×
27.06.2013
216.012.503d

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ФОТОКАТАЛИТИЧЕСКИ АКТИВНОГО ДИОКСИДА ТИТАНА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в производстве пигментов, керамики, адсорбентов, косметики, антибактериальных препаратов, катализаторов. Способ получения фотокаталитически активного диоксида титана из четыреххлористого титана включает осаждение диоксида титана одновременным сливанием в воду раствора соли титана и водного раствора аммиака при постоянных pH и температуре и интенсивном перемешивании, промывку, сушку и термообработку образовавшегося осадка. Осаждение ведут из раствора сульфата титанила при pH=3-6 и температуре 50-80°C. При этом раствор сульфата титанила готовят растворением четыреххлористого титана при комнатной температуре в слабоконцентрированной серной кислоте 4,5-22% при массовом соотношении SO/Ti=0,5-3 с последующим разбавлением дистиллированной водой до концентрации 150-250 г/л TiO. Изобретение позволяет повысить фотокаталитическую активность диоксида титана, получаемого из четыреххлористого титана. 1 табл., 8 пр.
Основные результаты: Способ получения фотокаталитически активного диоксида титана из четыреххлористого титана, включающий осаждение диоксида титана одновременным сливанием в воду раствора соли титана и водного раствора аммиака при постоянных pH и температуре и интенсивном перемешивании, промывку, сушку и термообработку образовавшегося осадка, отличающийся тем, что осаждение ведут из раствора сульфата титанила при pH 3-6 и температуре 50-80°C, при этом раствор сульфата титанила готовят растворением четыреххлористого титана при комнатной температуре в слабоконцентрированной серной кислоте 4,5-22% при массовом соотношении SO/Ti=0,5-3 с последующим разбавлением дистиллированной водой до концентрации 150-250 г/л TiO.

Изобретение относится к способу получения нанодисперсного диоксида титана, используемого в качестве фотокатализатора.

Нанодисперсный диоксид титана в последнее время находит все более широкое применение в различных областях современной науки и техники, в том числе в фотокатализе, электрохимии, оптике, микроэлектронике, в производстве пигментов, керамики, адсорбентов, косметики, антибактериальных препаратов, газовых датчиков, в синтезе мезопористых пленочных покрытий, катализаторов и носителей катализаторов для процессов экологической очистки, в нанобиотехнологии, фундаментальной медицине и др.

В качестве фотокатализатора применяется нанодисперсный диоксид титана анатазной модификации, который под воздействием ультрафиолетового излучения может эффективно обезвреживать многие вредные химические вещества в воздухе и воде, такие как органические спирты, альдегиды, кислоты, ароматические и хлорорганические соединения, красители и др. Фотокаталитическая активность диоксида титана в значительной степени зависит от природы исходного сырья и способа его приготовления. Для получения диоксида титана в качестве наиболее доступных источников исходного сырья, производимых в мире в достаточно больших объемах, могут быть использованы растворы сульфата титанила, применяемые в производстве пигментного диоксида титана, и четыреххлористый титан, применяемый в производстве губчатого титана [1]. Из анализа патентной и научно-технической информации следует, что диоксид титана, содержащий сульфат-ионы, часто обладает более высокой фотокаталитической активностью по сравнению с катализаторами, не содержащими сульфат-ионов [2-6].

Известные методы приготовления сульфатированного диоксида титана можно разделить на две группы: сульфатирование TiO2 пропиткой сульфатом аммония или серной кислотой [5, 6] и гидротермальный синтез TiO2 непосредственно из растворов сульфата титанила [2-4]. При синтезе по второму способу получают нанодисперсные частицы анатаза с сильно разупорядоченной кристаллической структурой, в которой стабилизируются сульфат-ионы [7-8].

В России в настоящее время в достаточно больших объемах производится лишь четыреххлористый титан, который может стать перспективным материалом в качестве исходного соединения титана в получении фотокаталитически активного диоксида титана.

Известны способы получения фотокаталитически активного диоксида титана по сернокислотной технологии [2-4] путем термического гидролиза растворов сульфата титанила в присутствии избытка серной кислоты при температуре 100-250°C в течение нескольких часов. Полученный в результате термического гидролиза гидрогель гидратированного диоксида титана (метатитановая кислота) промывают водой, сушат и прокаливают на воздухе при температуре не выше 500°C. Готовый катализатор имеет кристаллическую структуру анатаза. В зависимости от условий проведения процесса термического гидролиза и температуры термообработки получают диоксид титана с удельной поверхностью от 50 до 330 м2/г. К недостаткам данного способа следует отнести большое количество образующейся гидролизной серной кислоты, представляющей собой отходы производства, а также отсутствие в России производства сульфата титанила.

Известен способ получения фотокаталитически активного диоксида титана методом высокотемпературного газо-фазного окисления паров четыреххлористого титана. Получаемый TiO2 представляет собой смесь анатаза и рутила, содержание которого может достигать до 60%. Диоксид титана, полученный данным способом, содержит примеси хлора до 0,6 мас.% и характеризуется удельной поверхностью около 50 м2/г. По данной технологии фирма "Degussa" производит фотокаталитически активный диоксид титана марки Р-25, широко используемый в Европе [1, 9]. Недостатком данного метода получения TiO2 является сложность технологического процесса с применением специального дорогостоящего оборудования и более низкая активность получаемого фотокатализатора по сравнению с катализаторами, полученными по сернокислотной технологии.

Известен способ получения фотокаталитически активного диоксида титана, путем модифицирования его добавками ионов фтора [10], состоящий в приготовлении водного раствора фторида аммония к которому при комнатной температуре прибавляют спиртовый раствор металлорганического соединения титана. Полученную при этом суспензию гидроксида титана подвергают длительному старению для завершения процесса гидролиза, после чего воду и спирт удаляют выпариванием, а осадок гидроксида диоксида титана высушивают при температуре 100°C и прокаливают при температуре 400-500°C. При данном способе получения образуется диоксид титана, представляющий собой смесь анатаза и брукита, его удельная поверхность при температуре прокаливания 400°C составляет 140 м2/г, а после прокаливания при 500°C - около 80 м2/г. К недостаткам данного метода приготовления можно отнести использование дорогих металлорганических соединения титана и фтора, а также невысокую фотокаталитическую активность получаемого диоксида титана.

Известен способ получения фотокаталитически активного диоксида титана термическим гидролизом или осаждением металлорганических соединений титана с последующей сушкой и термообработкой [11, 12]. Недостатком метода получения из металлорганических соединений титана является высокая цена исходных соединений титана и часто более низкая активность.

Известен способ получения диоксида титана из четыреххлористого титана, включающий реакцию TiCl4 с 60-80% раствором серной кислоты с образованием промежуточного продукта - сульфата титанила, который затем нагревают в автоклаве в течение 6-7 часов при дополнительном добавлении 35-50% серной кислоты. В результате получают кристаллический дигидрат сульфата титанила TiOSO4·2H2O, который отфильтровывают, а затем снова растворяют в воде, и раствор подвергают термическому гидролизу при температуре 130-150°C. В процессе термического гидролиза получают гидратированный диоксид титана, который отделяют от раствора, сушат и подвергают термической обработке. По фазовому составу получаемый диоксид титана представляет собой смесь рутила и анатаза. Недостатками данного способа являются многостадийность, низкая производительность и низкий выход готового продукта [13]. Увеличение выхода готового продукта может достигаться уменьшением концентрации серной кислоты до 20-55% на первой стадии процесса образования промежуточного продукта сульфата титанила [14]. К недостаткам относится отсутствие данных о фотокаталитической активности полученного данными методами диоксида титана.

Наиболее близким способом получения фотокаталитически активного диоксида титана из четыреххлористого титана является осаждение из солянокислого раствора TiCl4 водным раствором аммиака при постоянном значении pH=7, с последующей фильтрацией осадка, сушкой и термообработкой [15]. Способ состоит в том, что раствор четыреххлористого титана в соляной кислоте, разбавленной водой (1:1), и водный раствор аммиака одновременно приливают в реактор, частично наполненный дистиллированной водой, при поддержании постоянного значения pH=7, и температуры 70-80°C. Процесс проводят при интенсивном перемешивании образующейся суспензии гидрогеля диоксида титана. После завершения процесса осаждения полученный осадок отфильтровывают, промывают дистиллированной водой, сушат и прокаливают на воздухе при температуре 450-500°C.

Основным недостатком данного способа приготовления диоксида титана является его сравнительно низкая фотокаталитическая активность (таблица).

Изобретение решает задачу по разработке способа получения фотокаталитически активного диоксида титана с использованием четыреххлористого титана, обеспечивающего улучшения качества катализатора путем дополнительной стабилизации сульфат-ионов в структуре TiO2.

Задача получения диоксида титана с высокой фотокаталитической активностью с использованием четыреххлористого титана решается способом приготовления, состоящим в том, что растворение четыреххлористого титана проводят при комнатной температуре в слабоконцентрированных растворах серной кислоты (4,5-22%) при соотношении SO4/Ti (мас.) = 0,5-3, после чего раствор разбавляют дистиллированной водой до концентрации 150-250 г/л TiO2 и получают раствор сульфата титанила. Затем из полученного раствора проводят осаждение диоксида титана 25% водным раствором аммиака. Процесс осаждения проводят одновременным приливанием полученного раствора сульфата титанила и раствора аммиака в реактор, частично наполненный дистиллированной водой, при поддержании постоянного значения pH=3-6 и температуры 50-80°C. Процесс ведут при интенсивном перемешивании образующейся суспензии гидрогеля диоксида титана механической мешалкой. После завершения процесса осаждения осадок отфильтровывают на нутч-фильтре и промывают дистиллированной водой, затем сушат на воздухе до воздушно-сухого состояния и в сушильном шкафу при 100-110°C и, если необходимо, прокаливают в муфельной печи при температуре не выше 350°C.

Указанные интервалы соотношения SO4/Ti (мас.)=0,5-3 определяются тем, что увеличение соотношения SO4/Ti (мас.)>3 приводит к образованию побочного продукта сульфатдихлорида титана TiCl2SO4, который оседает на мешалке и стенках реактора, что снижает выход основного продукта. При уменьшении соотношения SO4/Ti (мас.)<0,5 образуется побочный продукт титан оксихлорид гидроксид. Интервалы значений pH=3-6 и температуры 50-80°C являются наилучшим для получения катализаторов с оптимальными свойствами, такими как фазовый состав, удельная поверхность, содержание сульфат-ионов.

Отличительным признаком предлагаемого способа получения фотокаталитически активного диоксида титана является концентрация серной кислоты 4,5-22%, используемой для растворения четыреххлористого титана, интервал соотношений SO4/Ti (мас.)=0,5-3, концентрация раствора сульфата титанила 150-250 г/л TiO2, интервал значений pH=3-6, при котором проводят процесс осаждения.

Технический результат - повышение фотокаталитической активности диоксида титана, получаемого из четыреххлористого титана.

Сущность изобретения иллюстрируется следующими примерами и таблицей.

Пример 1.

К 30 мл дистиллированной воды добавляют 5 мл концентрированной серной кислоты, получают 8,7% серную кислоту. В полученный раствор при комнатной температуре при перемешивании постепенно добавляют 20 мл четыреххлористого титана до соотношения SO4/Ti (мас.)=1. Получают раствор сульфата титанила. К полученному раствору сульфата титанила добавляют 20 мл дистиллированной воды до достижения концентрации 220 г/л TiO2. Затем из этого раствора проводят осаждение диоксида титана путем одновременного сливания раствора сульфата титанила и 25% водного раствора аммиака в реактор, в который налито 200 мл дистиллированной воды, нагретой до 80°C, при поддержании постоянного значения pH=4 и температуры 80°C, процесс ведут при интенсивном перемешивании механической мешалкой суспензии гидрогеля диоксида титана, образующегося в процессе осаждения. После завершения процесса осаждения осадок отфильтровывают на нутч-фильтре и промывают дистиллированной водой, сушат на воздухе, затем в сушильном шкафу при 100°C.

Пример 2.

Аналогичен примеру 1 с тем исключением, что к 30 мл дистиллированной воды добавляют 10 мл концентрированной серной кислоты и получают 16% серную кислоту и в полученный раствор при комнатной температуре при перемешивании постепенно добавляют 20 мл четыреххлористого титана до соотношения SO4/Ti (мас.)=2.

Пример 3.

Аналогичен примеру 1, отличие состоит в том, что осаждение диоксида титана проводят при pH=3.

Пример 4.

Аналогичен примеру 1, отличие состоит в том, что осаждение диоксида титана проводят при pH=3, катализатор прокаливают при температуре 350°C.

Пример 5.

Аналогичен примеру 1, отличие состоит в том, что осаждение гидроксида титана проводят при pH=6 и температуре 50°C.

Пример 6.

Аналогичен примеру 2, отличие состоит в том, что осаждение проводят при pH=7 и температуре 50°C.

Пример 7.

Аналогичен примеру 1, отличие состоит в том, что растворение четыреххлористого титана проводят в 22% серной кислоте при соотношении SO4/Ti (мас.)=3, а осаждение ведут при pH=5.

Пример 8.

Аналогичен примеру 1, отличие состоит в том, что растворение четыреххлористого титана проводят в 4,5% серной кислоте при соотношении SO4/Ti (мас.)=0,5.

У катализаторов, полученных по примерам 1-8, измеряют фотокаталитическую активность, определяют фазовый состав, величину удельной поверхности, содержание примесей серы и хлора.

Измерение фотокаталитической активности проводят в реакции фотокаталитического окисления ацетона в CO2 в воздухе при следующем составе реакционной смеси: концентрация паров ацетона - 500 млн. д., относительная влажность - 30%, температура - 40°C. Объемная скорость реакционной смеси (U) составляет 0,03 л/мин. Испытания проводят в стальном реакторе с циркулированием реакционной смеси на образце катализатора, нанесенном на стеклянную подложку размером 2.4×2.9 см2. Освещение проводили УФ светом лампы Philips, 365 нм, 9 Вт. Измерение концентраций ацетона и CO2 проводили методом ИК-спектроскопии на спектрометре Nicolet 380. Фотокаталитическую активность катализаторов оценивали по скорости образования по формуле: , где - разность концентраций CO2 в конечной реакционной смеси (КРС) и исходной реакционной смеси (ИРС), мкмоль/л; U - объемная скорость, л/мин.

Определение рентгенофазового состава катализаторов проводят на дифрактометре URD-63 (Германия) с монохроматизированным Cukα-излучением методом сканирования по точкам (шаг 0.05°, время накопления 10 сек в точке) в интервале 2θ 10-60°.

Величину удельной поверхности S (м2/г) измеряют по традиционной методике термодесорбции аргона по четырем точкам сорбционного равновесия на приборе СОР-БИ-М фирмы "МЕТА" (Россия).

Содержание примесей серы и хлора определяют на рентгеноспектральном флуоресцентном анализаторе ARL - Advant'x с Rh анодом. Результаты анализа по содержанию S (мас.%) пересчитывали на SO4 (мас.%).

В таблице приведены результаты испытаний фотокаталитических свойств, химический и фазовый состав, величина удельной поверхности предлагаемых катализаторов.

Из приведенных примеров и таблицы видно, что предлагаемый способ позволяет получать нанодисперсный диоксид титана из четыреххлористого титана с более высокой фотокаталитической активностью по сравнению с прототипом. Увеличение фотокаталитической активности достигается путем получения диоксида титана со структурой анатаза, в которой стабилизируются сульфат-ионы в количестве 0,9-8,1 мас.%. Это достигается проведением процесса осаждения из раствора сульфата титанила, полученного растворением четыреххлонистого титана в растворе серной кислоты заданной концентрации, при температуре 50-80°C в области значений pH=3-6. Увеличение pH при проведении процесса осаждения до 7 приводит к появлению рентгеноаморфной фазы диоксида титана и уменьшению содержания фазы TiO2 со структурой анатаза с одновременным снижением содержания сульфат-ионов в образце до 0,3 вес.%, что в свою очередь приводит к снижению фотокаталитической активности.

Предлагаемый способ получения фотокаталитически активного сульфатированного диоксида титана отличается от других известных в литературе способов простотой исполнения, поскольку позволяет получать исходный раствор сульфата титанила в низкоконцентрированных растворах серной кислоты, что позволяет снизить количество вредных стоков, а также исключить стадию термического гидролиза раствора сульфата титанила, которая осуществляется при длительным автоклавировании при повышенных температурах.

Источники информации

1. Тарасов А.В. Металлургия титана. Москва: ИКЦ, Академкнига, 2003. 325 с.

2. US 6726891, 27.04.2004.

3. RU 2408427, B01J 37/08, C01G 23/053, 10.01.2011.

4. RU 2408428, B01J 37/34, C01G 23/053, B01D 53/86, 10.01.2011.

5. D.V.Kozlov, A.V.Vorontsov и др. // Journal of Catalysis. 2008. V.258. P.87.

6. Ma Z., Yue Y., Deng X., Gao Z. // J. Molec. Catal. A. 2002. V.178. P.97.

7. Зенковец Г.А., Цыбуля С.В., Бургина Е.Б., Крюкова Г.Н. Кинетика и катализ. // 1999. Т.40. №4. С.623.

8. Жеребцов Д.А., Сюткин С.А., Первушин В.Ю., Кузнецов Г.Ф., Клещев Д.Г., Герман В.А., Викторов В.В., Колмогорцев A.M., Сериков А.С. // Журнал неорганической химии. 2010. Т.55. №8. С.1271.

9. Hadjiivanov K.I., Klissurdki D.G. // Chem. Sos. Rev. // 1996.V.25. P.61.

10. Yu J.C., Yu J., Ho W., Jiang Z., Zhang L. // Chem. Mater. 2002. V.14. P.3808.

11. WO 2010091478, 19.08.2010.

12. US 6576589, 10.06.2003.

13. ЕПВ 424058, 24.04.1991.

14. RU 2102324, C01G 23/053, 20.01.1998.

15. Тарасова Д.В., Максимов Н.Г., Цикоза Л.Т., Зенковец Г.А., Оленькова И.П. // Изв. Сиб. Отд. АН СССР. 1981. №7. С.81.

Способ получения фотокаталитически активного диоксида титана из четыреххлористого титана, включающий осаждение диоксида титана одновременным сливанием в воду раствора соли титана и водного раствора аммиака при постоянных pH и температуре и интенсивном перемешивании, промывку, сушку и термообработку образовавшегося осадка, отличающийся тем, что осаждение ведут из раствора сульфата титанила при pH 3-6 и температуре 50-80°C, при этом раствор сульфата титанила готовят растворением четыреххлористого титана при комнатной температуре в слабоконцентрированной серной кислоте 4,5-22% при массовом соотношении SO/Ti=0,5-3 с последующим разбавлением дистиллированной водой до концентрации 150-250 г/л TiO.
Источник поступления информации: Роспатент

Показаны записи 251-260 из 403.
25.08.2017
№217.015.c1e3

Устройство снижения аварийного давления и локализации последствий аварии в защитной оболочке при разгерметизации первого контура судовой (корабельной) атомной энергетической установки

Изобретение относится к судовой (корабельной) атомной энергетике. Устройство снижения аварийного давления и локализации последствий аварии в защитной оболочке при разгерметизации первого контура судовой (корабельной) атомной энергетической установки размещено в защитной оболочке реакторного...
Тип: Изобретение
Номер охранного документа: 0002617712
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c254

Малогабаритный высокооборотный судовой генераторный агрегат

Изобретение относится к области электротехники и может быть использовано при разработке энергетических систем судов, а также других автономных объектов, где применяются малогабаритные турбогенераторные агрегаты с высокой частотой вращения. Техническим результатом является обеспечение получения...
Тип: Изобретение
Номер охранного документа: 0002617713
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c3e1

Комбинированный двигательно-движительный комплекс судна

Изобретение относится к области судостроения и касается вопроса повышения эффективности использования водометных движителей для водоизмещающих судов. Комбинированный двигательно-движительный комплекс судна содержит корпус в виде осесимметричной судовой кольцевой насадки с размещенным в нем...
Тип: Изобретение
Номер охранного документа: 0002617310
Дата охранного документа: 24.04.2017
25.08.2017
№217.015.c60f

Способ получения n-(фосфонометил)-глицина

Изобретение относится к процессу получения используемого в сельском хозяйстве N-(фосфонометил)-глицина (Глифосата). В предложенном способе N-(фосфонометил)-иминодиуксусную кислоту подвергают каталитическому жидкофазному окислению водным раствором пероксида водорода в двухфазной системе...
Тип: Изобретение
Номер охранного документа: 0002618629
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c979

Маневренный стенд для измерения и настройки магнитного поля объектов морской техники

Изобретение относится к устройствам, обеспечивающим снижение магнитного поля объектов морской техники, например судов. Предложен маневренный стенд для измерения и настройки магнитного поля объектов морской техники, включающий измерительные датчики магнитного поля, лазерные излучатели,...
Тип: Изобретение
Номер охранного документа: 0002619481
Дата охранного документа: 16.05.2017
25.08.2017
№217.015.c9e8

Способ оценки погрешностей трехосного гироскопа

Изобретение относится к трехосным гироскопам средней и повышенной точности, а конкретно к способу оценки их систематических погрешностей. Технический результат заключается в повышении точностных характеристик трехосного гироскопа за счет повышения достоверности оценки систематических...
Тип: Изобретение
Номер охранного документа: 0002619443
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.cb7a

Устройство оптимизации алгоритмов адаптации и стабилизации летательного аппарата операторным методом

Устройство оптимизации алгоритмов адаптации и стабилизации летательного аппарата операторным методом содержит блоки ввода данных продольного канала, бокового канала и канала крена, систему стабилизации, содержащую продольный канал, боковой канал и канал крена, модуль расчета перекрестных...
Тип: Изобретение
Номер охранного документа: 0002620280
Дата охранного документа: 24.05.2017
26.08.2017
№217.015.dead

Устройство турбогенератора трехфазных токов двух различных частот

Изобретение относится к области электротехники, в частности к электрическим синхронным турбогенераторам переменного трехфазного тока с электромагнитным возбуждением, предназначенным для генерации напряжений двух различных частот. Технический результат - снижение расчетной полной мощности...
Тип: Изобретение
Номер охранного документа: 0002624772
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.e15c

Способ измерения коэффициента отражения звукопоглощающей конструкции

Изобретение относится к измерительной технике, в частности к способам акустического качества образцов звукопоглощающих конструкций. Способ измерения коэффициента отражения звукопоглощающей конструкции включает прием зондирующего и отраженного сигналов при помощи однонаправленного приемника из...
Тип: Изобретение
Номер охранного документа: 0002625617
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e34f

Способ получения оксида алюминия со структурой χ-alo

Изобретение относится к способу получения нанодисперсной фазы со структурой χ-AlO. Изобретение может быть использовано в производстве адсорбентов, носителей и катализаторов на основе оксида алюминия, а также в производстве керамики. Способ получения нанодисперсной фазы со структурой χ-AlO...
Тип: Изобретение
Номер охранного документа: 0002626004
Дата охранного документа: 21.07.2017
Показаны записи 251-260 из 343.
13.01.2017
№217.015.6a45

Радиопоглощающее покрытие

Изобретение относится к области радиотехники, к материалам для поглощения электромагнитных волн, и может найти применение для повышения скрытности и уменьшения вероятности обнаружения радиолокаторами объектов морской, наземной, авиационной и космической техники, а также обеспечения...
Тип: Изобретение
Номер охранного документа: 0002592898
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6ac2

Научно-исследовательский тренажерный комплекс моделирования операций управления ледовой обстановкой вокруг морских плавучих и гравитационных сооружений

Научно-исследовательский тренажерный комплекс моделирования операций управления ледовой обстановкой вокруг морских плавучих и гравитационных сооружений содержит универсальный навигационный тренажер, блок физического моделирования движения ледокольных судов. Универсальный навигационный тренажер...
Тип: Изобретение
Номер охранного документа: 0002593171
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.725d

Система добычи железомарганцевых конкреций

Изобретение относится к горному делу и может быть применено для освоения минеральных ресурсов дна морей и океанов при отработке поверхностных россыпных месторождений твердых полезных ископаемых. Система содержит добывающее судно, самоходный агрегат сбора, соединенный с трубопроводом гибкой...
Тип: Изобретение
Номер охранного документа: 0002598010
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.75e6

Экологически безопасные антипирены на основе оксиэтилированных полиэфиров метоксиметилфосфоновой кислоты

Изобретение относится к применимым в качестве антипиренов оксиалкилированным эфирам трис-этиленгликоль-тетра-метоксиметил (I) и пентаэритрит-тетра-метоксиметил (II) фосфоновых кислот формул Предложены новые экологически безопасные антипирены и эффективный способ их получения. Предложенный...
Тип: Изобретение
Номер охранного документа: 0002598603
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.7cb8

Способ изготовления заготовок в форме стакана из прутка

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении заготовки корпуса снаряда, имеющей форму стакана. В металлообрабатывающем центре от прутка отделяют мерную штучную заготовку и формируют на ее торце зацентровку. Затем заготовку продольно...
Тип: Изобретение
Номер охранного документа: 0002600594
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7d27

Модель оценивания параметров запуска объектов управления

Изобретение относится к автоматизированным системам управления и системам управления запуском летательных аппаратов. Модель основана на методе имитационного статистического моделирования, содержит блок функциональных задач вычислительной системы (ВС), блок задания/приема параметров решения,...
Тип: Изобретение
Номер охранного документа: 0002600964
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.85d5

Катализатор, способ его приготовления и способ фотокаталитического получения водорода

Изобретение относится к способам получения катализатора на основе оксидов и гидроксидов меди и никеля, нанесенных на твердый раствор сульфидов кадмия и цинка, применяемого преимущественно в качестве фотокатализатора для процессов фотокаталитического выделения водорода из водных растворов...
Тип: Изобретение
Номер охранного документа: 0002603190
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.883f

Способ получения быстрорежущей стали из кусковых отходов изношенного режущего инструмента

Изобретение относится к области металлургии и может быть использовано при получении быстрорежущей стали из кусковых отходов изношенного режущего инструмента и штамповой оснастки методом электрошлакового переплава. Кусковые отходы предварительно сортируют и перед сваркой подбирают таким...
Тип: Изобретение
Номер охранного документа: 0002602579
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8eb9

Проточный микроканальный реактор и способ получения в нем триэтаноламина

Изобретение относится к улучшенному способу получения триэтаноламина (ТЭА). Триэтаноламин широко применяется в различных отраслях промышленности, например в производстве эмульгаторов, поверхностно-активных веществ, жидких синтетических моющих и чистящих средств, пластификаторов, химических...
Тип: Изобретение
Номер охранного документа: 0002605421
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.9d6a

Способ получения нанодисперсных оксидных материалов в виде сферических агрегатов

Изобретение относится к области синтеза оксидных многофункциональных металлов сложного состава в нанодисперсном состоянии. Описан способ получения нанодисперсных оксидных материалов в виде сферических агрегатов, включающий приготовление раствора, в состав которого входят растворимые соли,...
Тип: Изобретение
Номер охранного документа: 0002610762
Дата охранного документа: 15.02.2017
+ добавить свой РИД