×
27.06.2013
216.012.5039

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ МЕТАЛЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к усовершенствованному способу получения наночастиц металлов для использования в термокаталитических процессах переработки углеводородного сырья. Способ получения наночастиц металлов включает восстановление их из органической соли металла в условиях термического воздействия в среде углеводородного сырья, причем восстановление осуществляют из органической соли, имеющей формулу M(OOC-R) или M(SOC-R), где R обозначает алкил, арил, СН-, изоалкил, трет-алкил, алкиларил, диэтиламино-, возможно включающий гидроксильную или амино-группу, n=1-3, a M обозначает металл из элементов Периодической системы элементов, при температуре выше температуры разложения указанной органической соли. Размер полученных наночастиц преимущественно составляет 1-100 нм. 3 з.п. ф-лы, 11 пр., 4 ил., 1 табл.

Изобретение относится к способам получения частиц нанометрового размера, которые находят применение в различных отраслях науки и техники, в частности металлические наноструктуры рассматриваются в качестве перспективного материала для создания новых типов катализаторов для нефтеперерабатывающей и нефтехимической отраслей промышленности.

В последнее десятилетие сформировалась и бурно развивается новое направление в каталитической химии - гетерогенный катализ на наноструктурированных материалах (П.С. Воронцов, Е.И.Григорьев, С.А.Завьялов, Л.М.Завьялова, Т.Н.Ростовщикова, О.В.Загорская. Хим. Физика, 2002, т.21).

Для целого ряда важных практических применений наиболее перспективными являются катализаторы на основе металлических наноструктур, содержащие наночастицы Cu, Pt, Pd, Ni, Fe, Co и других металлов.

Известны многочисленные методы, основанные на объединении атомов (радикалов, молекул) в наночастицы, включая, например, термическое испарение и конденсацию (см. S.Tohno, M.ltoh, S.Aono, H.Takano, J. Colloid Interface Sci. - 1996, v.180, p.574,), ионное распыление (см. Патент США N 5879827, МПК Н01М 04/36, опубл. 09.03.1999), восстановление из растворов (см. патент США N 6090858, МПК С09К 03/00, опубликован 18.07.2000), восстановление в микроэмульсиях (см. H.Herrig, R.Hempelmann, Mater. Lett. - 1996, v.27, p.287).

Так, в способе получения наночастиц на основе восстановления металлов из растворов нагревают водный раствор соли соответствующего металла и анионоактивного соединения, содержащего группы COO, SO24 или SO2-3, как восстановительного агента до температуры 50-140°С, в результате чего соль металла восстанавливается с образованием металлических наночастиц (см. заявку США N 20020194958, МПК B22F 09/24, опубл. 26.12.2002).

В известном способе получения субмонослойных и монослойных покрытий из наночастиц золота и серебра формирование структуры осуществляют при захвате металлических наночастиц, приготовленных в коллоидном растворе, на поверхность носителя, покрытую специальной органической пленкой (см. патент США N 6,090,858, МПК С09К 03/00, опубл. 18.07.2000).

Известны различные способы получения наночастиц металлов путем восстановления из солей в растворах водородом или боргидридами металлов, как, например, способ, описанный в патенте РФ 2367512 (опубл. 20.09.2009).

Однако известные методы получения наночастиц металлов не могут быть использованы в крупнотоннажных производствах нефтепереработки и нефтехимии.

Известен способ получения наноструктур, представляющих собой ионы металла, окруженные атомами серы (US 20110226667, опубл. 22.09.2011), который включает их восстановление из соли металла, где восстановление осуществляют из органической соли, имеющей формулу М(ООС-R)n, где R обозначает, в частности, С8-алкил или арил, например нафтил; n=1-3, a M обозначает, например, молибден, ванадий, в условиях термического воздействия в среде углеводородного сырья, при этом используют тяжелое сырье, которое содержат значительное количество асфальтенов и фракции, кипящие выше 524°С, а процесс осуществляют в присутствии водорода, вводимого в систему извне.

Однако в известном способе получают сульфидные комплексы металлов, которые эффективны в гидрогенизационных процессах.

Известен способ получения наночастиц металлов, например рутения, родия и иридия (Ghosh, Sandeep and Ghosh, Moumita and Rao, CNR (2007) Nanocrystals, Nanorods and other Nanostructures of Nickel, Ruthenium, Rhodium and Iridium prepared by a Simple Solvothermal Procedure. In: Journal of Cluster Science, 18 (1). pp.97-111) путем проведения разложения соответствующих ацетилацетонатов металлов в углеводородах (декалине или толуоле) или аминах (п-октиламин или олеиламин) при температуре около 300°С.

Необходимость углубления переработки нефти, особенно тяжелой нефти, требует разработки новых высокоэффективных катализаторов. Такими катализаторами могут быть наночастицы металлов, стабилизированные в углеводородных дисперсных средах, которые эффективны в термокаталитических и гидрогенизационных процессах.

Задачей настоящего изобретения является создание нового способа получения наночастиц металлов, которые находят применение в различных отраслях науки и техники, в частности - в качестве новых типов катализаторов для нефтеперерабатывающей и нефтехимической отраслей промышленности с целью увеличения глубины процессов переработки углеводородного сырья, включая тяжелое и остаточное сырье.

Решение поставленной задачи достигается путем восстановления соли металла в среде углеводородного сырья в результате термического воздействия. При термическом воздействии на нефть и нефтепродукты происходит их деструкция с образованием восстановителей, например водорода и углеводородных радикалов.

Заявленный способ получения наночастиц металлов осуществляют следующим образом. В углеводородное сырье добавляют органическую соль металла и подвергают термическому воздействию выше температуры разложения соли. Органическая соль имеет формулу M(OOC-R)n или M(SOC-R)n, где R обозначает алкил, арил, C17H33-, изоалкил, трет-алкил, алкиларил, диэтиламино-, возможно включающий гидроксильную или амино- группу, n=1-3, а М обозначает металл из элементов Периодической системы элементов.

Преимущественно используют указанную соль, в структуре которой металл не является щелочным или щелочноземельным элементом Периодической системы элементов.

Способ осуществляют при температуре выше температуры разложения указанной органической соли.

В качестве углеводородного сырья используют преимущественно тяжелое и/или остаточное сырье: тяжелые нефти, вакуумные газойли, прямогонные мазуты, гудроны, полугудроны, крекинг-остатки, нефтяные шламы индивидуально или в смеси, а также их смеси с горючими ископаемыми (горючие сланцы, битуминозные пески).

Размер полученных наночастиц металлов преимущественно составляет 100 мн.

На фиг.1 представлена микрофотография наночастиц никеля, полученного при термическом воздействии на мазут с добавлением этилгексаноата никеля при температуре 300°С.

На фиг.2 представлена микрофотография наночастиц меди, полученных при температуре 270°С.

На фиг.3 представлена микрофотография наночастиц палладия, полученных при температуре 280°С.

На фиг.4 представлена диаграмма распределения частиц никеля в вакуумном газойле.

Пример 1. 0,1 этилгексаноата никеля растворяют в 100 г мазута и подвергают термическому воздействию при температуре 300°С (температура разложения соли составляет 240°С). Полученный образец изучают на содержание наночастиц методом АСМ микроскопии на сканирующем зондовом микроскопе Solver Pro-M фирмы NT-MDT. Результаты измерений показывают, что размер наночастиц никеля составляет 20-80 нм.

Пример 2. Получение ультрадисперсной (наноразмерной) суспензии меди проводят так же, как в примере 1, только вместо этилгексаноата никеля используют этилгексаноат меди. Размер наночастиц меди составляет 10-80 нм.

Пример 3. Получение ультрадисперсной (наноразмерной) суспензии палладия проводят так же, как в примере 1, только вместо этилгексаноата никеля используют стеарат палладия, а термическое воздействие осуществляют при температуре 280°С. Средний размер наночастиц палладия составляет 5-10 нм.

Пример 4. 0,1 г этилгексаноата никеля растворяют в 100 г газойля, полученного вакуумной перегонкой западносибирской нефти, подвергают термическому воздействию при температуре 220°С. Полученный образец изучают на содержание наночастиц на спектрометре Photocor-Complex (табл. и фиг.4). Средний размер частиц никеля в суспензии составляет 8,8 нм.

Таблица
Распределение частиц никеля в суспензии
Area Mean Position STD
1 0.089 0.198 0.201 0.032
2 0.911 8.868 7.573 4.497

Пример 5.

Аналогично примеру 1, за исключением того, что в качестве соли используют этилгексаноат кобальта. Размер наночастиц кобальта составляет 30-40 нм.

Пример 6. Аналогично примеру 1, за исключением того, что в качестве соли используют олеат никеля. Размер наночастиц никеля составляет 30-50 нм.

Пример 7. Аналогично примеру 1, за исключением того, что в качестве соли используют нафтенат хрома, а термическое воздействие осуществляют при температуре 350°. Размер наночастиц хрома составляет 20-90 нм.

Пример 8. Аналогично примеру 7, за исключением того, что в качестве углеводородного сырья используют сырую нефть с плотностью 0,991 г/см3. Размер наночастиц хрома составляет 30-70 нм.

Пример 9. Аналогично примеру 8, за исключением того, что в качестве углеводородного сырья используют обезвоженный резервуарный нефтяной шлам с плотностью 0,888 г/см3. Размер наночастиц хрома составляет 1-90 нм.

Пример 10. Аналогично примеру 8, за исключением того, что в качестве соли используют олеат марганца. Размер наночастиц марганца составляет 60-100 нм.

Пример 11. Аналогично примеру 10, за исключением того, что в качестве соли используют кобальтовую соль дютилтиокарбаминовой кислоты, а температура составляет 250 С.Размер наночастин кобальта составляет 20-70 нм.

Пример 12. Аналогично примеру 11, за исключением того, что в качестве соли используют этилгексилоктаноат бария, а температура составляет 350°С. Размер наночастиц бария составляет 70-90 нм.

Пример 13. Аналогично примеру 11, за исключением того, что в качестве соли используют стеарат натрия (температура разложения соли 300°С), а температура составляет 350°С. Размер наночастиц натрия составляет 80-90 нм.

Пример 14. Аналогично примеру 10, за исключением того, что в качестве соли используют ванадиевую соль аминогексановой кислоты, а температура составляет 350°C. Размер наночастиц ванадия составляет 30-40 нм.

Пример 15. Аналогично примеру 12, за исключением того, что в качестве соли используют этилгексилоктаноат лантана. Размер наночастин лантана составляет 9-11 нм.

Пример 16. Аналогично примеру 15, за исключением того, что в качестве соли используют октаноат циркония, а температура составляет 280°С. Размер наночастиц циркония составляет 20-40 нм.

Пример 17. Аналогично примеру 12, за исключением того, что к качестве соли используют 2-бензилгексаноат железа. Размер наночастиц железа составляет 40-50 нм.

Пример 18. Аналогично примеру 12, за исключением того, что в качестве соли используют 2-гидроксигексаноат кобальта, а в качестве углеводородного сырья используют смесь 50 г мазута и 50 г сырой нефти с плотностью 0,991 г/см3. Размер наночастиц кобальта составляет 20-30 нм.


СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ МЕТАЛЛОВ
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ МЕТАЛЛОВ
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ МЕТАЛЛОВ
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ МЕТАЛЛОВ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 123.
20.07.2015
№216.013.62f1

Терморезистивный материал на основе асфальта пропановой деасфальтизации

Изобретение относится к области электронной техники и может быть использовано в технологии получения терморезистивных материалов для приборов, предназначенных для термостатирования объектов при фиксированных значениях температуры, например терморезисторов, нагревательных элементов и регуляторов...
Тип: Изобретение
Номер охранного документа: 0002556876
Дата охранного документа: 20.07.2015
20.09.2015
№216.013.7bad

Комплексное соединение 6-метилурацила с карбоксилсодержащим органическим соединением и способ его получения

Изобретение относится к получению комплекса 6-метилурацила с пектином, который может быть использован в медицине и фармацевтической промышленности, формулы: Предложенное комплексное соединение проявляет противоязвенную активность и эффективно в качестве основного действующего вещества при...
Тип: Изобретение
Номер охранного документа: 0002563258
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bae

Способ получения малеинизированных 1,2-полибутадиенов

Изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов, содержащих в составе макромолекул ангидридные группы. Способ получения малеинизированных 1,2-полибутадиенов заключается во взаимодействии раствора синдиотактического 1,2-полибутадиена с...
Тип: Изобретение
Номер охранного документа: 0002563259
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bc3

Способ получения анизотропного нефтяного волокнообразующего пека

Изобретение относится к способам получения анизотропного нефтяного волокнообразующего пека и может быть использовано в нефтеперерабатывающей промышленности. Предложен способ получения анизотропного нефтяного волокнообразующего пека путем термообработки изотропного нефтяного пека в инертной...
Тип: Изобретение
Номер охранного документа: 0002563280
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bc5

Способ получения пористого материала

Изобретение относится к области получения сорбционно-активных материалов, используемых при разделении и очистке газовых и паровых смесей различной природы, для очистки поверхности воды от нефти и нефтепродуктов, а также для очистки сточных вод от белковых токсикантов. Способ получения пористого...
Тип: Изобретение
Номер охранного документа: 0002563282
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bfe

Атомно-силовой сканирующий зондовый микроскоп, использующий квазичастицы

Изобретение относится к области техники зондовой микроскопии. Атомно-силовой сканирующий зондовый микроскоп (АСМ) содержит кантилевер, иглу кантилевера, систему обнаружения и регистрации отклонения кантилевера, включающую лазер, отражательную поверхность кантилевера и 4-секционный фотодиод с...
Тип: Изобретение
Номер охранного документа: 0002563339
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7e2c

Система производства огнеупорных изделий для литьевых установок

Изобретение относится к технологии изготовления огнеупорных изделий для металлургической промышленности, более конкретно к системе производства огнеупорных изделий для литьевых установок, и может найти применение при изготовлении углеродсодержащих стопорных пробок, стаканов-дозаторов,...
Тип: Изобретение
Номер охранного документа: 0002563897
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7ffc

Способ получения высокодисперсного диоксида кремния

Изобретение относится к технологии получения диоксида кремния с развитой удельной поверхностью и может найти применение в отраслях промышленности, использующих высокодисперсные минеральные наполнители. Способ получения высокодисперсного диоксида кремния включает предварительную обработку...
Тип: Изобретение
Номер охранного документа: 0002564361
Дата охранного документа: 27.09.2015
10.10.2015
№216.013.8290

Способ получения сложного удобрения для сахарной свеклы

Изобретение относится к сельскому хозяйству. Способ получения удобрения для сахарной свеклы, содержащего фосфаты аммония, сульфаты аммония, хлористые калий и натрий, включает смешивание экстракционной фосфорной кислоты с абсорбционными стоками, нейтрализацию аммиаком смеси экстракционной...
Тип: Изобретение
Номер охранного документа: 0002565021
Дата охранного документа: 10.10.2015
27.10.2015
№216.013.87d6

Способ получения асфальтенов с улучшенными электронными характеристиками

Изобретение относится к области переработки углеводородного сырья путем деасфальтизации, в частности к получению асфальтенов, обладающих свойствами полупроводников. Изобретение касается способа получения асфальтенов путем деасфальтизации углеводородного сырья, включающего обработку сырья...
Тип: Изобретение
Номер охранного документа: 0002566377
Дата охранного документа: 27.10.2015
Показаны записи 71-80 из 134.
20.09.2015
№216.013.7bae

Способ получения малеинизированных 1,2-полибутадиенов

Изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов, содержащих в составе макромолекул ангидридные группы. Способ получения малеинизированных 1,2-полибутадиенов заключается во взаимодействии раствора синдиотактического 1,2-полибутадиена с...
Тип: Изобретение
Номер охранного документа: 0002563259
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bc3

Способ получения анизотропного нефтяного волокнообразующего пека

Изобретение относится к способам получения анизотропного нефтяного волокнообразующего пека и может быть использовано в нефтеперерабатывающей промышленности. Предложен способ получения анизотропного нефтяного волокнообразующего пека путем термообработки изотропного нефтяного пека в инертной...
Тип: Изобретение
Номер охранного документа: 0002563280
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bc5

Способ получения пористого материала

Изобретение относится к области получения сорбционно-активных материалов, используемых при разделении и очистке газовых и паровых смесей различной природы, для очистки поверхности воды от нефти и нефтепродуктов, а также для очистки сточных вод от белковых токсикантов. Способ получения пористого...
Тип: Изобретение
Номер охранного документа: 0002563282
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bfe

Атомно-силовой сканирующий зондовый микроскоп, использующий квазичастицы

Изобретение относится к области техники зондовой микроскопии. Атомно-силовой сканирующий зондовый микроскоп (АСМ) содержит кантилевер, иглу кантилевера, систему обнаружения и регистрации отклонения кантилевера, включающую лазер, отражательную поверхность кантилевера и 4-секционный фотодиод с...
Тип: Изобретение
Номер охранного документа: 0002563339
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7e2c

Система производства огнеупорных изделий для литьевых установок

Изобретение относится к технологии изготовления огнеупорных изделий для металлургической промышленности, более конкретно к системе производства огнеупорных изделий для литьевых установок, и может найти применение при изготовлении углеродсодержащих стопорных пробок, стаканов-дозаторов,...
Тип: Изобретение
Номер охранного документа: 0002563897
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7ffc

Способ получения высокодисперсного диоксида кремния

Изобретение относится к технологии получения диоксида кремния с развитой удельной поверхностью и может найти применение в отраслях промышленности, использующих высокодисперсные минеральные наполнители. Способ получения высокодисперсного диоксида кремния включает предварительную обработку...
Тип: Изобретение
Номер охранного документа: 0002564361
Дата охранного документа: 27.09.2015
10.10.2015
№216.013.8290

Способ получения сложного удобрения для сахарной свеклы

Изобретение относится к сельскому хозяйству. Способ получения удобрения для сахарной свеклы, содержащего фосфаты аммония, сульфаты аммония, хлористые калий и натрий, включает смешивание экстракционной фосфорной кислоты с абсорбционными стоками, нейтрализацию аммиаком смеси экстракционной...
Тип: Изобретение
Номер охранного документа: 0002565021
Дата охранного документа: 10.10.2015
27.10.2015
№216.013.87d6

Способ получения асфальтенов с улучшенными электронными характеристиками

Изобретение относится к области переработки углеводородного сырья путем деасфальтизации, в частности к получению асфальтенов, обладающих свойствами полупроводников. Изобретение касается способа получения асфальтенов путем деасфальтизации углеводородного сырья, включающего обработку сырья...
Тип: Изобретение
Номер охранного документа: 0002566377
Дата охранного документа: 27.10.2015
10.12.2015
№216.013.96db

Способ измерения энергетических спектров квазичастиц в конденсированной среде

Изобретение относится к области техники зондовой спектроскопии, которая занимается разработкой устройств и методов для исследования спектров поверхности с нанометровым разрешением. Согласно способу измерения энергетических спектров квазичастиц в конденсированной среде, возбуждают квазичастицы с...
Тип: Изобретение
Номер охранного документа: 0002570239
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.97bf

Способ очистки сточных вод от фтора

Изобретение относится к способам очистки фторсодержащих сточных вод и может быть использовано в предприятиях по производству экстракционной фосфорной кислоты и фторосиликата натрия на основе фторокремниевой кислоты. Способ очистки сточных вод от фтора осуществляется путем обработки их...
Тип: Изобретение
Номер охранного документа: 0002570467
Дата охранного документа: 10.12.2015
+ добавить свой РИД