×
27.07.2013
216.012.58f6

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ РИВАНОЛА В ВОДОРАСТВОРИМЫХ ПОЛИМЕРАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области микрокапсулирования лекарственных препаратов на примере риванола, который может быть использован в качестве противомикробного, противогрибкового препарата наружного применения. Способ получения микрокапсул риванола в водорастворимом полимере, представляющем собой поливиниловый спирт или поливинилпирролидон, осуществляется физико-химическим методом осаждения нерастворителем, где в качестве осадителя используется ацетон. Процесс получения осуществляется при 25°С без специального оборудования. Способ получения микрокапсул риванола обеспечивает упрощение процесса микрокапсулирования. 13 ил., 5 пр.
Основные результаты: Способ получения микрокапсул риванола в водорастворимом полимере, представляющем собой поливиниловый спирт или поливинилпирролидон, характеризующийся тем, что при получении микрокапсул физико-химическим методом осаждения нерастворителем в качестве осадителя используется ацетон при 25°С и процесс ведут без специального оборудования.

Изобретение относится к области микрокапсулирования лекарственных препаратов на примере риванола, который может использоваться в качестве противомикробного, противогрибкового препаратов наружного применения.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в Пат. 2092155 МПК А61K 047/02, А61K 009/16 опубликован 10.10.1997 Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на использовании облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2173140 МПК А61K 009/50, А61K 009/127 Российская Федерация опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.;

Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат.2359662 МПК А61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

В пат.20110223314 МПК B05D 7/00 20060101 B05D 007/00, В05С 3/02 20060101 В05С 003/02; В05С 11/00 20060101 В05С 011/00; B05D 1/18 20060101 B05D 001/18; B05D 3/02 20060101 B05D 003/02; B05D 3/06 20060101 B05D 003/06 от 10.03.2011 US описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.

Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, получение микрокапсул методом суспензионной полимеризации, использование ультрафиолетового облучения.

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4: 1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода, предложенного в пат. 2134967 является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение процесса получения микрокапсул водораствормого лекарственного препарата в водорастворимых полимерах синтетического происхождения (поливиниловый спирт, поливинилпирролидон), увеличение стабильности лекарственного препарата риванол с помощью заключения его в водорастворимые полимерные оболочки синтетического происхождения (микрокапсулирования).

Решение технической задачи достигается способом получения микрокапсул риванола в водорастворимых полимерах, отличающемся тем, что при получении микрокапсул физико-химическим методом осаждения нерастворителем в качестве осадителя используется ацетон, при 25°С процесс получения осуществляется без специального оборудования (использование роторно-кавитационной установки, распылительной градирне Niro).

Отличительной особенностью предлагаемого метода является использование метода осаждения ацетоном в качестве нерастворителя как способа получения микрокапсул водорастворимого лекарственного препарата в водорастворимой полимерной оболочке синтетического происхождения без специального оборудования. Результатом предлагаемого метода являются получение микрокапсул риванола в поливинилпирролидоне и поливиниловом спирте при 25°С в течение 30 минут, которые обладают большей стабильностью, чем исходный риванол. Выход микрокапсул составляет 90%.

Необходимый для реакции исходный риванол был промышленного производства (КНР).

Иллюстрации к патенту:

Фиг 1. ИК-спектр поверхности микрокапсул риванола в ПВП, соотношение 1:3

Фиг.2. ИК-спектр поверхности микрокапсул риванола в ПВС, соотношение 1:3

Фиг.3. ИК-спектр поверхности микрокапсул риванола в ПВС, соотношение 1:1

Фиг.4. ИК-спектр поверхности микрокапсул риванола в ПВП, соотношение 1:1

Фиг.5. ИК-спектр риванола

Фиг.6. ИК-спектр пиливинилпирролидона(ПВП)

Фиг.7. Кристаллы риванола, увеличение 505 раз

Фиг.8. Микрокапсулы риванола в поливинилпирролидоне:

а) соотношение 1:3, увеличение 260 раз;

б) соотношение 1:1, увеличение 2830 раз.

Фиг.9. Микрокапсулы риванола в поливинилпирролидоне:

а) соотношение 1:3, увеличение 260 раз;

б) соотношение 1:1, увеличение 2830 раз.

Фиг.10. Микрокапсулы риванола в поливиниловом спирте:

а) соотношение 1:1, увеличение 260 раз;

б) соотношение 1:3, увеличение 2830 раз.

Фиг.11. Конфокальная лазерная сканирующая микроскопия раствора микрокапсул риванола в пиливинилпирролидоне, соотношение 1:1

а) 2% водного раствора микрокапсул риванола, увеличение 1400 раз;

б) 1% водного раствора микрокапсул риванола, увеличение 505 раз;

в) 0,5% водного раствора микрокапсул риванола, увеличение 1770 раз;

г) 0,25% водного раствора микрокапсул риванола, увеличение 1400 раз

Фиг.12. Конфокальная лазерная сканирующая микроскопия раствора микрокапсул риванола в пиливиниловом спирте, соотношение 1:1

а) 2% водного раствора микрокапсул риванола, увеличение 260 раз;

б) 1% водного раствора микрокапсул риванола, увеличение 505 раз;

в) 0,5% водного раствора микрокапсул риванола, увеличение 620 раз;

г) 0,25% водного раствора микрокапсул риванола, увеличение 900 раз.

Фиг.13. Конфокальная сканирующая лазерная микроскопия 2% водного раствора риванола:

а) увеличение 2830 раз;

б) увеличение 1400 раз.

ПРИМЕР 1. Получение микрокапсул риванола в поливинилпирролидоне (ПВП) с использованием 5% раствора уксусной кислоты в ацетоне в качестве осадителя, соотношение 1:3.

В стакан объемом 150 мл помещают 18 г 5% водного раствора ПВП, ставят на магнитную мешалку и включают перемешивание. 0,3 г риванола растворяют в 2 мл этанола при нагревании. Полученный раствор охлаждают и по каплям переносят в раствор ПВП. После образования риванолом самостоятельной твердой фазы по каплям приливают первый осадитель (5% раствор уксусной кислоты в ацетоне, содержащий 0,2% ОС-20 (смесь полиоксиэтиленгликолевых эфиров высших жирных спиртов) в качестве ПАВ) в количестве 50 мл, а затем второй - 0,2% раствор ОС-20 в 15 мл ацетона. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта и промывают ацетоном. Сушат в эксикаторе над хлористым кальцием. Получают 1,08 г (90%) микрокапсул в виде желтого порошка. Количество вещества в капсуле 33%.

ИК-спектр поверхности см. фиг.1.

Полученные капсулы были исследованы с помощью ИК-спектроскопии. В спектрах поверхности микрокапсул в областях 1655-1013,3 см-1 присутствуют полосы поглощения характерные для риванола, такие как 1655.44 см-1 - СО.

ПРИМЕР 2. Получение микрокапсул риванола в поливиниловом спирте(ПВС) с использованием 5% раствора уксусной кислоты в ацетоне в качестве осадителя, соотношение 1:3.

В стакан объемом 150 мл помещают 18 г 5% водного раствора ПВС, ставят на магнитную мешалку и включают перемешивание. 0,3 г риванола растворяют в 2 мл этанола при нагревании. Полученный раствор охлаждают и по каплям переносят в раствор ПВС. После образования риванолом самостоятельной твердой фазы по каплям приливают первый осадитель (5% раствор уксусной кислоты в ацетоне, содержащий 0,2% ОС-20 в качестве ПАВ) в количестве 50 мл, а затем второй - 0,2% раствор ОС-20 в 15 мл ацетона. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта и промывают ацетоном. Сушат в эксикаторе над хлористым кальцием. Получают 1,07 г (89%) микрокапсул в виде желтого порошка. Количество вещества в капсуле 27%.

ПК-спектр поверхности см. фиг.2.

Полученные капсулы были исследованы с помощью ИК спектроскопии. В спектрах поверхности микрокапсул в областях 1655-1013,3 см-1 присутствуют полосы поглощения характерные для риванола, такие как 1655.44 см-1-С=O.

ПРИМЕР 3. Получение микрокапсул риванола в поливиниловом спирте (ПВС) с использованием ацетона в качестве нерастворителя, соотношение 1:1.

В стакан объемом 150 мл помещают 0,6 г риванола, 100 мл ацетона, 1 мл 0,2% ОС-20, ставят на магнитную мешалку, включают перемешивание. После образования риванолом самостоятельной твердой фазы по каплям приливают 12 г 5% водного раствора ПВС. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта и промывают ацетоном. Сушат в эксикаторе над хлористым кальцием. Получают 1,12 г (93%) микрокапсул в виде желтого порошка. Количество вещества в капсуле 65,5%.

ИК-спектр поверхности см. фиг.3.

Полученные капсулы были исследованы с помощью ИК спектроскопии. В спектрах поверхности микрокапсул в областях 1655-1013,3 см-1 присутствуют полосы поглощения характерные для риванола, такие как 1655.44 см-1-С=O.

ПРИМЕР 4. Получение микрокапсул риванола в поливинилпирролидоне (ПВП) с использованием ацетона в качестве нерастворителя, соотношение 1:1.

В стакан объемом 150 мл помещают 0,6 г риванола, 100 мл ацетона, 1 мл 0,2% ОС-20, ставят на магнитную мешалку, включают перемешивание. После образования риванолом самостоятельной твердой фазы по каплям приливают 12 г 5% водного раствора ПВП. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта и промывают ацетоном. Сушат в эксикаторе над хлористым кальцием. Получают 1,08 г (90%) микрокапсул в виде желтого порошка. Количество вещества в капсуле 60,5%.

ИК-спектр поверхности см. фиг.4.

Полученные капсулы были исследованы с помощью ИК -спектроскопии. В спектрах поверхности микрокапсул в областях 1655-1013,3 см-1 присутствуют полосы поглощения характерные для риванола, такие как 1655.44 см-1-C=O.

ПРИМЕР 5. Методика анализа микрокапсулированных продуктов методом тонкослойной хроматографии с денситометрией

Необходимым условием для проведения анализа данным методом является выбор универсального растворителя, растворяющего и полимер оболочки микрокапсулы, и капсулируемое вещество.

Две пластинки устанавливают вертикально в камеру для хромотографирования, чтобы элюент прошел через всю пластину, тем самым пластина промывается, затем высушивается. Для анализа взвешивают по 0,03-0,02 г чистого образца, который использовался в капсулировании (стандарт), и по 0,02 г анализируемых капсул и растворяем их в 3-5 мл ДМФА либо ДМСО, при необходимости нагревают. Затем в пробирки со стандартом вводят по 2 мл 1,5% раствора внутреннего стандарта в ДМФА, а в растворенные капсулы по 1 мл. Далее из каждого анализируемого раствора отбирают в отдельные пробирки по 70 мкл раствора и разбавляют их 200 мкл ДМФА.

На расстоянии около 2 см от края пластинки (силуфол) карандашом проводят стартовую линию. На 2 пластинки на стартовую линию капилляром наносят образцы полученных растворов. Диаметр пятна должен составлять 2-3 мм. Пластинку высушивают над плиткой. Эту операцию при необходимости повторяют 2-3 раза. Две пластины устанавливают вертикально в камеру для хроматографирования так, чтобы пятна образцов находились над поверхностью элюента (система растворителей ацетон:уксусная кислота в объемном соотношении 15:0,1 для анализа микрокапсул содержащих АУК и акридон, либо 10:0,5 -для микрокапсул содержащих 4-карбоксиакридон и акридонсульфамид). Пластинки не должны касаться друг друга. Пластинки не должна касаться стенок камеры. Процесс прекращают после того, как элюент пройдет от линии старта не менее 7 см. После этого пластинки вынимают, отмечают положение фронта элюента, тщательно высушивают над электрической плиткой. Затем пластину обрабатывают с помощью видеоденситометра «Sorbfil» и программы «Sorbfil 1.8».

Полученные микрокапсулы были сфотографированы на атомно-силовом сканирующем электронном микроскопе, совмещенном с конфокальным OmegaScope AIST-NT.

Из порошка микрокапсул, полученных по методикам, описанным в примерах 3,4 были приготовлены водные растворы концентрациями 2%, 1%, 0,5%, 0,25% и водный раствор сравнения исходного риванола концентрацией 2%. Далее капля каждого из приготовленных растворов помещалась на предметное стекло до полного высушивания и по высушенной поверхности проводилась конфокальная сканирующая микроскопия на атомно-силовом сканирующем электронном микроскопе, совмещенном с конфокальным OmegaScope AIST-NT.

Таким образом, получены микрокапсулы физико-химическим методом осаждения нерастворителем с использованием ацетона в качестве осадителя, что способствует увеличению выхода. Процесс прост в исполнении и длится в течение 30 минут, не требует специального оборудования.

Из представленных выше данных видно, что шарообразную форму имеют микрокапсулы, содержащие меньшее количество действующего вещества, полученные в соотношении 1:3. Внешний вид продуктов имеет существенные отличия от кристаллов исходного риванола. Однако размер частиц не зависит от соотношения при получении, так как наименьший размер зафиксирован при количестве действующего вещества 65% в поливинилпирролидоне, а наибольший - при 65,5% риванола в поливиниловом спирте. Оба образца получены в соотношении 1:1. Содержание лекарственных веществ может варьировать в пределах от 15 до 99% массы микрокапсул. В нашем случае получены образцы с наименьшим и средним для фармацевтической промышленности количеством действующего вещества. Следует также отметить, что неустойчивость растворов риванола на свету - общеизвестный факт. Они меняют цвет с желтого на темно-коричневый, а иногда и черный в течение 3-7 дней хранения. Стабильность полученных растворов микрокалсул исследовалась в течение длительного времени при комнатной температуре, в результате чего срок изменения окраски растворов не установлен. Это свидетельствует о том, с помощью предложенного способа можно получать микрокапсулы неустойчивых лекарственных препаратов с целью получения стабильной системы для решения проблем стабильности неустойчивых лекарственных препаратов различных фармакологических групп.

Способ получения микрокапсул риванола в водорастворимом полимере, представляющем собой поливиниловый спирт или поливинилпирролидон, характеризующийся тем, что при получении микрокапсул физико-химическим методом осаждения нерастворителем в качестве осадителя используется ацетон при 25°С и процесс ведут без специального оборудования.
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ РИВАНОЛА В ВОДОРАСТВОРИМЫХ ПОЛИМЕРАХ
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ РИВАНОЛА В ВОДОРАСТВОРИМЫХ ПОЛИМЕРАХ
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ РИВАНОЛА В ВОДОРАСТВОРИМЫХ ПОЛИМЕРАХ
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ РИВАНОЛА В ВОДОРАСТВОРИМЫХ ПОЛИМЕРАХ
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ РИВАНОЛА В ВОДОРАСТВОРИМЫХ ПОЛИМЕРАХ
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ РИВАНОЛА В ВОДОРАСТВОРИМЫХ ПОЛИМЕРАХ
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ РИВАНОЛА В ВОДОРАСТВОРИМЫХ ПОЛИМЕРАХ
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ РИВАНОЛА В ВОДОРАСТВОРИМЫХ ПОЛИМЕРАХ
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ РИВАНОЛА В ВОДОРАСТВОРИМЫХ ПОЛИМЕРАХ
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ РИВАНОЛА В ВОДОРАСТВОРИМЫХ ПОЛИМЕРАХ
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ РИВАНОЛА В ВОДОРАСТВОРИМЫХ ПОЛИМЕРАХ
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ РИВАНОЛА В ВОДОРАСТВОРИМЫХ ПОЛИМЕРАХ
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ РИВАНОЛА В ВОДОРАСТВОРИМЫХ ПОЛИМЕРАХ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 672.
10.07.2014
№216.012.dca9

Способ инкапсуляции фенбендазола

Изобретение относится к области инкапсуляции, в частности способу получения микрокапсул фенбендазола в оболочке из натрий карбоксиметилцеллюлозы. Согласно способу по изобретению фенбендазол растворяют в диоксане или диметилсульфоксиде, или диметилформамиде, добавляют полученный раствор...
Тип: Изобретение
Номер охранного документа: 0002522267
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.e10e

Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в ацетоне

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения микрокапсул лекарственных препаратов методом осаждения нерастворителем, отличающийся тем, что в качестве лекарственных препаратов используются препараты группы цефалоспоринов, в качестве...
Тип: Изобретение
Номер охранного документа: 0002523400
Дата охранного документа: 20.07.2014
10.08.2014
№216.012.e7e5

Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в толуоле

Изобретение относится к фармацевтической промышленности, в частности к способу получения микрокапсул лекарственных препаратов группы цефалоспоринов. Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов заключается в том, что к раствору конжака в толуоле добавляют...
Тип: Изобретение
Номер охранного документа: 0002525158
Дата охранного документа: 10.08.2014
20.10.2014
№216.012.fed7

Способ инкапсуляции фенбендазола

Изобретение относится к химико-фармацевтической промышленности и представляет собой cпособ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве лекарственного препарата используется фенбендазол, в качестве оболочки - натрий...
Тип: Изобретение
Номер охранного документа: 0002531095
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fed8

Способ инкапсуляции фенбендазола

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве лекарственного препарата используется фенбендазол, в качестве оболочки - натрий...
Тип: Изобретение
Номер охранного документа: 0002531096
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.feda

Способ получения микрокапсул гетероциклических соединений триазинового ряда

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения микрокапсул пестицидов методом осаждения нерастворителем, отличающийся тем, что в качестве активных веществ используются гетероциклические соединения триазинового ряда, в качестве оболочки -...
Тип: Изобретение
Номер охранного документа: 0002531098
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fedd

Способ биоинкапсуляции

Изобретение относится к химико-фармацевтической промышленности и представляет собой cпособ получения микрокапсул лекарственных препаратов методом осаждения нерастворителем, отличающийся тем, что в качестве лекарственных препаратов используются препараты группы цефалоспоринов, в качестве...
Тип: Изобретение
Номер охранного документа: 0002531101
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.03ed

Способ инкапсуляции фенбендазола

Изобретение относится к химико-фармацевтической промышленности и представляет собой cпособ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве лекарственного препарата используется фенбендазол, в качестве оболочки - натрий...
Тип: Изобретение
Номер охранного документа: 0002532403
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.03ef

Способ инкапсуляции фенбендазола

Изобретение относится к химико-фармацевтической промышленности и представляет собой cпособ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве лекарственного препарата используется фенбендазол, в качестве оболочки - натрий...
Тип: Изобретение
Номер охранного документа: 0002532405
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.03f3

Способ инкапсуляции фенбендазола

Изобретение относится в области химико-фармацевтической промышленности и представляет собой cпособ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве лекарственного препарата используется фенбендазол, в качестве оболочки - натрий...
Тип: Изобретение
Номер охранного документа: 0002532409
Дата охранного документа: 10.11.2014
Показаны записи 21-30 из 32.
20.11.2014
№216.013.0756

Способ получения частиц инкапсулированных жирорастворимой полимерной оболочкой ароматизаторов, обладающих супрамолекулярными свойствами

Изобретение относится к области инкапсуляции и представляет собой способ получения микрокапсул, обладающих супрамолекулярными свойствами, методом осаждения нерастворителем, согласно которому ароматизатор «паприка», используемый в качестве ядра микрокапсул, растворяют в бутаноле, затем...
Тип: Изобретение
Номер охранного документа: 0002533279
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0d6b

Устройство для пневматического транспортирования сыпучего материала

Изобретение относится к пневматическому транспортированию сыпучего материала и может быть использовано в строительной, металлургической, химической и других отраслях промышленности. Устройство пневматического транспортирования сыпучего материала содержит расходный бункер с аэрирующим...
Тип: Изобретение
Номер охранного документа: 0002534852
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e94

Способ инкапсуляции фенбендазола

Изобретение относится к способу инкапсуляции фенбендазола. Указанный способ характеризуется тем, что раствор фенбендазола диспергируют в раствор натрий карбоксиметилцеллюлозы в этилацетате, содержащий препарат Е472с, при соотношении фенбендазол/натрий карбоксиметилцеллюлоза 1:3, затем приливают...
Тип: Изобретение
Номер охранного документа: 0002535149
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.192d

Электрогенерирующее покрывало

Изобретение относится к многослойным изделиям и может быть использовано при изготовлении гибких теплоизолирующих покрытий для объектов, излучающих тепловую энергию, с целью ее утилизации для получения электрической энергии. Электрогенерирующее покрывало, содержащее гибкий лист, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002537873
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1992

Капиллярный электростатический конденсатор-электрогенератор

Изобретение относится к энергомашиностроению, к теплообменной аппаратуре и может быть использовано для конденсации отработанного пара без использования хладоагента с трансформацией части тепловой энергии в электрическую. Технический результат состоит в повышении эффективности....
Тип: Изобретение
Номер охранного документа: 0002537974
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.26f2

Мостовой измеритель параметров двухполюсников

Изобретение относится к метрологии. Измеритель содержит генератор, мост, нуль-детектор. Генератор содержит формирователи импульсов, синхронизатор, коммутатор, усилитель мощности. Первая ветвь моста содержит объект измерения и одиночный резистор, общий вывод которых образует первый выход моста....
Тип: Изобретение
Номер охранного документа: 0002541423
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.27b5

Вентиляторная градирня

Изобретение относится к теплоэнергетике и может быть использовано при воздушном охлаждении оборотной воды ТЭЦ, АЭС и промышленных предприятий. Вентиляторная градирня содержит прямоугольный в поперечном сечении корпус с воздуховходными окнами в его нижней части, установленный на водосборном...
Тип: Изобретение
Номер охранного документа: 0002541622
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.28ac

Устройство декодирования кодов рида-соломона

Изобретение относится к системам телекоммуникации и вычислительной техники и может найти применение в устройствах приема информации из канала передачи или воспроизведения информации с высоким уровнем ошибок. Техническим результатом является повышение эффективности исправления ошибок за счет...
Тип: Изобретение
Номер охранного документа: 0002541869
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2932

Наружная многослойная монолитная стена многоэтажного здания

Изобретение относится к строительству и может быть использовано при возведении наружных многослойных стен монолитных многоэтажных зданий. Технический результат: повышение эксплуатационной надежности. Наружная многослойная монолитная стена многоэтажного здания содержит монолитные бетонные слои,...
Тип: Изобретение
Номер охранного документа: 0002542003
Дата охранного документа: 20.02.2015
20.04.2015
№216.013.44e4

Устройство декодирования ldpc-кодов

Изобретение относится к системам телекоммуникаций и вычислительной техники. Технический результат заключается в повышении пропускной способности устройства LDPC-кода за счет того, что на каждой итерации алгоритма декодирования из проверочных уровней LDPC-кода исключаются символы кодового слова,...
Тип: Изобретение
Номер охранного документа: 0002549134
Дата охранного документа: 20.04.2015
+ добавить свой РИД