×
27.07.2013
216.012.5a7a

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ДИЭЛЕКТРИЧЕСКОГО ВЕЩЕСТВА

Вид РИД

Изобретение

№ охранного документа
0002488783
Дата охранного документа
27.07.2013
Аннотация: Изобретение относится к электроизмерительной технике, в частности к системам измерения уровня заправки ракетно-космической техники. Сущность: формируют синусоидальное напряжение на емкостном датчике уровня, измеряют комплексный ток через сухой емкостной датчик уровня и измеряют комплексный ток через заполняемый емкостной датчик уровня. Задают первую схему замещения емкостного датчика уровня, состоящую из параллельно включенных электрической емкости и активного сопротивления, формирование синусоидального напряжения на емкостном датчике уровня производят на двух частотах, после чего производят последовательно измерение комплексного тока через сухой датчик уровня и эталон на каждой из двух частот, причем результаты измерения фиксируют, определяют и фиксируют электрическую емкость сухого датчика уровня, вычисляют и фиксируют приращение электрической емкости емкостного датчика уровня при полном его погружении в диэлектрическое вещество. Определяют относительное заполнение диэлектрическим веществом емкостного датчика уровня как разность значений электрической емкости заполняемого емкостного датчика уровня и электрической емкости сухого емкостного датчика уровня, отнесенную к приращению электрической емкости полностью погруженного в диэлектрическое вещество емкостного датчика уровня. Задают вторую схему замещения емкостного датчика уровня, состоящую из последовательно включенной электрической емкости и активного сопротивления и по измеренным и зафиксированным ранее комплексным токам через емкостной датчик уровня и эталон на каждой из двух заданных частот определяют и фиксируют последовательно включенное электрическое сопротивление цепей датчика уровня, по которому судят о достоверности определения уровня диэлектрического вещества. Технический результат - исключение результатов измерения уровня, возникающих вследствие отказа в длинной линии связи между датчиком и измерительной аппаратурой. 4 ил.
Основные результаты: Способ определения уровня диэлектрического вещества, заключающийся в формировании синусоидальных напряжений на емкостном датчике уровня, измерении комплексного тока через сухой емкостный датчик уровня и измерении комплексного тока через заполняемый емкостный датчик уровня, причем задают первую схему замещения емкостного датчика уровня, состоящую из параллельно включенной электрической емкости и активного сопротивления, формируют синусоидальное напряжение на емкостном датчике уровня на двух частотах, после чего производят последовательное измерение комплексного тока через сухой датчик уровня и эталон на каждой из двух частот и результаты измерения фиксируют, определяют и фиксируют электрическую емкость сухого датчика уровня, вычисляют и фиксируют приращение электрической емкости датчика уровня при его полном погружении в диэлектрическое вещество, периодически производят последовательное измерение и фиксацию комплексного тока через заполняемый диэлектрическим веществом емкостный датчик уровня и эталон на каждой из двух заданных частот, для каждого периодического измерения определяют и фиксируют электрическую емкость датчика уровня, затем определяют относительное заполнение диэлектрическим веществом емкостного датчика уровня как разность значений электрической емкости заполняемого емкостного датчика уровня и электрической емкости сухого датчика уровня, отнесенную к приращению электрической емкости полностью погруженного в диэлектрическое вещество емкостного датчика уровня, отличающийся тем, что задают вторую схему замещения емкостного датчика уровня, состоящую из последовательно включенной электрической емкости и активного сопротивления, и по измеренным и зафиксированным ранее комплексным токам через емкостный датчик уровня и эталон на каждой из двух заданных частот для каждого периодического измерения определяют и фиксируют последовательно включенное электрическое сопротивление цепей датчика уровня, по которому судят о достоверности определения уровня диэлектрического вещества.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах, транспортных средствах, а также в системах измерения уровня заправки ракетно-космической техники.

Близким по технической сущности и достигаемому положительному эффекту к заявляемому способу является способ измерения уровня диэлектрического вещества, описанный в книге "Емкостные самокомпенсированные уровнемеры" авторов К.Б.Карандеева, Ф.Б.Гриневича, Л.И.Новика, Москва: издательство "Энергия", 1966, с.28. (1, 2)

Способ определения уровня диэлектрического вещества заключается в формировании синусоидального напряжения на емкостном датчике уровня, измерении комплексного тока через сухой емкостной датчик уровня и измерении комплексного тока через заполняемый емкостной датчик уровня.

В представленном аналоге способ измерения уровня диэлектрической жидкости базируется на сложении токов датчиков, которое осуществляется при помощи тесно связанных индуктивных плеч моста на суммирующем измерительном трансформаторе. Причем коэффициент, с которым ток входит в общую сумму, определяется числом витков плеча, а знак коэффициента - направлением включения обмотки этого плеча. Условием равновесия измерительной схемы является равенство нулю суммы всех токов, протекающих через датчики. Отношение числа витков тесно связанных индуктивных плеч определяет относительное заполнение (уровень) емкостного датчика уровня диэлектрическим веществом.

При использовании аналога для определения уровня диэлектрического вещества с помощью емкостного датчика уровня, удаленного на достаточно большое расстояние (до 400 метров) от средства измерения, получается результат с высокой степенью погрешности. Низкая технологичность и точность измерения прототипа обусловлена следующим:

- способ-аналог не обладает полной инвариантностью по отношению к длинной линии связи между средством измерения и емкостным датчиком уровня, т.е. не исключает влияния длинной линии связи на результат определения уровня;

- аналог измеряет комплексные токи через емкостные датчики уровня, которые не учитывают значения параметров диэлектрических веществ (диэлектрические проницаемости вещества и газовой среды над веществом, включая их температуру, изменение геометрических размеров емкостных датчиков уровня из-за воздействия на них криогенных температур). Исходя из этого перед технологическим процессом заправки требуется предварительная ручная настройка средства измерения на заданные параметры жидкости и датчика при определении уровня заправки, для каждого датчика индивидуально;

- относительно низкое быстродействие способа измерения (до 10 сек) на измерение. Это связано с конструктивным исполнением мостового средства измерения, представляющего собой следящую систему, которая уравновешивается как по активной, так и но реактивной составляющим комплексного сопротивления емкостного датчика. А так как процесс заправки ракеты непрерывный, то низкое быстродействие процесса измерения уровня вносит дополнительную погрешность.

Таким образом, недостатками аналога являются:

- низкая точность определения уровня на достаточно удаленном от средства измерения емкостном датчике уровня;

- низкое быстродействие способа измерения, связанное с процессом уравновешивания моста;

- низкая технологичность определения уровня, связанная предварительной ручной настройкой средства измерения на заданные параметры заправки. Наличие человеческого фактора в технологии определения уровня вносит также дополнительную погрешность в точность его определения.

Однако специфика эксплуатации изделий ракетно-космической техники для проведения измерения параметров двухполюсников выставляет свои требования, способствующие поиску новых технических решений в области измерений. Обозначим наиболее характерные из них:

- удаленность до 400 метров объекта измерения от средства измерения. Примером тому может служить процесс определения параметров комплексного сопротивления емкостного датчика контроля уровня заправки, вмонтированного в бак ракеты, которая находится в испытательном корпусе или на стартовом комплексе во время ее заправки компонентами топлива;

- высокая точность измерения параметров удаленного двухполюсника, коим является емкостной датчик уровня. Очевидно, что точность измерения напрямую связана с объемом гарантийных запасов топлива на борту ракеты. Чем выше точность, тем меньше гарантийные запасы топлива, тем выше эффективность ракеты, позволяющей вывести большую полезную нагрузку;

- требование высокой технологичности подготовки ракеты, исключающее процедуру предварительной настройки аппаратуры измерения человеком-оператором, а также позволяющее проводить работу одного средства измерения с несколькими емкостными датчиками уровня ракеты поочередно;

- высокое быстродействие определения параметров двухполюсника, позволяющее расширить функциональные возможности способа измерения и использовать его аналогичным образом в уровнемере бортовой терминальной системы автоматического управления, которой является система управления расходом топлива ракеты.

Наиболее близким по технической сущности и достигаемому положительному эффекту к заявляемому способу - прототипом является способ измерения уровня диэлектрического вещества, описанный в патенте №2262669, МПК: G01F 23/26, G01R 17/00 авторов Балакина С.В, Долгова Б.К. (3). В указанном способе формируют синусоидальное напряжение на емкостном датчике уровня, измеряют комплексный ток через сухой емкостной датчик уровня и измеряют комплексный ток через заполняемый емкостной датчик уровня. Задают схему замещения емкостного датчика уровня, состоящую из электрической емкости и активного сопротивления включенных параллельно. Формирование синусоидального напряжения на емкостном датчике уровня производят на двух частотах, после чего производят последовательно измерение комплексного тока через. сухой датчик уровня и эталон на каждой из двух частот, причем результаты измерения фиксируют, определяют и фиксируют электрическую емкость сухого датчика уровня, вычисляют и фиксируют приращение электрической емкости емкостного датчика уровня при полном его погружении в диэлектрическое вещество. Периодически производят последовательное измерение и фиксацию комплексного тока через заполняемый диэлектрическим веществом емкостной датчик уровня и эталон на каждой из двух заданных частот, для каждого периодического измерения определяют и фиксируют электрическую емкость емкостного датчика уровня, затем определяют относительное заполнение диэлектрическим веществом емкостного датчика уровня как разность значений электрической емкости заполняемого емкостного датчика уровня и электрической емкости сухого емкостного датчика уровня, отнесенную к приращению электрической емкости полностью погруженного в диэлектрическое вещество емкостного датчика уровня.

При определении уровня диэлектрического вещества с помощью емкостного датчика уровня, удаленного на достаточно большое расстояние (до 400 метров) от средства измерения, получаемый результат имеет малую погрешность. Вычисление параметров сухого и заполняемого диэлектрическим веществом емкостного датчика уровня, а также вычисление приращения емкости датчика уровня при его полном погружении в диэлектрическое вещество, обеспечивается в одинаковых условиях наличия длинной линии. Это дает возможность учитывать влияние длинной линии в результате обоих вычислений при автоматической настройке средств измерений. А совокупность признаков, обеспечивающих определение относительного заполнения диэлектрическим веществом емкостного датчика уровня, как разность значений электрической емкости заполняемого емкостного датчика уровня и электрической емкости сухого емкостного датчика уровня, отнесенную к приращению электрической емкости полностью погруженного в диэлектрическое вещество емкостного датчика уровня, позволяет почти полностью исключить влияние длинной линии на результат определения относительного заполнения датчика уровня. Тем не менее, влияние длинной линии электрических соединительных цепей связи между датчиком и измерительной аппаратурой остается. Особенно это относится к случаям, когда параметры длинной линии значительно меняются прямо в процессе штатной работы (Практика показывает, что такой вариант случается нередко, так как линия связи проходит по ферме на открытом воздухе). В этом случае может возникнуть существенная погрешность при измерении основного параметра-уровня диэлектрического вещества. А это может иметь серьезные последствия, например недозаправку топлива для вывода РН на целевую орбиту.

Из ранее сказанного видно, что недостатком прототипа является существенное влияние длинной линии связи на результат определения уровня в случае, когда параметры длинной линии значительно меняются непосредственно в процессе штатной работы.

Задачей предлагаемого способа определения уровня диэлектрического вещества является повышение надежности его определения, заключающееся в исключении неправильных результатов определения уровня диэлектрического вещества, которые могут возникнуть из-за изменения электрического сопротивления длинной линии связи, возникающего при плохом контакте в соединителях, при обрывах токопроводящих жил, на «холодных» пайках, при попадании влаги и по ряду других причин.

Решение поставленной задачи достигается тем, что в способе определения уровня диэлектрического вещества, заключающемся в формировании синусоидального напряжения на емкостном датчике уровня, измерении комплексного тока через сухой емкостной датчик уровня и измерении комплексного тока через заполняемый емкостной датчик уровня, задании первой схемы замещения емкостного датчика уровня, состоящей из параллельно включенных электрической емкости и активного сопротивления, формирование синусоидального напряжения на емкостном датчике уровня производят на двух частотах, после чего производят последовательно измерение комплексного тока через сухой датчик уровня и эталон на каждой из двух частот, причем результаты измерения фиксируют, определяют и фиксируют электрическую емкость сухого датчика уровня, вычисляют и фиксируют приращение электрической емкости емкостного датчика уровня при полном его погружении в диэлектрическое вещество, периодически производят последовательное измерение и фиксацию комплексного тока через заполняемый диэлектрическим веществом емкостной датчик уровня и эталон на каждой из двух заданных частот, для каждого периодического измерения определяют и фиксируют электрическую емкость емкостного датчика уровня, затем определяют относительное заполнение диэлектрическим веществом емкостного датчика уровня как разность значений электрической емкости заполняемого емкостного датчика уровня и электрической емкости сухого емкостного датчика уровня, отнесенную к приращению электрической емкости полностью погруженного в диэлектрическое вещество емкостного датчика уровня в отличие от прототипа задают вторую схему замещения емкостного датчика уровня, состоящую из последовательно включенной электрической емкости и активного сопротивления и, по измеренным ранее комплексным токам через емкостной датчик уровня и эталон на каждой из двух заданных частот, для каждого периодического измерения определяют и фиксируют последовательно включенное электрическое сопротивление цепей датчика уровня, по которому судят о достоверности определения основного измеряемого параметра-уровня диэлектрического вещества.

Измеренное электрическое сопротивление цепей датчика уровня сравнивается с допуском и в случае его отклонения за поле допуска все результаты измерения основного параметра-уровня признаются неправильными и бракуются. Таким образом, заявленный способ приобретает новое качество: он не позволяет допустить ошибки при заправке РН из-за неисправностей в длинной линии связи между датчиком и измерительной аппаратурой, что заметно повышает надежность подготовки изделия к штатной работе.

Таким образом, совокупность признаков, позволяющая после измерения комплексных токов через сухой емкостной датчик уровня и эталон на каждой из двух частот определить его текущие параметры (С и R), определить приращение электрической емкости датчика при его полном погружении в диэлектрическое вещество (с учетом температурных и физических параметров диэлектрического вещества), а также последовательное сопротивление линий связи - r, что обеспечивает автоматизацию процесса настройки средств измерения, достижение повышенной технологичности, точности и надежности определения уровня диэлектрического вещества, исключив неисправности в длинной линии связи, а так же погрешность человеческого фактора из процедуры настройки средств измерения.

Для практической реализации способа авторами использована технология автоматизированного проектирования электронных схем, построенная на применении программируемых логических интегральных схем (ПЛИС) разработки фирмы Xilinx. При этом используется программное обеспечение Foundation Series. Данный пакет проектирования включает в себя комплекс средств, позволяющих осуществить разработку ПЛИС фирмы Xilinx, начиная от описания внутреннего содержимого устройства до загрузки конфигурации ПЛИС и отладки непосредственно на печатной плате. Программное обеспечение Foundation Series позволяет реализовать все необходимые функции, включая реализацию численных методов вычисления значений физических величин.

На фиг.1 представлена первая схема замещения емкостного датчика уровня.

На фиг.2 представлена векторная диаграмма первой схемы замещения емкостного датчика уровня.

На фиг.3 представлена вторая схема замещения емкостного датчика уровня.

На фиг.4 представлена векторная диаграмма второй схемы замещения емкостного датчика уровня

В качестве примера осуществления способа рассмотрим процедуру определения уровня заправки диэлектрического вещества в баке изделия ракетно-космической техники и последовательного сопротивления линии связи между датчиком и измерительной аппаратурой. В качестве диэлектрического вещества можно рассмотреть, например, керосин.

Емкостному датчику уровня соответствует схема замещения, приведенная на фиг.1, где: Cp есть рабочая электрическая емкость датчика, которая несет полезную информацию об уровне заправки бака; R - сопротивление тока утечки через диэлектрик, которое зависит от сортности керосина и вносит погрешность в процесс измерения уровня заправки, если ее не учитывать. На фиг.2 представлена векторная диаграмма емкостного датчика уровня, для которой справедливы следующие соотношения:

В силу специфики эксплуатации изделий ракетно-космической техники емкостной датчик уровня расположен па расстоянии до 400 метров от средства измерения.

Согласно первой схеме замещения емкостного датчика уровня имеем следующие выражения для определения его параметров:

Измеренная величина емкости датчика описывается выражением:

Измеренная величина сопротивления изоляции датчика описывается выражением:

Согласно второй схеме замещения емкостного датчика уровня измеренная величина последовательного сопротивления цепей датчика описывается выражением:

Для определения параметров C, R, r по выражениям 3, 4, 4-1 необходимо произвести измерение токов через емкостной датчик уровня и эталон. Так как емкостной датчик уровня является двухзвенным двухполюсником, то в соответствии с признаком формулы изобретения измерение комплексного тока необходимо проводить на двух частотах ω1 и ω2.

Для этого согласно признаку формулы изобретения производят формирование синусоидального напряжения на сухом емкостном датчике уровня на двух частотах ω1 и ω2. Затем последовательно производят измерение значений комплексных токов через сухой емкостной датчик уровня и эталон на каждой из заданных частот. Значения токов через эталон соответствуют выражениям

Согласно векторной диаграмме фиг.2 модули измеряемых комплексных токов через емкостной датчик уровня можно записать следующими выражениями:

Следует сразу оговорить, что вышеописанные действия производят для настройки средств измерения перед заправкой бака изделия РКТ, заключающейся в измерении комплексных токов через сухой емкостной датчик уровня, подключенный к средствам измерения через линию связи. Измеренные результаты комплексных токов фиксируются. С точки зрения практической реализации процедура фиксации может быть выполнена в виде операции сохранения результатов измерения в запоминающем устройстве, построенного по технологии Xillinx.

После этого определяется состояние емкостного датчика уровня в соответствии с зависимостями (3) и (4) и качества соединительных линий до датчика по формуле (4-1). Результаты определения параметров сухого емкостного датчика С, R и линий связи до датчика - r фиксируются и представляют собой исходные данные, необходимые для выполнения дальнейшей последовательности действий способа. Если измеренная величина r выходят за пределы допуска на нее, то выдается сообщение оператору и в систему управления заправкой о неисправности в данном канале измерения системы измерения уровня. Если допусковый контроль по r пройден, то процедуру настройки средств измерения завершает действие согласно формуле изобретения по определению приращения электрической емкости емкостного датчика уровня, полностью погруженного в данном случае в керосин. Зависимость, по которой вычисляется приращение электрической емкости, имеет вид

CСУХ - электрическая емкость емкостного датчика уровня, определяемая с учетом влияния линии связи по зависимости (3);

εЖ - диэлектрическая проницаемость керосина;

εГ - диэлектрическая проницаемость газовой подушки, расположенной в баке изделия РКТ над керосином.

Результат определения приращения емкости, выполненный по зависимости (9), фиксируется.

Совокупность признаков, обеспечивающая определение параметров сухого емкостного датчика уровня и приращение электрической емкости при его полном погружении в керосин с учетом влияния на результаты определения линии связи, позволяет процесс настройки средств измерения автоматизировать. Тем самым совокупность вышеописанных признаков позволяет повысить технологичность и точность измерения за счет исключения инструментальной погрешности человеческого фактора.

При осуществлении заправки бака изделия РКТ периодически производят последовательное измерение комплексного тока через заполняемый емкостной датчик уровня и эталон па каждой из двух заданных частот. Причем на результат измерения комплексных токов через заполняемый емкостной датчик линия связи оказывает такое же влияние, как и при измерении комплексного тока через сухой емкостной датчик. Результаты измерений фиксируются. Затем после каждого измерения комплексного тока через заполняемый емкостной датчик и эталон осуществляется определение его параметров в соответствии с выражениями (3), (4) и (4-1). Результаты определения параметров датчика и линий связи до него фиксируются. На протяжении всей штатной работы при заправке Ракеты-Носителя, в отличии от прототипа, производится контроль новой величины r - сопротивления линии связи до датчика. В случае выхода величины r за допуск производится сообщение оператору и в систему управления заправкой об отказе данного канала измерения уровня. Таким образом, появляется повое качество: непрерывный контроль сопротивления линий связи до датчика непосредственно в процессе боевой работы без расстыковки кабельных линий. Такой подход значительно увеличивает надежность системы измерения уровня.

Далее производится работа методике работы прототипа:

Электрическая емкость заполняемого емкостного датчика уровня является величиной переменной, поэтому ее можно назвать текущей CТЕК. Затем осуществляют определения (уровня) относительного заполнения емкостного датчика уровня керосином. Согласно признакам формулы изобретения это осуществляется следующим образом. Сначала определяется разность значений электрической емкости заполняемого емкостного датчика (назовем ее текущей электрической емкостью стек) и электрической емкости сухого емкостного датчика, вычисленная при настройке средств измерения. Эту разность можно определить по выражению

где CТЕК - значение электрической емкости заполняемого датчика уровня, вычисленное в соответствии с выражением (3). Аналитическое выражение электрической емкости заполняемого керосином емкостного датчика уровня можно записать в следующем виде:

где h - текущая высота погружения емкостного датчика уровня в керосин;

H - полная высота погружения датчика в керосин.

Далее определяется отношение разности электрических емкостей согласно выражению (10) и приращения электрической емкости полностью погруженного емкостного датчика уровня в керосин, которое можно записать в следующем виде

Совокупность признаков, характеризующих определение относительного заполнения емкостного датчика уровня керосином как разность значений электрической емкости заполняемого емкостного датчика уровня и электрической емкости сухого емкостного датчика уровня, отнесенную к приращению электрической емкости полностью погруженного в керосин емкостного датчика уровня, обеспечивает исключение влияния линии связи на результат определения уровня. Из аналитической зависимости (12) это следует очевидным образом, CСУХ и стек определялись с учетом влияния линии связи, CПР также определялось с учетом влияния линии связи. Поэтому в отношении согласно выражению (12) влияние линии связи аналитически исключается.

Таким образом, вышеописанная совокупность признаков характеризует способ как инвариантный по отношению к линии связи и защищенный от внезапных изменений электрических характеристик линии связи между датчиком и измерительной аппаратурой благодаря контролю нового параметра - последовательного сопротивления линий связи до датчика (r).

Процесс определения уровня периодически продолжается до тех пор, пока бак изделия РКТ не будет заполнен до требуемого уровня.

Заявленный способ определения уровня диэлектрического вещества может быть реализован с помощью устройства, функциональные блоки которого выполнены на микросхеме 2S200PQ208 фирмы Xilinx. Численные решения представленных выше выражений могут быть реализованы с помощью программного пакета Foundation Series.

Заявленный способ авторами апробирован на макетном изделии. В настоящий момент авторами создается система измерения уровня заправки ракетного блока, которая предназначена для наземной аппаратуры одной из стартовых пусковых установок полигона "Куру».

Используемая литература

1. К.Б.Карандеев, Ф.Б.Гриневич, Л.И.Новик. Емкостные самокомпенсированные уровнемеры. М.: Энергия, 1966, С. - 135.

2. А.И.Цовик. Системы автоматического уравновешивания цифровых экстремальных мостов переменного тока. Киев: Наукова Думка, 1983, с.9-10.

3. Патент РФ №2262 669, МПК: G01F 23/26, G01R 17/00 «Способ определения уровня диэлектрического вещества» (прототип).

Способ определения уровня диэлектрического вещества, заключающийся в формировании синусоидальных напряжений на емкостном датчике уровня, измерении комплексного тока через сухой емкостный датчик уровня и измерении комплексного тока через заполняемый емкостный датчик уровня, причем задают первую схему замещения емкостного датчика уровня, состоящую из параллельно включенной электрической емкости и активного сопротивления, формируют синусоидальное напряжение на емкостном датчике уровня на двух частотах, после чего производят последовательное измерение комплексного тока через сухой датчик уровня и эталон на каждой из двух частот и результаты измерения фиксируют, определяют и фиксируют электрическую емкость сухого датчика уровня, вычисляют и фиксируют приращение электрической емкости датчика уровня при его полном погружении в диэлектрическое вещество, периодически производят последовательное измерение и фиксацию комплексного тока через заполняемый диэлектрическим веществом емкостный датчик уровня и эталон на каждой из двух заданных частот, для каждого периодического измерения определяют и фиксируют электрическую емкость датчика уровня, затем определяют относительное заполнение диэлектрическим веществом емкостного датчика уровня как разность значений электрической емкости заполняемого емкостного датчика уровня и электрической емкости сухого датчика уровня, отнесенную к приращению электрической емкости полностью погруженного в диэлектрическое вещество емкостного датчика уровня, отличающийся тем, что задают вторую схему замещения емкостного датчика уровня, состоящую из последовательно включенной электрической емкости и активного сопротивления, и по измеренным и зафиксированным ранее комплексным токам через емкостный датчик уровня и эталон на каждой из двух заданных частот для каждого периодического измерения определяют и фиксируют последовательно включенное электрическое сопротивление цепей датчика уровня, по которому судят о достоверности определения уровня диэлектрического вещества.
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ДИЭЛЕКТРИЧЕСКОГО ВЕЩЕСТВА
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ДИЭЛЕКТРИЧЕСКОГО ВЕЩЕСТВА
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ДИЭЛЕКТРИЧЕСКОГО ВЕЩЕСТВА
СПОСОБ ОПРЕДЕЛЕНИЯ УРОВНЯ ДИЭЛЕКТРИЧЕСКОГО ВЕЩЕСТВА
Источник поступления информации: Роспатент

Показаны записи 191-200 из 371.
10.05.2016
№216.015.3b47

Способ определения характеристик срабатывания пиротехнических изделий при тепловом воздействии и устройство для его реализации

Группа изобретений относится к оборудованию для испытаний пиротехнических изделий (ПИ). Способ определения характеристик самопроизвольного срабатывания ПИ включает тепловое воздействие на корпус ПМ с заданным темпом нагрева до момента его самопроизвольного срабатывания и фиксацию температуры...
Тип: Изобретение
Номер охранного документа: 0002583979
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b6f

Способ выведения спутника на заданную околоземную орбиту

Изобретение относится к технологии запуска спутников на орбиту. Способ включает размещение спутника внутри космического корабля (КК) перед его выведением на орбиту. После выведения и стыковки КК с орбитальной станцией размещают спутник на внешней поверхности КК. Приводят в рабочее положение...
Тип: Изобретение
Номер охранного документа: 0002583981
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3beb

Двигательная установка космического объекта и гидравлический конденсатор для нее

Изобретение относится к ракетно-космической технике и может быть использовано в двигательных установках (ДУ) космических объектов (КО). ДУ КО содержит криогенный бак с расходным клапаном и с бустерным турбонасосом, баллон высокого давления с газообразным криогенным компонентом для раскрутки...
Тип: Изобретение
Номер охранного документа: 0002583994
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3d40

Способ определения высоты облачности (варианты)

Изобретение относится к измерительной технике и может найти применение при измерении высоты облачности. Технический результат - повышение оперативности. Для этого по варианту 1 выполняют навигационные измерения орбиты космического аппарата. Производят съемку с космического аппарата (КА)...
Тип: Изобретение
Номер охранного документа: 0002583954
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dee

Пассивное устройство фиксации полезного груза преимущественно к корпусу находящегося на орбите космического корабля

Изобретение относится к стыковочным средствам и инструментам внекорабельной деятельности. Устройство содержит корпус (1), закрепленный на внешней поверхности космического корабля, с кольцом (2), имеющим направляющие выступы (3) и датчики касания (4) с взаимодействующим активным устройством...
Тип: Изобретение
Номер охранного документа: 0002583992
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3eb5

Устройство фиксации разделяемых элементов конструкции

Изобретение относится к машиностроению и может быть использовано в агрегатах, например, в ракетно-космической технике. Техническим результатом является повышение надежности и долговечности. Устройство фиксации разделяемых элементов конструкции содержит корпус с двумя пневмоцилиндрами и...
Тип: Изобретение
Номер охранного документа: 0002584122
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3f62

Ракетный разгонный блок и способ его сборки

Изобретение относится к ракетно-космической технике, а именно, к конструкции ракетных разгонных блоков. Ракетный разгонный блок содержит криогенный бак окислителя и бак горючего в виде сегментов полого тора, двухконтурную ферму, корпусной отсек и маршевый двигатель. К нижнему шпангоуту...
Тип: Изобретение
Номер охранного документа: 0002584045
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3fcb

Воздуховод

Изобретение относится к гибким трубопроводам, предназначенным для обеспечения подачи воздуха в обитаемые и межмодульные отсеки космических объектов. Техническим результатом является повышение скорости стыковки-расстыковки и герметичности узла стыковки. Технический результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002584052
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.40a8

Капиллярная система хранения и отбора жидкости в ракетный двигатель космического объекта (варианты)

Изобретение относится к космической технике и может быть использовано в двигателях космических объектов (КО). Капиллярная система хранения и отбора жидкости в ракетный двигатель КО содержит топливный бак с крышкой и нижним днищем, радиальные перфорированные перегородки, кронштейны, трубопровод...
Тип: Изобретение
Номер охранного документа: 0002584211
Дата охранного документа: 20.05.2016
20.06.2016
№216.015.48a2

Способ определения тензора инерции космического аппарата в полете

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает ориентацию КА и стабилизацию в инерциальной системе координат (ИСК) его строительной оси, ближайшей к оси максимального момента инерции. Далее выполняют закрутку КА вокруг этой оси...
Тип: Изобретение
Номер охранного документа: 0002587764
Дата охранного документа: 20.06.2016
Показаны записи 191-200 из 293.
10.04.2016
№216.015.30ad

Устройство формирования сигналов управления (2 варианта)

Предлагаемая группа изобретений относится к области электронной техники и может быть использована в системах управления, где требуется высокая надежность выполнения заданного режима, например, в системах управления космическими аппаратами, в авиационной технике и в других системах. Технический...
Тип: Изобретение
Номер охранного документа: 0002580476
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.319b

Устройство обеспечения чистоты объектов космической головной части (2 варианта)

Изобретение относится к ракетно-космической технике и может быть использовано при подготовке к старту ракеты космического назначения (РКН). Устройство обеспечения чистоты объектов космической головной части содержит побудитель расхода газового компонента, газовод, фильтр, рассекатель потока...
Тип: Изобретение
Номер охранного документа: 0002580602
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3212

Спасательный модуль

Изобретение относится к спасательной технике. Спасательный модуль включает жесткий корпус с носовой и кормовой частями, внутренней камерой, закрепленный на жестком корпусе салон с такелажным устройством. Он снабжен раскладываемыми опорами для установки на сушу. Жесткий корпус выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002580592
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.34ac

Комбинированное терморегулирующее покрытие и способ его формирования

Изобретение относится к терморегулирующим покрытиям и способу их формирования на внешних поверхностях космических аппаратов с применением метода газотермического напыления. Комбинированное терморегулирующее покрытие содержит нанесенный на подложку подслой из металлического материала, слой...
Тип: Изобретение
Номер охранного документа: 0002581278
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3761

Способ управления ориентацией космического аппарата при проведении экспериментов с научной аппаратурой по изучению конвекции

Изобретение относится к управлению ориентацией космического аппарата (КА). Способ включает закрутку КА, измерение расстояния от научной аппаратуры КА по изучению конвекции до оси закрутки, измерение и фиксацию температуры в этой аппаратуре, а также угловой скорости КА. При этом скорость...
Тип: Изобретение
Номер охранного документа: 0002581281
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3ab9

Способ определения высоты облачности

Изобретение относится к измерительной технике и может быть использовано в метеорологии для определения физических параметров атмосферы. Технический результат - повышение оперативности. Для этого дополнительно выполняют навигационные измерения орбиты космического аппарата (КА), производят съемку...
Тип: Изобретение
Номер охранного документа: 0002583877
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b47

Способ определения характеристик срабатывания пиротехнических изделий при тепловом воздействии и устройство для его реализации

Группа изобретений относится к оборудованию для испытаний пиротехнических изделий (ПИ). Способ определения характеристик самопроизвольного срабатывания ПИ включает тепловое воздействие на корпус ПМ с заданным темпом нагрева до момента его самопроизвольного срабатывания и фиксацию температуры...
Тип: Изобретение
Номер охранного документа: 0002583979
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b6f

Способ выведения спутника на заданную околоземную орбиту

Изобретение относится к технологии запуска спутников на орбиту. Способ включает размещение спутника внутри космического корабля (КК) перед его выведением на орбиту. После выведения и стыковки КК с орбитальной станцией размещают спутник на внешней поверхности КК. Приводят в рабочее положение...
Тип: Изобретение
Номер охранного документа: 0002583981
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3beb

Двигательная установка космического объекта и гидравлический конденсатор для нее

Изобретение относится к ракетно-космической технике и может быть использовано в двигательных установках (ДУ) космических объектов (КО). ДУ КО содержит криогенный бак с расходным клапаном и с бустерным турбонасосом, баллон высокого давления с газообразным криогенным компонентом для раскрутки...
Тип: Изобретение
Номер охранного документа: 0002583994
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3d40

Способ определения высоты облачности (варианты)

Изобретение относится к измерительной технике и может найти применение при измерении высоты облачности. Технический результат - повышение оперативности. Для этого по варианту 1 выполняют навигационные измерения орбиты космического аппарата. Производят съемку с космического аппарата (КА)...
Тип: Изобретение
Номер охранного документа: 0002583954
Дата охранного документа: 10.05.2016
+ добавить свой РИД