×
27.06.2013
216.012.50db

Результат интеллектуальной деятельности: СПОСОБ СОЗДАНИЯ СМАЧИВАЕМОГО ПОКРЫТИЯ УГЛЕРОДНОЙ ПОДИНЫ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу создания смачиваемого покрытия углеродной подины алюминиевого электролизера. Способ включает высокотемпературное электрохимическое осаждение компонентов покрытия из расплавленного электролита и синтез карбидов и боридов тугоплавких металлов на поверхности углеграфитовых блоков подины. Подачу компонентов покрытия в электролизер, их электроосаждение и синтез соединений покрытия осуществляют поэтапно с первоначальной подачей тугоплавких металлов в расплав электролита, их электроосаждением и синтезом карбидов тугоплавких металлов на углеграфитовых блоках и последующей подачей бора в расплав электролита, его электроосаждением и синтезом соединений покрытия в системе тугоплавкий металл-бор-углерод и тугоплавкий металл-бор на поверхности подины. Продолжительность первого этапа определяют снижением концентрации тугоплавкого металла в электролите от 5,0 до 0,1 мас.%. Продолжительность второго этапа определяют снижением концентрации бора в алюминии от 0,5 до 0,01 мас.%. Обеспечивается гарантированное присутствие смачиваемого алюминием защитного покрытия на подине после пуска электролизера, снижение удельного расхода электроэнергии на производство алюминия, предотвращение нарушения целостности углеродистой футеровки. 4 з.п. ф-лы, 4 ил., 1 табл.

Предлагаемое изобретение относится к электролитическому производству алюминия и может быть использовано в технологическом процессе электролиза криолитоглиноземных расплавов.

Повышение технико-экономических показателей процесса электролиза - основная задача алюминиевого производства. Одним из направлений решения этой задачи является создание в процессе эксплуатации электролизера на катодной углеродной поверхности шахты смачиваемых алюминием покрытий. Основные функции смачиваемых покрытий (СП):

- обеспечение надежного и эффективного электрического контакта между слоем алюминия и углеродным материалом катода, что минимизирует удельный расход технологической электроэнергии, стабилизирует форму рабочего пространства, токораспределение в катодном устройстве и процесс электролиза в целом;

- защита углеграфитовых катодных блоков от разрушающего воздействия агрессивной среды расплавов электролита и алюминия, что обеспечивает повышение срока службы электролизера.

Известен патент на электролизер и метод производства металла, в котором описывается способ создания густого малоподвижного слоя смеси боридных, карбидных, нитридных частиц тяжелых металлов с алюминием на поверхности наклонного дренированного катода [1].

Малоподвижность пульпы между углеродной поверхностью и слоем алюминия с пределом текучести 10-100 Н/м2 и объемной плотностью 2.5 г/см3 обеспечивается содержанием частиц в слое 25-70 об% и их размером в пределах 0,1-1 мкм или 5-500 мкм. В зависимости от размера частиц формируется смачиваемый алюминием слой пульпы от 1 до 10 мм. Предпочтительным составом пульпы считается смесь Al/TiB2.

В патенте предусмотрены практически все известные способы размещения и образования пульпы на поверхности подины:

- в виде порошка TiB2 или брикетов композита Al/TiB2 до пуска ванны,

- в виде порошка TiB2 или брикетов композита Al/TiB2 после пуска,

- синтез TiB2 в процессе электролиза путем добавок в электролит TiO2 и B2O3,

- простым борированием алюминия добавками B2O3 к электролиту.

Предусмотрен также вариант создания пульпы Al/TiB2 при разрушении TiB2/C композитного слоя, если такой был предварительно создан и деградирует на поверхности подины. Сообщается, что применение способа может быть распространено и на обычные индустриальные электролизеры с большим слоем алюминия на поверхности катода.

Недостатком известного способа является нестабильность вязкотекучего слоя пульпы на поверхности углеродной подины. Любые возмущающие воздействия на этот слой (анодные эффекты, технологические операции обслуживания, замена анодов и др.) в условиях электролизера с дренированным катодом приведут к перемешиванию его с электролитом, коротким замыканиям междуполюсного расстояния (МПР), расстройству технологического хода и потерям алюминия. В конечном итоге нестабильная работа электролизера приведет к снижению технико-экономических показателей электролиза.

Известен способ нанесения смачиваемого покрытия подины алюминиевого электролизера в период его пуска совместным электроосаждением из криолитоглиноземных расплавов тугоплавких металлов и бора на углеродном катоде [2]. Причем при концентрации глинозема в электролите 2-8 мас.% параметры электроосаждения его компонентов (например, титана и бора) подобраны таким образом, что соосаждения металлического алюминия не происходит:

- осаждение проводят при плотности тока, равной 0,1-0,9 А/см2, при криолитовом отношении 2,3-2,9 и температуре 950-970°C;

- в качестве источника бора используют кислород- и/или фторсодержащие производные бора, а именно оксид бора, тетрабораты щелочных и щелочноземельных металлов, тетрафторбораты щелочных и щелочно-земельных металлов в количестве 0,5-2 мас.% в расчете на оксид бора;

- в качестве источника тугоплавких металлов - добавки кислород- и/или фторсодержащих производных этих металлов, а именно оксиды, кислород- или фторсодержащие соединения с катионами щелочного или щелочноземельного металла в количестве 0,5-4 мас.% в расчете на оксид металла.

Механизм образования боридного слоя не уточняется, но в описании способа декларируется, что создаются специальные условия, при которых обеспечивается плотность и связность слоя покрытия с поверхностью подины, независимость от различия коэффициентов термического расширения слоя покрытия и материала подины. В то же время, других условий и параметров, кроме приведенных в описании и формуле изобретения, не приводится. Вместе с тем, перечисленными параметрами соосаждения бора и тугоплавких металлов, в том числе концентрацией глинозема 2-8 мас.%, создаются идеальные условия для одновременного электроосаждения алюминия, который реагирует с поверхностью углеродной подины до образования карбида алюминия. Слой этого соединения на углеродных блоках препятствует созданию на катоде боридного покрытия или, по крайней мере, хорошей его сцепляемости с поверхностью подины.

Главным препятствием в обеспечении равномерного распределения тока по поверхности подины и, следовательно, равномерного, фронтального и послойного роста синтезируемой боридной фазы является крайне неоднородная поверхность углеграфитовых блоков с многочисленными микро- и макронеровностями, трещинами и порами. Поэтому условия и параметры совместного электроосаждения бора и тугоплавких металлов в известном способе нанесения смачиваемого покрытия подины алюминиевого электролизера позволят получать только порошкообразные боридные соединения или, в лучшем случае, покрытия с неудовлетворительной адгезией к углеродной подине с боридным слоем дендритной морфологии. Качество такого покрытия не может обеспечить стабильной работы электролизера с дренированным катодом.

Известен способ создания СП на катодной поверхности алюминиевого электролизера и сохранения этого покрытия в процессе электролиза, включающий следующие основные этапы [3]:

- Для инициации смачивания рекомендуется первоначально вводить в криолитоглиноземный расплав титансодержащие соединения и осуществлять осаждение титана на катодной алюминиевой поверхности. Насыщением алюминия титаном предполагается на поверхности углеродных блоков химически синтезировать пленку TiC, которая благоприятствует последующему образованию и росту пленки TiB2.

- Для формирования СП осуществляют подачу оксидов и солей бора, титана, циркония, гафния, хрома, ванадия, ниобия, тантала, молибдена, вольфрама и их смесей с последующим их растворением и электрохимическим восстановлением ионов на катодной алюминиевой поверхности до создания пересыщенного раствора металлов и бора в прикатодном слое алюминия;

- В процессе контактирования пересыщенного раствора прикатодного слоя алюминия с углеродной подиной происходит образование смачиваемого алюминием боридного слоя на углеродной поверхности.

Обоснование процесса создания покрытия заключается в очень низкой растворимости боридов тугоплавких металлов в алюминии, в отличие от высокой растворимости в алюминии составляющих их элементов. По этой причине, по логическому предположению автора, превалирующее образование карбидов и боридов тугоплавких металлов из атомов составляющих элементов будет происходить на угольной поверхности, но не в объеме тонкого прикатодного слоя алюминия. Оговаривается, что этот процесс не изучен и предлагается его характеризовать как «пересыщенное платинирование» углеродной поверхности.

По технической сущности, наличию сходных признаков данное решение выбрано в качестве ближайшего аналога.

Основным недостатком известного технического решения является то, что при реализации способа не учитываются последствия возможного взаимодействия компонентов покрытия в объеме алюминия. При 750-1000°C присутствие тугоплавких металлов в алюминии или совместное присутствие этих металлов и бора в алюминии в любых количествах сопровождается термодинамически благоприятным процессом их взаимодействия с алюминием и между собой до образования плотных кристаллов боридов (например, TiB2) и интерметаллидов (например, AlTi3). Этот процесс хорошо изучен и применяется для очистки алюминия от примесей тугоплавких металлов (для последующего применения алюминия в электротехнических целях) и для модифицирования внутренней структуры деформируемых сортов алюминия (для последующей его прокатки в тонкие листы или фольгу). Кристаллы боридов и интерметаллидов тугоплавких металлов, обладая сравнительно высокой плотностью относительно алюминия, будут оседать в прикатодные слои и/или удаляться с выливаемым алюминием. Взаимодействие между ними и углеродной поверхностью отсутствует.

Таким образом, предлагаемые технологические режимы подачи титана и бора в электролизер будут приводить к образованию в прикатодном слое вязкотекучей смеси алюминия с частицами тугоплавких соединений боридов и интерметаллидов, но не смачиваемого боридного покрытия на углеродном катоде.

Задача изобретения - повышение технико-экономических показателей процесса электролитического производства алюминия.

Технические результаты - гарантированное присутствие смачиваемого алюминием защитного покрытия на углеродистой футеровке катодного устройства после пускового периода ванны, снижение удельного расхода электроэнергии на производство алюминия, предотвращение нарушения целостности углеродистой футеровки.

Технические результаты достигаются тем, что в способе создания смачиваемого покрытия углеродной подины алюминиевого электролизера, включающем высокотемпературное электрохимическое осаждение компонентов покрытия из расплавленного электролита и синтез карбидов и боридов тугоплавких металлов на поверхности углеграфитовых блоков, подачу компонентов покрытия в электролизер, их электроосаждение и синтез соединений покрытия осуществляют поэтапно с первоначальной подачей тугоплавких металлов в криолитовый расплав, их электроосаждение и синтез карбидов тугоплавких металлов на углеродных блоках и последующей подачей бора в криолитовый расплав, его электроосаждение и синтез соединений покрытия в системе тугоплавкий металл-бор-углерод и тугоплавкий металл-бор на поверхности подины.

Тугоплавкие металлы и бор отдают в электролит в виде чистых компонентов или их солей и оксидов, а в качестве вводимых металлов могут быть использованы титан, цирконий, вольфрам, ванадий или их смеси.

Техническая сущность предлагаемого решения заключается в следующем.

Создание в процессе пускового периода электролизера на катодной углеродной поверхности шахты электролизера смачиваемых алюминием покрытий (СП) - задача, решение которой обеспечивает повышение и стабильность высоких технико-экономических показателей процесса, и увеличение срока службы электролизера. Способ создания такого покрытия должен быть технологичен, надежен, воспроизводим и малозатратен.

В предлагаемом техническом решении на катодной углеродной поверхности в пусковой период электролизера создается смачиваемое алюминием покрытие из боридов тугоплавких металлов (Ti, V, Zr, Mo, W) в два этапа.

На первом этапе введением и растворением металлсодержащих компонентов в криолитовый расплав осуществляется электроосаждение тугоплавких металлов (Me) на катоде

в две

или в одну стадию

с последующим их взаимодействием с углеродом до образования карбидов тугоплавких металлов в приповерхностном объеме катода

.

Причем процессы А-D происходят на всей поверхности катода, в порах, неровностях, микро- и макротрещинах, постепенно выравнивая приповерхностный слой катода и, тем самым, подготавливая его к последующему этапу - этапу взаимодействия с бором.

Для предотвращения образования в приповерхностном слое углеродного катода карбида алюминия Al4C3 как конкурирующего процесса, который затрудняет процесс карбидизации D и исключает выравнивание поверхности катода только его продуктом, в криолитовом расплаве исключаются присутствие и, тем более, добавки глинозема. Кроме того, в присутствии глинозема в электролите снижается растворимость металлсодержащих компонентов.

Продолжительность первого этапа определяется снижением концентрации тугоплавкого металла в электролите от 5,0 до 0,1 мас.% При концентрациях тугоплавкого металла в электролите более 5 мас.% могут возникать затруднения в обеспечении нормального технологического процесса пускового периода в виде «горячего» или «холодного» хода и выпадения осадков на подину электролизера. Уменьшение концентрации тугоплавкого металла в электролите до 0,1 мас.%, и ниже подготавливает переход ко второму этапу, поскольку его активность не влияет на чистоту алюминия как товарного продукта.

На втором этапе введением и растворением борсодержащих компонентов в криолитовый расплав осуществляется электроосаждение бора на катоде совместно

.

Бор будет восстанавливаться непосредственно на поверхности углеродного катода. Отсутствие алюминия в расплаве и на поверхности подины устраняет конкурирующие процессы разряда ионов алюминия и образования карбида алюминия, препятствующие равномерному по площади подины взаимодействию бора с соединениями титана. Такой механизм доставки бора к подине обеспечивает равномерный и необратимый его поток к реакционной карбидметаллической поверхности. Таким образом, твердофазное взаимодействие бора с тугоплавкими металлами и их карбидами будет происходить в приповерхностном объеме катода. По сути, осуществляется борирование приповерхностного катодного слоя, содержащего тугоплавкие металлы. Образование смачиваемого покрытия проходит через стадии образования соединений в системе Ме-В-С, затем промежуточных соединений МеВ и в конечном итоге стехиометрических MeB2. Соответственно, приповерхностный слой углеродного катода в течение пускового периода приобретет слоистую частично смешанную структуру и состав. Внешний слой (к алюминию) будет полностью отборирован до MeB2, следующий будет состоять из соединений, приближенных по составу к MeB. Более глубокие слои будут иметь состав MexByCz. Такая структура приповерхностного смачиваемого слоя обладает достаточной прочностью, хорошей связностью и практически полным соответствием физико-химических свойств с углеродной основой.

Продолжительность второго этапа определяется снижением концентрации бора в электролите от 0,2 до 0,005 мас.%. При концентрациях тугоплавкого металла в электролите более 0,2 мас.% могут возникнуть затруднения в обеспечении нормального технологического процесса пускового периода в виде «горячего» хода и возможности установления так называемой негаснущей «вспышки» - трудноустранимого анодного эффекта. Уменьшение концентрации бора в электролите до 0,005 мас.% и ниже позволяет переходить к выпуску алюминия как товарного продукта, соответствующего требованиям стандартов и потребителей.

Сравнительный анализ предлагаемого решения с ближайшим аналогом выявил следующее. Предлагаемое решение и ближайший аналог характеризуются сходными признаками:

- в электролизер подают материалы, содержащие бор и тугоплавкие металлы;

- металл- и борсодержащие компоненты вводятся в состав электролита с последующим их растворением и электрохимическим восстановлением ионов на катодной поверхности;

- рекомендуется первоначально вводить в электролит титансодержащие соединения и осуществлять осаждение титана на катодной поверхности;

- смачиваемое защитное покрытие из боридов тугоплавких металлов создается непосредственно в процессе электролиза.

Предлагаемое решение характеризуется также признаками, отличными от признаков ближайшего аналога:

- в период создания СП на катоде металл- и борсодержащие компоненты подают в электролизер в количестве, обеспечивающем снижение содержания металла в электролите от 5,0 до 0,1 мас.% и бора в электролите от 0,2 до 0,005 мас.%, а в известном техническом решении содержание бора и тугоплавких металлов в алюминии доводится и поддерживается до насыщения, что может привести к загрязнению товарного алюминия и расстройству технологии электролиза;

- подготовка к созданию СП производится первоначальным введением металлсодержащих компонентов в электролит в отсутствии глинозема алюминия в ванне и соосаждения алюминия на углеродной катодной поверхности, а в известном техническом решении введение тугоплавких металлов производится в присутствии глинозема в электролите, алюминия в ванне и с одновременным осаждением алюминия и тугоплавких металлов на алюминиевой катодной поверхности, что приводит к образованию на углеродном катоде карбида алюминия и, тем самым, неравномерному росту TiC слоя по площади подины и ухудшению его сцепляемости с углеродным катодом;

- создание СП на втором этапе сопровождается введением только борсодержащих компонентов в электролит без присутствия алюминия и реагированием бора с приповерхностным карбидтитановым слоем на углеродном катоде, в то время как в известном техническом решении вводятся металл- и борсодержащие компоненты с соосаждением титана и бора на алюминиевом катоде, что неизбежно сопровождается взаимодействием бора и титана между собой и с алюминием до образования плотных кристаллов боридов (например, TiB2 и AlB12) и интерметаллидов (например, AlTi3), осаждением этих кристаллов в прикатодный слой алюминия без взаимодействия с углеродом подины и без образования боридного смачиваемого покрытия.

Наличие в предлагаемом техническом решении признаков, отличительных от признаков, характеризующих ближайший аналог, позволяет сделать вывод о соответствии предлагаемого условию патентоспособности «новизна».

В процессе поиска и сравнительного анализа не выявлено технических решений, которые бы характеризовались аналогичной с предлагаемым техническим решением совокупностью признаков и давали бы при использовании аналогичные результаты, что позволяет сделать вывод о соответствии предлагаемого решения условию патентоспособности изобретения «изобретательский уровень».

Отработку и испытание предлагаемого решения по созданию смачиваемого покрытия углеродной подины проводили в лабораторных условиях на установках с параметрами пускового режима алюминиевого электролизера.

В качестве анода и тигля для электролизной ячейки использовались заготовки из промышленных подовых блоков. Размеры тигля позволяли расплавлять около 1000 г электролита заявленного состава и устанавливать МПР между электродами 25-30 мм. В качестве углеродных катодов также применялись образцы подовых блоков размерами ⌀=30 и h=50 мм. Образцы с помощью резьбового контакта соединялись с катодным токоподводом и после расплавления сухой шихты электролита с добавками электроактивных компонентов (Ti и B) опускались в расплав. Установка подключалась на электролиз. По окончании этапов создания СП для проверки смачиваемости катода в электролит вводился глинозем для электроосаждения алюминия на катоде. После опыта катод, расположенный над анодом, извлекался из ячейки, очищался от электролита, фотографировался и отправлялся на РФА. Условия проведения испытаний и результаты РФА поверхностного слоя катодных образцов после экспериментов электроосаждения и синтеза смачиваемых покрытий представлены в таблице.

Параметры испытаний по электроосаждению и результаты РФА

Параметры испытаний № испытаний
1 2 3 4
Этапы 1 этап 2 этап 1 этап 2 этап 1 этап 2 этап 1 этап 2 этап
Температура испытаний, °C 990 990 970 970
Плотность тока, А/см2 0,7 0,82 0,82 1,3
Продолжительность, час 40 42 48 48
- 1 этап осаждение титана 20 20 24 24
- 2 этап осаждение бора 20 22 24 24
Состав электролита:
Криолитовое отношение 2,5 2,5 2,5 2,5
Al2O3 исходная концентр., % 0 0 0 0
TiO2 исходная концентр., % 9,4 4,4 6,5 8,0
Добавки Na2B4O7·10H2O, % 3,0 1,2 1,8 1,5
Периодичность добавок, час 3 3 3 3
Результаты РФА поверхности образцов (мас.%)

Фаза Минерал 1 2 3 4
TiB2 1,44 2,44 1,47
Ti6C3.75 1,54 1,93
Ti8C5 3,46
TiC0.981 Khamrabaevite 2,30
СаВ6 1,22 4,26 0,66
TiO2 Rutile, syn 0,93 0,58
TiO2 Anatase 1,47
TiO 0,60
Ti 1,65
Na3AlF6 Cryolite, syn 2,91 35,4 27,7 34,6
Na5Al3Fl4 Chiolite, syn 43,6 5,65 17,8 0
NaF Villiaumite, syn 2,86 7,60
CaF2 Fluorite 0,54 0,48
C Graphite-2\ITH\RG 8,7 38,1 34,6 23,7
Al Aluminum, syn 8,46 3,10 10,1
Al2O3 Comndum, syn 21,1 1,47 1,23 5,03
Al4C3 3,82 5,27 17,2
CaTiO3 Perovskite, syn 0,7
Неизвестная фаза (кристалл.) 7,5 6,44
Съемка рентгенограммы осуществлялась на автоматизированном рентгеновском дифрактометрическом оборудовании фирмы Shimadzu XRD-6000 (излучение CuKα, графитовый монохроматор). РФА проводился с использованием информационно-поисковой системы рентгенофазовой идентификации материалов (ИПС РФИ), совмещающей качественный и полуколичественный анализ. Для полуколичественного РСА применялся метод фундаментальных параметров (волновой рентгенофлуоресцентный спектрометр фирмы Shimadzu XRF-1800).
Примечание: количество соединений смачиваемого покрытия (TiB2, TiC) незначительно из-за необходимости снятия для анализа с поверхности катода слоя 1-3 мм.

В эксперименте 1 применялась исходная концентрация титана в электролите более 5 мас.% (9,4 мас.% в пересчете на TiO2) и на втором этапе концентрация бора в электролите более 0,2 мас.%. В течение испытаний нормальный процесс электролиза периодически прерывался резким увеличением напряжения - анодными эффектами. Это связано с образованием на первом этапе больших количеств низших оксидов титана и с образованием труднорастворимых соединений типа 2Al2O3·B2O3 на втором этапе, которые пассивируют поверхность электродов. Указанные соединения обнаружены при РФА осадков после эксперимента. В результате эффекта смачивания катода не обнаружено (см. фото 1).

В экспериментах 2-4 применялись концентрации электроактивных компонентов в соответствии с заявленными пределами. После испытаний на каждом из образцов обнаружен эффект смачивания - слой алюминия с удовлетворительной адгезией к катодной поверхности (см. фото 2-4). Причина смачивания обнаружена РФА - наличие в поверхностном слое катодов боридов и карбидов титана.

Результаты испытаний свидетельствуют о принципиальной возможности коммерческой реализации предлагаемого способа получения и поддержания смачиваемого покрытия на углеродистых блоках катодного устройства электролизера для производства алюминия.

Предлагаемый способ создания смачиваемого покрытия углеродной подины алюминиевого электролизера осуществляется предпочтительно следующим образом:

1. Заполнение шахты электролизера после обжига расплавленным криолитом, отобранным от электролизеров-маток перед очередной технологической обработкой для минимизации содержания глинозема в электролите.

2. Введение в электролит добавок тугоплавкого металла в виде его оксидов по верхнему заявленному концентрационному пределу с расчетом на требуемую продолжительность первого этапа создания смачиваемого покрытия.

3. Электрохимическое осаждение тугоплавкого металла на углеродном катоде при стандартных параметрах электролиза в пусковой период с последующим синтезом карбида тугоплавкого металла на поверхности, микро- и макронеровностях, трещинах и порах подовых блоков.

4. По достижении нижнего заявленного предела концентрации тугоплавкого металла введение в электролит борсодержащего компонента по верхнему заявленному концентрационному пределу с расчетом на требуемую продолжительность второго этапа создания смачиваемого покрытия.

5. Электрохимическое осаждение бора на катоде при стандартных параметрах электролиза в пусковой период с последующим синтезом борида тугоплавкого металла на поверхности подины.

6. По достижении нижнего заявленного предела концентрации бора в алюминии выведение технологического хода электролизера на рабочий режим со стандартными параметрами.

Предлагаемый способ является эффективным и надежным техническим решением создания смачиваемого алюминием покрытия углеродной подины алюминиевого электролизера и, в конечном итоге, повышения технико-экономических показателей электролиза. Способ создания СП может применяться для действующей технологии электролиза криолитоглиноземных расплавов и для создания технологии электролизеров нового поколения с дренированным катодом.

Источники информации

1. Watson K.D. et al. Electrolysis Cell and Method for Metal Production. // US petent 5658447, 1997.

2. Абакумов A.M. и др. Способ нанесения смачиваемого покрытия подины алюминиевого электролизера. // Патент России RU 2299278, 2007.

3. Townsend D.W. Supersaturation plating of aluminum wettable cathode coatings during aluminum smelting in drained cathode cells. //US patent 5028301, 1991 г.


СПОСОБ СОЗДАНИЯ СМАЧИВАЕМОГО ПОКРЫТИЯ УГЛЕРОДНОЙ ПОДИНЫ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА
СПОСОБ СОЗДАНИЯ СМАЧИВАЕМОГО ПОКРЫТИЯ УГЛЕРОДНОЙ ПОДИНЫ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА
СПОСОБ СОЗДАНИЯ СМАЧИВАЕМОГО ПОКРЫТИЯ УГЛЕРОДНОЙ ПОДИНЫ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА
СПОСОБ СОЗДАНИЯ СМАЧИВАЕМОГО ПОКРЫТИЯ УГЛЕРОДНОЙ ПОДИНЫ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА
Источник поступления информации: Роспатент

Показаны записи 141-150 из 244.
17.02.2018
№218.016.2a5c

Ошиновка для алюминиевых электролизеров большой мощности

Изобретение относится к ошиновке алюминиевого электролизера большой мощности при поперечном расположении электролизеров в корпусе электролиза. Ошиновка содержит сборные и обводные катодные шины и спуски, установленные вдоль входной и выходной сторон катодного кожуха предыдущего электролизера, в...
Тип: Изобретение
Номер охранного документа: 0002643005
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2f54

Способ и шихта для получения азотированного силикомарганца в дуговой руднотермической электропечи

Изобретение относится к области металлургии, а точнее к электротермическому получению металлов и сплавов в дуговых рудно-термических электропечах и может быть использовано в производстве марганцевых и хромистых ферросплавов. Способ включает подготовку и загрузку в печь марганцевой руды и/или...
Тип: Изобретение
Номер охранного документа: 0002644637
Дата охранного документа: 13.02.2018
10.05.2018
№218.016.391f

Способ получения металлургического глинозема (варианты)

Группа изобретений относится к металлургии и может быть использована при переработке низкосортного высококремнистого алюминийсодержащего сырья. Осуществляют измельчение алюминий-содержащего сырья с последующим вскрытием соляной кислотой, представляющей собой кислый оборотный маточный раствор....
Тип: Изобретение
Номер охранного документа: 0002647041
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3b53

Получение скандийсодержащего концентрата и последующее извлечение из него оксида скандия повышенной чистоты

Изобретение относится к способу переработки красного шлама при получении скандийсодержащего концентрата и оксида скандия, в котором ведут карбонизационное выщелачивание, сорбцию скандия на фосфорсодержащем ионите, десорбцию скандия и осаждение скандиевого концентрата. При этом содержание в нем...
Тип: Изобретение
Номер охранного документа: 0002647398
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3dc0

Проводниковый алюминиевый сплав и изделие из него

Изобретение относится к области металлургии, в частности к сплаву на основе алюминия, а также изделию из указанного сплава, и может быть использовано при получении изделий электротехнического назначения при производстве кабельно-проводниковой продукции для электропроводки зданий и сооружений....
Тип: Изобретение
Номер охранного документа: 0002648339
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.3dc3

Способ десорбции хлороводорода из водных растворов и способ концентрирования соляной кислоты

Изобретение относится к способу десорбции хлороводорода из водных растворов соляной кислоты и/или ее гидролизующихся солей и может использоваться, в частности, в процессах дистилляции, ректификации и концентрирования соляной кислоты, в том числе в процессах переработки водных растворов...
Тип: Изобретение
Номер охранного документа: 0002648334
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.42ee

Способ выплавки технического кремния

Изобретение относится к цветной металлургии, а именно к технологии производства технического кремния в электрических печах, и может быть использовано для повышения качества кремния во время ведения восстановительной плавки. Способ включает дозирование, смешение, загрузку и непрерывное...
Тип: Изобретение
Номер охранного документа: 0002649423
Дата охранного документа: 03.04.2018
10.05.2018
№218.016.4833

Шихта для получения технического кремния

Изобретение относится к области металлургии, в частности к электротермическому получению технического кремния. Шихта для получения технического кремния включает кварцит, древесный уголь, нефтяной кокс, каменный уголь и древесную щепу, при этом она дополнительно содержит брикет из полукокса...
Тип: Изобретение
Номер охранного документа: 0002651032
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4bcb

Способ и устройство для определения состава электролита

Изобретение относится к способу и устройству для определения состава электролита на основе дифференциально-термических измерений для управления процессом электролиза алюминия. Устройство состоит из металлического блока, включающего эталон и емкость для отбора пробы электролита, температурных...
Тип: Изобретение
Номер охранного документа: 0002651931
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4eca

Режущий сегмент инструмента, инструмент для обработки обожженных углеродных анодов и способ обработки с помощью инструмента

Изобретение относится к цветной металлургии, в частности к процессу пиления пазов в обожженных углеродных анодах, используемых при электролитическом получении алюминия, а именно к устройству с режущими сегментами и способу обработки обожженных углеродных анодов. Режущие сегменты поочередно с...
Тип: Изобретение
Номер охранного документа: 0002652679
Дата охранного документа: 28.04.2018
Показаны записи 141-150 из 189.
17.02.2018
№218.016.2a5c

Ошиновка для алюминиевых электролизеров большой мощности

Изобретение относится к ошиновке алюминиевого электролизера большой мощности при поперечном расположении электролизеров в корпусе электролиза. Ошиновка содержит сборные и обводные катодные шины и спуски, установленные вдоль входной и выходной сторон катодного кожуха предыдущего электролизера, в...
Тип: Изобретение
Номер охранного документа: 0002643005
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2f54

Способ и шихта для получения азотированного силикомарганца в дуговой руднотермической электропечи

Изобретение относится к области металлургии, а точнее к электротермическому получению металлов и сплавов в дуговых рудно-термических электропечах и может быть использовано в производстве марганцевых и хромистых ферросплавов. Способ включает подготовку и загрузку в печь марганцевой руды и/или...
Тип: Изобретение
Номер охранного документа: 0002644637
Дата охранного документа: 13.02.2018
16.06.2018
№218.016.6261

Катодный токоподводящий стержень алюминиевого электролизера

Изобретение относится к устройству катодного токоподводящего стержня для катодного устройства алюминиевого электролизера. Катодный токоподводящий стержень содержит металлическую основу с внутренней полостью и вкладыш, выполненный из материала с высокой удельной электропроводностью,...
Тип: Изобретение
Номер охранного документа: 0002657682
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.637a

Способ получения катанки из термостойкого сплава на основе алюминия

Изобретение относится к области металлургии, в частности к технологии получения алюминиевых сплавов, и может быть использовано для получения изделий электротехнического назначения, способных работать при повышенных температурах. Способ получения катанки из термостойкого сплава на основе...
Тип: Изобретение
Номер охранного документа: 0002657678
Дата охранного документа: 14.06.2018
25.06.2018
№218.016.65c0

Способ получения диффузионного алюминидного покрытия на низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для получения изделий, предназначенных для эксплуатации при высоких температурах. Способ включает погружение изделия в алундовый контейнер, содержащий электролит в виде фторидного расплава на основе AlF с добавками NaF...
Тип: Изобретение
Номер охранного документа: 0002658550
Дата охранного документа: 21.06.2018
04.07.2018
№218.016.6abc

Термостойкий сплав на основе алюминия

Изобретение относится к технологии алюминиевых сплавов и может быть использовано при получении изделий, работающих при повышенных температурах. Алюминиевый сплав, содержащий цирконий и по меньшей мере один элемент, выбранный из группы, содержащей железо и никель, имеет структуру, представляющую...
Тип: Изобретение
Номер охранного документа: 0002659546
Дата охранного документа: 02.07.2018
19.10.2018
№218.016.9402

Способ получения деформированных полуфабрикатов из сплавов на основе алюминия

Изобретение относится к области металлургии и может быть использовано для получения деформированных полуфабрикатов в виде профилей различного сечения. Способ получения деформированного полуфабриката из сплава на основе алюминия включает приготовление расплава на основе алюминия, содержащего...
Тип: Изобретение
Номер охранного документа: 0002669957
Дата охранного документа: 17.10.2018
30.11.2018
№218.016.a1ce

Высокопрочный сплав на основе алюминия

Изобретение относится к области металлургии, в частности производству литейных материалов на основе алюминия, и может быть использовано для получения ответственных изделий, работающих под действием высоких нагрузок, используемых для автомобилестроения, спортивного инвентаря и других....
Тип: Изобретение
Номер охранного документа: 0002673593
Дата охранного документа: 28.11.2018
30.11.2018
№218.016.a1d1

Способ получения алюминиевых сплавов

Изобретение относится к способу получению сплавов на основе алюминия электролизом. Способ включает использование малорасходуемого анода алюминиевого электролизера в качестве источника легирующих элементов, при этом осуществляют введение в расплавленный катодный алюминий легирующих элементов...
Тип: Изобретение
Номер охранного документа: 0002673597
Дата охранного документа: 28.11.2018
02.02.2019
№219.016.b5c9

Ошиновка модульная для серий алюминиевых электролизеров

Изобретение относится к производству алюминия. Ошиновка поперечно расположенных в сериях алюминиевых электролизеров состоит из анодной части, выполненной с возможностью соединения анодов в серии электролизеров посредством анодных штанг, катодной части, состоящей из катодных стержней с гибкими...
Тип: Изобретение
Номер охранного документа: 0002678624
Дата охранного документа: 30.01.2019
+ добавить свой РИД