe. Осадок приобрел свойства магнитной жидкости.

Пример 22. Осаждение магнитоактивного соединения проводили в условиях примера 19, отличающихся тем, что измерение пробирку с реакционной смесью выдерживали на постоянном магните в течение 90 мин. Из мерили объем осадка и ОМВ. Объем осадка, выраженный в процентах от общего объема реакционной смеси, составил 85,7%, ОМВ 11,2 г/гFe. Осадок приобрел свойства магнитной жидкости.

Результаты, полученные при синтезе магнитоактивного соединения, сведены в таблице, из данных которой видно, что предлагаемое решение позволяет значительно ускорить синтез магнитоактивного соединения.

Пример Условия конденсации τ, мин Показатели
объем осадка, % от общего объема ОМВ, г/гFe внешний вид
1 под действием внешнего магнитного поля 15 90,7 14,8 осадок
2 под действием внешнего магнитного поля 30 92,9 17,6 осадок
3 под действием внешнего магнитного поля 60 94,3 22,1 осадок
4 под действием внешнего магнитного поля 90 94,3 24,3 осадок
5 под действием внешнего магнитного поля 120 94,3 26,6 жидкость
6 под действием внешнего магнитного поля 180 94,3 27,1 жидкость
7 под действием внешнего магнитного поля 1200 94,3 37,3 жидкость
8 естественные 15 77,9 7,6 осадок
9 естественные 30 84,3 11,2 осадок
10 естественные 60 87,1 18,3 жидкость
11 естественные 90 88,6 21,4 жидкость
12 естественные 120 88,6 23,8 жидкость
13 естественные 180 88,6 26,1 жидкость
14 естественные 1200 88,6 30,8 жидкость
15 под действием внешнего магнитного поля 15 90,0 13,2 осадок
16 под действием внешнего магнитного поля 30 92,9 17,1 жидкость
17 под действием внешнего магнитного поля 60 94,3 20,9 жидкость
18 под действием 90 94,3 22,9 жидкость
внешнего магнитного поля
19 естественные 15 61,4 4,1 осадок
20 естественные 30 77,1 5,9 осадок
21 естественные 60 82,9 8,9 жидкость
22 естественные 90 85,7 11,2 жидкость

Способ получения магнитоактивного соединения путем окислительной конденсации раствора соли железа (II), отличающийся тем, что конденсацию проводят в присутствии нитрозированных лигносульфонатов в условиях воздействия магнитного поля.
Источник поступления информации: Роспатент

Показаны записи 21-22 из 22.
20.01.2018
№218.016.118a

Способ получения магнитоактивного соединения

Изобретение может быть использовано при создании магнитоактивных катализаторов. Способ получения раствора магнитоактивного соединения включает конденсацию из раствора сульфата железа (II), содержащего лигносульфонаты, и раствора окислителя при их смешении. В качестве окислителя используют...
Тип: Изобретение
Номер охранного документа: 0002634026
Дата охранного документа: 23.10.2017
12.07.2018
№218.016.6ff4

Органический компонент питательной смеси для растений

Изобретение относится к сельскому хозяйству. Применение лигносульфонатов, модифицированных нитрованием, с помощью концентрированной азотной кислоты, или нитрозированием, с помощью нитрита натрия и раствора уксусной кислоты, в качестве органического компонента питательной смеси для растений....
Тип: Изобретение
Номер охранного документа: 0002660929
Дата охранного документа: 11.07.2018
Показаны записи 81-90 из 100.
12.01.2017
№217.015.5cfe

Нанокомпозитный строительный материал на основе древесной коры

Изобретение относится к области получения композитных строительных материалов и может быть использовано в технологии изготовления древесно-минеральных плит, применяемых в качестве несущих, самонесущих стен и перегородок, конструкционных звуко- и теплоизоляционных плит и панелей. Нанокомпозитный...
Тип: Изобретение
Номер охранного документа: 0002591063
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5f98

Способ оценки тревожности у детей

Изобретение относится к медицине, психофизиологическим исследованиям и предназначено для диагностики тревожности у детей. Определяют суммарный показатель уровня постоянных потенциалов (УПП) головного мозга от его лобного, центрального, затылочного, правого и левого височных отделов у детей 7-10...
Тип: Изобретение
Номер охранного документа: 0002590988
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7a83

Трансформатор, содержащий трехфазную и круговую обмотки

Изобретение относится к электротехнике и может быть использовано в многофазных полупроводниковых преобразователях, выпрямителях, инверторах, обратимых преобразователях, преобразователях постоянного напряжения. Технический результат состоит в улучшении кривой намагничивания, повышении к.п.д. и...
Тип: Изобретение
Номер охранного документа: 0002600571
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7d77

Круглопильный станок

Изобретение относится к деревообрабатывающей промышленности, в частности к станкам для продольной распиловки древесины. Круглопильный станок содержит станину, на которой закреплен опорный диск для кольцевой пилы. Пила ограничена от осевого смещения аэростатическими боковыми направляющими. Пила...
Тип: Изобретение
Номер охранного документа: 0002600743
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.88b8

Высоконагруженное термозатягиваемое резьбовое соединение

Изобретение относится к области общего и специального машиностроения и может использоваться во всех областях промышленного производства для обеспечения соединения высоконагруженных элементов механических конструкций. Техническим результатом является значительное повышение надежности...
Тип: Изобретение
Номер охранного документа: 0002602478
Дата охранного документа: 20.11.2016
24.08.2017
№217.015.9504

Пептизатор для синтеза магнитоактивной жидкости на водной основе

Изобретение может быть использовано в химической промышленности. Лигносульфонаты, подвергнутые нитрованию концентрированной азотной кислотой, применяют в качестве пептизатора для синтеза магнитоактивной жидкости на водной основе. Изобретение позволяет расширить круг веществ, которые могут быть...
Тип: Изобретение
Номер охранного документа: 0002608417
Дата охранного документа: 18.01.2017
25.08.2017
№217.015.a6d6

Реагент для гомогенного нитрования сульфатного лигнина

Изобретение относится к реагентам, предназначенным для проведения нитрования сульфатного лигнина. Применение смеси раствора азотной кислоты и диметилсульфоксида в качестве реагента для нитрования сульфатного лигнина в гомогенных условиях позволяет провести реакцию в гомогенных условиях и...
Тип: Изобретение
Номер охранного документа: 0002608145
Дата охранного документа: 16.01.2017
25.08.2017
№217.015.aebd

Способ получения масла из ягод брусники

Изобретение относится к области переработки растительного сырья, а именно к области получения масел растительного происхождения. Способ включает обработку подготовленных ягод брусники диоксидом углерода, находящимся в суб- или сверхкритическом состоянии, при температуре 20-60°C, давлении...
Тип: Изобретение
Номер охранного документа: 0002612797
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.aefb

Способ обработки тел вращения

Способ включает установку заготовки во вращающихся центрах. Предварительно устанавливают положение оси, по которой осуществляют базирование заготовки, путем обмера поперечных сечений заготовки с определением координат точек контура сечения, по которым определяют положение центров тяжести её...
Тип: Изобретение
Номер охранного документа: 0002612877
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b18b

Движительно-рулевая колонка

Изобретение относится к пропульсивным системам судостроения. Движительно-рулевая колонка состоит из корпуса, привода, трансмиссионного вала, двух соосных валов с гребными винтами и дифференциального механизма. Дифференциальный механизм выполнен в виде двух симметричных планетарных редукторов с...
Тип: Изобретение
Номер охранного документа: 0002613135
Дата охранного документа: 15.03.2017
+ добавить свой РИД