×
20.06.2013
216.012.4e7e

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ПАРАМЕТРОВ АТМОСФЕРЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении, температуре и влажности атмосферы (воздуха). Технический результат заключается в расширении функциональных возможностей за счет одновременного дистанционного измерения температуры и влажности атмосферы (воздуха). Устройство для дистанционного измерения параметров атмосферы содержит сканирующее устройство и приемоответчик. Сканирующее устройство содержит задающий генератор 1, усилитель 2 мощности, дуплексер 3, приемопередающую антенну 4, удвоители 5, 26 и 27 фазы, делители 6, 28 и 29 фазы на два, узкополосные фильтры 7, 19, 21, 30 и 31, фазовый детектор 8, фазометры 9, 32 и 33, блок 10 регистрации, перемножители 18 и 20, сумматор 22, полосовые фильтры 23, 24 и 25. Приемоответчик содержит звукопровод 11, микрополосковую приемопередающую антенну 12, электроды 13.1, 13.2 и 13.3, шины 14.1, 14.2, 14.3, 15.1, 15.2 и 15.3, чувствительные элементы 16.1, 16.2 и 16.3, отражающие решетки 17.1, 17.2 и 17.3, встречно-штыревые преобразователи I, II и III. 3 ил.
Основные результаты: Устройство для дистанционного измерения параметров атмосферы, содержащее сканирующие устройство и приемоответчик, при этом сканирующее устройство содержит последовательно включенные усилитель мощности и дуплексер, вход/вход которого связан с приемопередающей направленной или ненаправленной антенной, последовательно включенные первый удвоитель фазы, первый делитель фазы на два, первый узкополосный фильтр, фазовый детектор и блок регистрации, последовательно включенные задающий генератор и первый фазометр, второй вход которого соединен с вторым выходом первого узкополосного фильтра, а выход подключен к второму входу блока регистрации, а приемоответчик выполнен в виде многоотводной линии задержки на поверхностных акустических волнах, включающей первый встречно-штыревой преобразователь, который выполнен в виде двух гребенчатых систем электродов, нанесенных на поверхность звукопровода, электроды которой из гребенок соединены между собой шинами, которые связаны с микрополосковой приемопередающей антенной, при этом на звукопроводе размещены первый чувствительный элемент, выполненный в виде тонкой мембраны, и первая отражательная решетка, отличающееся тем, что сканирующее устройство снабжено двумя перемножителями, вторым, третьим, четвертым и пятым узкополосными фильтрами, сумматором, тремя полосовыми фильтрами, вторым и третьим удвоителями фазы, вторым и третьим делителями фазы, вторым и третьим фазометрами, причем к второму выходу задающего генератора последовательно подключены первый перемножитель, второй вход которого соединен с вторым выходом задающего генератора, второй узкополосный фильтр и сумматор, второй вход которого соединен с вторым выходом задающего генератора, а выход подключен к входу усилителя мощности, к выходу второго узкополосного фильтра последовательно подключены второй перемножитель, второй вход которого соединен с выходом второго узкополосного фильтра, и третий узкополосный фильтр, выход которого подключен к третьему входу сумматора, выход дуплексера через первый полосовой фильтр подключен к входу первого удвоителя фазы и к второму входу фазового детектора, к выходу дуплексера последовательно подключены второй полосовой фильтр, второй удвоитель фазы, второй делитель фазы на два, четвертый узкополосный фильтр и второй фазометр, второй вход которого соединен с выходом второго узкополосного фильтра, а выход подключен к третьему входу блока регистрации, к выходу дуплексера последовательно подключены третий полосовой фильтр, третий удвоитель фазы, третий делитель фазы на два, пятый узкополосный фильтр и третий фазометр, второй вход которого соединен с выходом третьего узкополосного фильтра, а выход подключен к четвертому входу блока регистрации, а приемоответчик снабжен вторым и третьим встречно-штыревым преобразователем, вторым и третьим чувствительными элементами, второй и третьей отражающими решетками, которые нанесены на поверхность одного и того же звукопровода, причем шины второго и третьего встречно-штыревых преобразователей связаны с одной и той же микрополосковой приемопередающей антенной, центральные частоты ω, ω и ω встречно-штыревых преобразователей определяются шагом размещения электродов, их количеством и выбраны следующим образом: ω=2ω, ω=2ω.

Предлагаемое устройство относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении, температуре и влажности атмосферы (воздуха) в различных отраслях промышленности.

Известные датчики давления основаны на различных физических принципах (авт.свид. СССР №№355.519, 427.257, 508.700, 723.413, 781.638, 797.701, 885.843, 922.086, 1.000.806, 1.177.698, 1.290.113, 1.368.677, 1.486.818, 1.493.895, 1.508.114, 1.645.862, 1.686.322, 1.736.951, 1.769.010, 1.814.040, 1.815.598, 1.817.929, 1.818.560, 1.831.669, 1.838.250, патенты РФ №№2.058.020, 2.244.908, 2.311.623; патенты США №№4.562.742, 4.387.601, 4.395.915, 4.317.372, 6.003.378; патент Японии №50-9.190; Бусурин В.И. Оптические и волоконно-оптические датчики // Квантовая электроника, 1985, №5, С.901-944 и другие).

Из известных устройств наиболее близким к предлагаемому является «Устройство для дистанционного измерения давления» (патент РФ №2.244.908, G01L 9/00, 2002), которое и выбрано в качестве прототипа.

Известное устройство обеспечивает повышение точности дистанционного измерения только давления.

Однако в ряде случаев необходима совместная одновременная оценка давления, температуры и влажности атмосферы (воздуха) в различных отраслях промышленности и науки.

Технической задачей изобретения является расширение функциональных возможностей устройства путем одновременного дистанционного измерения температуры и влажности атмосферы (воздуха).

Поставленная задача решается тем, что устройство для дистанционного измерения параметров атмосферы, содержащее сканирующее устройство и приемоответчик, при этом сканирующее устройство содержит последовательно включенные усилитель мощности и дуплексер, выход/выход которого связан с приемопередающей направленной или ненаправленной антенной, последовательно включенные первый удвоитель фазы, первый делитель фазы на два, первый узкополосный фильтр, фазовый детектор и блок регистрации, последовательно включенные задающий генератор и первый фазометр, второй вход которого соединен с вторым выходом первого узкополосного фильтра, а выход подключен к второму входу блока регистрации, а приемоответчик выполнен в виде многоотводной линии задержки на поверхностных акустических волнах, включающий первый встречно-штыревой преобразователь, который выполнен в виде двух гребенчатых систем электродов, нанесенных на поверхность звукопровода, электроды каждой из гребенок соединены между собой шинами, которые связаны с микрополосковой приемопередающей антенной, при этом на звукопроводе размещены первый чувствительный элемент, выполненный в виде тонкой мембраны, и первая отражающая решетка, отличается от ближайшего аналога тем, что сканирующее устройство связано двумя перемножителями, вторым, третьим, четвертым и пятым узкополосными фильтрами, сумматором, тремя полосовыми фильтрами, вторым и третьим удвоителями фазы, вторым и третьим делителями фазы на два, вторым и третьим фазометрами, причем к второму выходу задающего генератора последовательно подключены первый перемножитель, второй вход которого соединен с вторым выходом задающего генератора, второй узкополосный фильтр и сумматор, второй вход которого соединен с вторым выходом задающего генератора, а выход подключен к входу усилителя мощности, к выходу второго узкополосного фильтра последовательно подключены второй перемножитель, второй вход которого соединен с выходом второго узкополосного фильтра, и третий узкополосный фильтр, выход которого подключен к третьему входу сумматора, выход дуплексера через первый полосовой фильтр подключен к входу первого удвоителя фазы и к второму входу фазового детектора, к выходу дуплексера последовательно подключены второй полосовой фильтр, второй удвоитель фазы, второй делитель фазы на два, четвертый узкополосный фильтр и второй фазометр, второй вход которого соединен с выходом второго узкополосного фильтра, а выход подключен к третьему входу блока регистрации, к выходу дуплексера последовательно подключены третий полосовой фильтр, третий удвоитель фазы, третий делитель фазы на два, пятый узкополосный фильтр и третий фазометр, второй вход которого соединен с выходом третьего узкополосного фильтра, а выход подключен к четвертому входу блока регистрации, а приемоответчик снабжен вторым и третьим встречно-штыревыми преобразователями, вторым и третьим чувствительными элементами, второй и третьей отражающими решетками, которые нанесены на поверхность одного и того же звукопровода, причем шины второго и третьего встречно-штыревых преобразователей связаны с одной и той же микрополосковой приемопередающей антенной, центральные частоты ω1, ω2 и ω3 встречно-штыревых преобразователей определяются шагом размещения электродов, их количеством и выбраны следующим образом: ω2=2ω1, ω3=2ω2.

Структурная схема сканирующего устройства представлена на фиг.1. Структурная схема приемоответчика изображена на фиг.2. Частотная диаграмма показана на фиг.3.

Сканирующее устройство состоит из последовательно включенных задающего генератора 1, первого перемножителя 18, второй вход которого соединен с выходом задающего генератора 1, второго узкополосного фильтра 19, второго перемножителя 20, второй вход которого соединен с выходом второго узкополосного фильтра 19, третьего узкополосного фильтра 21, сумматора 22, второй и третий входы которых соединены с выходами задающего генератора 1 и второго узкополосного фильтра 19 соответственно, усилителя 2 мощности, дуплексера 3, вход-выход которого связан с приемопередающей антенной 4, первого полосового фильтра 23, первого удвоителя 5 фазы, первого делителя фазы 6 на два, первого узкополосного фильтра 7, фазового детектора 8, второй вход которого соединен с выходом первого полосового фильтра 23, и блока 10 регистрации, второй вход которого через первый фазометр 9 соединен с вторыми выходами задающего генератора 1 и первого узкополосного фильтра 7. К выходу дуплексера 3 последовательно подключены второй полосовой фильтр 24, второй удвоитель 26 фазы, второй делитель 28 фазы на два, четвертый узкополосный фильтр 30 и второй фазометр 32, второй вход которого соединен с выходом второго узкополосного фильтра 19, а выход подключен к третьему входу блока 10 регистрации. К выходу дуплексера 3 последовательно подключены третий полосовой фильтр 25, третий удвоитель 27 фазы, третий делитель 29 фазы на два, пятый узкополосный фильтр 31 и третий фазометр 33, второй вход которого соединен с выходом третьего узкополосного фильтра 21, а выход подключен к четвертому входу блока 10 регистрации.

Приемоответчик выполнен на многоотводных линиях задержки на поверхностных акустических волнах (ПАВ), которые представляют собой дискретно-аналоговые реализации цифровых трансферсальных фильтров. Роль отводов в таких фильтрах играют встречно-штыревые преобразователи I, II, III, каждый из которых состоит из двух гребенчатых систем электродов 13.1 (13.2, 13.3), нанесенных на поверхность звукопровода 11. Электроды каждой из гребенок соединены друг с другом шинами 14.1 и 15.1 (14.2 и 15.2, 14.3 и 15.3). Шины, в свою очередь, связаны с микрополосковой приемопередающей антенной 12. На звукопроводе 11, кроме того, размещены чувствительные элементы 16.1, 16.2, 16.3 и отражающие решетки 17.1, 17.2, 17.3.

Отводы многоотводных линий задержки равномерно распределены по поверхности звукопровода с шагом

Δh=VτЭ,

где V - скорость поверхностных волн, она примерно на пять порядков меньше скорости распространения электромагнитных колебаний;

τЭ - длительность элементарных посылок.

Приемоответчик представляет собой пьезокристалл, с нанесенным на его поверхность алюминиевыми тонкопленочными пьезоэлектрическими преобразователями и набором отражателей. Преобразователи подключены к микрополосковой приемопередающей антенне 12, которая также изготовлена на поверхности пьезокристалла.

Устройство для дистанционного измерения параметров атмосферы работает следующим образом.

Задающий генератор 1 формирует высокочастотное колебание

u1(t)=U1cos(ω1t+φ1), 0≤t≤Tc,

где U1, ω1, φ1, Tc - амплитуда, несущая частота, начальная фаза и длительность высокочастотного колебания,

которое поступает на первый вход сумматора 22 и на два входа перемножителя 18, на выходе которого образуется следующее гармоническое колебание

u2(t)=U2cos(ω2t+φ2), 0≤t≤Tc,

где , ω2=2ω1; φ2=2φ1.

Это колебание поступает на второй вход сумматора 22 и на два входа перемножителя 20, на выходе которого образуется следующее гармоническое колебание (фиг.3)

u3(t)=U3cos(ω3t+φ3), 0≤t≤Tc,

где , ω3=2ω2; φ3=2φ2.

Это колебание поступает на третий вход сумматора 22. На выходе сумматора 22 образуется суммарное напряжение

u(t)=u1(t)+u2(t)+u3(t),

которое после усиления в усилителе 2 мощности через дуплексер 3 поступает в приемопередающую антенну 4 и излучается ею в эфир, улавливается микропо-лосковой приемопередающей антенной 12 и возбуждает приемоответчик, а именно первый I, второй II и третий III встречно-штыревые преобразователи (ВШП) на поверхностных акустических волнах (ПАВ).

В основе работы устройства на ПАВ лежат три физических процесса:

- преобразование входного электрического сигнала в акустическую волну;

- распространение акустической волны вдоль поверхности звукопровода;

- обратное преобразование ПАВ в электрический сигнал.

Для прямого и обратного преобразования ПАВ используются три встречно-штыревых преобразователя (ПАВ), работа которых основана на том, что переменные в пространстве и времени электрические поля, создаваемые в пьезоэлектрическом кристалле системой электродов 13.1, 13.2, 13.3, вызывают из-за пьезоэффекта упругие деформации, которые распространяются в кристалле в виде ПАВ. Центральные частоты ω1i, ω2 и ω3 первого I, второго II и третьего III ВШП определяются шагом размещения электродов 13.1, 13.2, 13.3 и их количеством. Изготовление ВШП осуществляется стандартными методами фотолитографии и травлением тонкой металлической пленки, осажденной на пьезоэлектрическом кристалле. Возможности современной фотолитографии позволяют создавать ВШП, работающие на частотах до 3 ГГц.

Чувствительный элемент 16.1, например, выполненный в виде тонкой мембраны, реагирует на давление Р атмосферы (воздуха), которое вызывает ее деформацию. Чувствительный элемент 16.3 реагирует на влажность W.

Скорость ПАВ в области чувствительных элементов 16.1, 16.2 и 16.3 изменяется и фазы отраженных от решеток 17.1, 17.2 и 17.3 волн изменяются в соответствии с деформацией чувствительных элементов 16.1, 16.2 и 16.3.

Акустические волны модифицируются уникальным, зависящим от топологии приема ответчика образом. Затем отраженные акустические волны претерпевают обратное преобразование в электромагнитные сигналы с фазовой манипуляцией (ФМн), которые поступают в антенну 12 и излучаются в пространство:

u4(t)=U4cos[ω1t+φk(t)+φ1+Δφ1],

u5(t)=U5cos[ω2t+φk(t)+φ2+Δφ2],

u6(t)=U6cos[ω3t+φk(t)+φ3+Δφ3], 0≤t≤Tc,

где φk(t)={0, π} - манипулируемая составляющая, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M(t), который определяется структурой ВШП;

Δφ1 - разность фаз, вызванная изменением давления атмосферы (воздуха);

Δφ2 - разность фаз, вызванная изменением температуры атмосферы (воздуха);

Δφ3 - разность фаз, вызванная изменением влажности атмосферы (воздуха).

Указанные сигналы с фазовой манипуляцией принимаются приемопередающей антенной 4 и через дуплексер 3 поступают на входы полосовых фильтров 23, 24 и 25.

Частота настройки ωн1 полосового фильтра 23 выбирается равной ω1н11). Частота настройки ωн2 полосового фильтра 24 выбирается равной ω2н22). Частота настройки ωн3 полосового фильтра 25 выбирается равной ω3н33).

Полосовыми фильтрами 23, 24 и 25 выделяются ФМн-сигналы u4(t), u5(t) и u6(t), которые поступают на входы удвоителей 5, 26 и 27 фазы. На выходах последних образуются следующие гармонические колебания:

u7(t)=U7cos[2ω1t+2φ1+2Δφ1],

u8(t)=U8cos[2ω2t+2φ2+2Δφ2],

u9(t)=U9cos[2ω3t+2φ3+2Δφ3], 0≤t≤Tc,

где ; ; .

Так как 2φk(t)={0, π}, то в данных колебаниях манипуляция фазы уже отсутствует. Эти колебания делятся по фазе на два в делителях фазы 6, 28 и 29 на два и выделяются узкополосными фильтрами 7, 30 и 31:

u10(t)=U10cos[ω1t+φ1+Δφ1],

u11(t)=U11cos[ω2t+φ2+Δφ2],

u12(t)=U12cos[ω3t+φ3+Δφ3], 0≤t≤Tc.

Полученное гармоническое колебание u10(t) используется в качестве опорного напряжения и поступает на второй (опорный) вход фазового детектора 8, на первый (информационный) вход которого подается ФМн-сигнал u4(t). На выходе фазового детектора 8 образуется низкочастотное колебание

uн(t)=Uнcosφk(t),

где ,

которое содержит информацию о номере устройства для дистанционного измерения параметров атмосферы (воздуха) и фиксируется на первом входе блока 10 регистрации.

Одновременно напряжения u10(t), u11(t) и u12(t), u1(t), u2(t) и u3(t) поступают на два входа фазометров 9, 32 и 33, где измеряются фазовые сдвиги Δφ1, Δφ2 и Δφ3, пропорциональные измеряемым давлению Р, температуре Т и влажности W соответственно.

Следовательно, блоком 10 регистрации фиксируется номер устройства для дистанционного измерения параметров атмосферы (воздуха) и измеряемое им давление Р, температура Т и влажность W.

Сканирующее устройство обеспечивает последовательный опрос всех устройств для дистанционного измерения параметров атмосферы (воздуха), регистрацию их номеров и измеряемых давлений, температур и влажности.

Таким образом, предлагаемое устройство по сравнению с прототипом обеспечивает дистанционное измерение не только давления атмосферы (воздуха) с повышенной точностью, но и одновременного дистанционного измерения температуры и влажности атмосферы (воздуха) с повышенной точностью. Это необходимо в тех случаях, когда непосредственное (контактное) измерение параметров атмосферы (воздуха) невозможно выполнить. Повышение точности дистанционного измерения давления, температуры и влажности обеспечивается фазовым методом.

Основное преимущество систем автоматической телеиндикации с применением приемопередатчиков на ПАВ состоит в возможности изготовить пассивный, т.е. не требующий источников питания приемоответчик с малыми габаритами. Используемый приемоответчик представляет возможность дистанционного считывания несущей им информации о давлении, температуре и влажности атмосферы (воздуха) неограниченное число раз, в автоматическом режиме.

Другое преимущество заключается в возможности совмещения функций переизлучения энергии, кодирования информации о номере и функций датчиков давления, температуры и влажности в одном устройстве с простой конструкцией.

Положительным свойством приемоответчика на ПАВ можно считать также малые затраты на длительную эксплуатацию (отсутствие батарей и большое время наработки ни отказ).

Тем самым функциональные возможности устройства расширены.

Устройство для дистанционного измерения параметров атмосферы, содержащее сканирующие устройство и приемоответчик, при этом сканирующее устройство содержит последовательно включенные усилитель мощности и дуплексер, вход/вход которого связан с приемопередающей направленной или ненаправленной антенной, последовательно включенные первый удвоитель фазы, первый делитель фазы на два, первый узкополосный фильтр, фазовый детектор и блок регистрации, последовательно включенные задающий генератор и первый фазометр, второй вход которого соединен с вторым выходом первого узкополосного фильтра, а выход подключен к второму входу блока регистрации, а приемоответчик выполнен в виде многоотводной линии задержки на поверхностных акустических волнах, включающей первый встречно-штыревой преобразователь, который выполнен в виде двух гребенчатых систем электродов, нанесенных на поверхность звукопровода, электроды которой из гребенок соединены между собой шинами, которые связаны с микрополосковой приемопередающей антенной, при этом на звукопроводе размещены первый чувствительный элемент, выполненный в виде тонкой мембраны, и первая отражательная решетка, отличающееся тем, что сканирующее устройство снабжено двумя перемножителями, вторым, третьим, четвертым и пятым узкополосными фильтрами, сумматором, тремя полосовыми фильтрами, вторым и третьим удвоителями фазы, вторым и третьим делителями фазы, вторым и третьим фазометрами, причем к второму выходу задающего генератора последовательно подключены первый перемножитель, второй вход которого соединен с вторым выходом задающего генератора, второй узкополосный фильтр и сумматор, второй вход которого соединен с вторым выходом задающего генератора, а выход подключен к входу усилителя мощности, к выходу второго узкополосного фильтра последовательно подключены второй перемножитель, второй вход которого соединен с выходом второго узкополосного фильтра, и третий узкополосный фильтр, выход которого подключен к третьему входу сумматора, выход дуплексера через первый полосовой фильтр подключен к входу первого удвоителя фазы и к второму входу фазового детектора, к выходу дуплексера последовательно подключены второй полосовой фильтр, второй удвоитель фазы, второй делитель фазы на два, четвертый узкополосный фильтр и второй фазометр, второй вход которого соединен с выходом второго узкополосного фильтра, а выход подключен к третьему входу блока регистрации, к выходу дуплексера последовательно подключены третий полосовой фильтр, третий удвоитель фазы, третий делитель фазы на два, пятый узкополосный фильтр и третий фазометр, второй вход которого соединен с выходом третьего узкополосного фильтра, а выход подключен к четвертому входу блока регистрации, а приемоответчик снабжен вторым и третьим встречно-штыревым преобразователем, вторым и третьим чувствительными элементами, второй и третьей отражающими решетками, которые нанесены на поверхность одного и того же звукопровода, причем шины второго и третьего встречно-штыревых преобразователей связаны с одной и той же микрополосковой приемопередающей антенной, центральные частоты ω, ω и ω встречно-штыревых преобразователей определяются шагом размещения электродов, их количеством и выбраны следующим образом: ω=2ω, ω=2ω.
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ПАРАМЕТРОВ АТМОСФЕРЫ
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ПАРАМЕТРОВ АТМОСФЕРЫ
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ПАРАМЕТРОВ АТМОСФЕРЫ
Источник поступления информации: Роспатент

Показаны записи 121-130 из 130.
04.04.2018
№218.016.31d9

Система автоматического управления микроклиматом в помещениях для размещения животных

Предлагаемая система относится к теплонасосным системам и установкам и может быть использована для горячего водоснабжения и отопления помещений. Система автоматического управления микроклиматом в помещениях для размещения животных, содержащая компрессор, два бака-аккумулятора, конденсатор,...
Тип: Изобретение
Номер охранного документа: 0002645203
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.34c3

Система интеллектуального управления и контроля параметров и режимов работы машин и оборудования ферм по производству молока

Изобретение относится к сельскому хозяйству, в частности к оборудованию ферм по производству молока. Датчики (1)-(6) соединены с многоканальными цифровыми измерителями (7)-(12), выходы которых через модуль (13) сбора данных соединены с компьютером (14) фермы. Видеокамеры (15) через регистратор...
Тип: Изобретение
Номер охранного документа: 0002646051
Дата охранного документа: 01.03.2018
09.11.2018
№218.016.9b72

Способ определения погрешностей при траекторных измерениях межпланетных космических аппаратов за счет распространения радиосигналов в ионосфере земли и межпланетной плазме

Изобретение относится к слежению за полётом межпланетных космических аппаратов (МКА) (2), куда вносит погрешности прохождение радиосигналов от МКА (на частоте f01) и близкого к нему на небесной сфере квазара (1) (на частотах f01 и f02) через ионизированную среду (8). По смещению Δf1 = f01- fпр1...
Тип: Изобретение
Номер охранного документа: 0002671921
Дата охранного документа: 07.11.2018
01.03.2019
№219.016.d0e8

Способ обработки поверхности изделий и устройство для его реализации

Изобретение относится к области обработки и очистки поверхности нефтяного оборудования, например насосных штанг и насосно-компрессорных труб, на различных этапах технологического процесса и может найти широкое применение в нефтедобывающей промышленности. Способ включает возбуждение дугового...
Тип: Изобретение
Номер охранного документа: 02171721
Дата охранного документа: 10.08.2001
09.05.2019
№219.017.5138

Устройство для очистки поверхности изделий дуговым разрядом

Устройство относится к технике строительства и ремонта магистральных трубопроводов и может быть использовано в нефтегазодобывающей отрасли. В изобретении обеспечивается повышение производительности, качества и расширение ассортимента очищаемых изделий. Устройство содержит разъемные...
Тип: Изобретение
Номер охранного документа: 0002152271
Дата охранного документа: 10.07.2000
05.03.2020
№220.018.0966

Система мониторинга состояния льда и окружающей среды

Изобретение относится к области автоматизированного мониторинга состояния льда и окружающей среды с одновременным определением координат собственного местонахождения комплекса и передачей полученной информации по радиоканалу. Измерительно-навигационный комплекс содержит корпус 1, приемник 3...
Тип: Изобретение
Номер охранного документа: 0002715845
Дата охранного документа: 03.03.2020
17.06.2020
№220.018.2706

Спутниковая система для определения местоположения судов и самолетов, потерпевших аварию

Изобретение относится к спутниковым системам для определения местоположения аварийных радиобуев (АРБ), предающих радиосигналы бедствия. Техническим результатом является повышение помехоустойчивости и достоверности принимаемых сложных сигналов с фазовой манипуляцией путем подавления ложных...
Тип: Изобретение
Номер охранного документа: 0002723443
Дата охранного документа: 11.06.2020
21.06.2020
№220.018.287b

Способ обнаружения и идентификации взрывчатых и наркотических веществ и устройство для его осуществления

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам для обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей....
Тип: Изобретение
Номер охранного документа: 0002723987
Дата охранного документа: 18.06.2020
01.07.2020
№220.018.2d21

Экологический дирижабль

Дирижабль предназначен для ведения дистанционного экологического мониторинга линейно-протяженных техногенных транспортно-коммуникационных сооружений. Дирижабль содержит приемную антенну 1(19) приемник 2(20) GPS-сигналов, приборы 3(21) дистанционного зондирования земной поверхности и атмосферы,...
Тип: Изобретение
Номер охранного документа: 0002725100
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d67

Система контроля соблюдения правил дорожного движения

Изобретение относится к области обеспечения безопасности дорожного движения. Система контроля соблюдения правил дорожного движения содержит сигнальные устройства и исполнительные устройства. Каждое сигнальное устройство содержит блок ввода дискретных сигналов, синхронизатор, передающее...
Тип: Изобретение
Номер охранного документа: 0002725101
Дата охранного документа: 29.06.2020
Показаны записи 121-130 из 178.
09.06.2018
№218.016.5fec

Компьютерная система управления портовым контейнерным терминалом

Компьютерная система управления портовым контейнерным терминалом содержит диспетчерский геодезический пункт с приемником GPS-сигнала, передающей радиостанцией и дуплексной радиостанцией, установленные на каждом погрузчике и трейлере дуплексную радиостанцию, два приемника, один из которых...
Тип: Изобретение
Номер охранного документа: 0002656972
Дата охранного документа: 07.06.2018
20.06.2018
№218.016.6454

Система дистанционного контроля состояния атмосферы и ледяного покрова в северных районах

Изобретение относится к системам для дистанционного контроля состояния окружающей среды. Сущность: система содержит блок управления, блок определения координат по системе спутниковой навигации, блок определения состояния атмосферы, блок определения толщины ледяного покрова, блок электропитания,...
Тип: Изобретение
Номер охранного документа: 0002658123
Дата охранного документа: 19.06.2018
12.07.2018
№218.016.6fe8

Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система для его реализации

Изобретение относится к информационно-измерительной системе и может быть использовано в радиолокационной технике для высокоточной оценки ледовой обстановки в районах морской добычи и транспортировки нефтегазовых ресурсов. Достигаемый технический результат - определение местоположения...
Тип: Изобретение
Номер охранного документа: 0002660752
Дата охранного документа: 10.07.2018
14.07.2018
№218.016.7171

Способ дистанционного контроля лифтов и устройство для его осуществления

Изобретение относится к области устройств лифтовых установок для дистанционного контроля состояния лифтов. Устройство, реализующее способ дистанционного контроля, включает датчик движения кабины, блок преобразователя, блок обработки, временной счетчик с часами реального времени, вычислительный...
Тип: Изобретение
Номер охранного документа: 0002661256
Дата охранного документа: 13.07.2018
09.08.2018
№218.016.7939

Способ мониторинга лесных пожаров и комплексная система раннего обнаружения лесных пожаров

Предлагаемый способ и система относятся к области пожарной безопасности и могут быть использованы для постоянного наземного мониторинга лесных массивов и населенных пунктов в местах, где развернута система сотовой связи. Техническим результатом является повышение достоверности обмена аналоговой...
Тип: Изобретение
Номер охранного документа: 0002663246
Дата охранного документа: 03.08.2018
23.10.2018
№218.016.9536

Способ синхронизации часов и устройство для его реализации

Предлагаемые способ и устройство синхронизации часов относятся к технике связи и могут быть использованы в радиоинтерферометрии со сверхдлинными базами (РСДБ), а также в службе единого времени и частоты. Технической задачей изобретения является повышение достоверности дуплексной радиосвязи...
Тип: Изобретение
Номер охранного документа: 0002670334
Дата охранного документа: 22.10.2018
09.11.2018
№218.016.9b72

Способ определения погрешностей при траекторных измерениях межпланетных космических аппаратов за счет распространения радиосигналов в ионосфере земли и межпланетной плазме

Изобретение относится к слежению за полётом межпланетных космических аппаратов (МКА) (2), куда вносит погрешности прохождение радиосигналов от МКА (на частоте f01) и близкого к нему на небесной сфере квазара (1) (на частотах f01 и f02) через ионизированную среду (8). По смещению Δf1 = f01- fпр1...
Тип: Изобретение
Номер охранного документа: 0002671921
Дата охранного документа: 07.11.2018
25.01.2019
№219.016.b3ee

Способ контроля состояния конструкции здания или инженерно-строительного сооружения и устройство для его осуществления

Изобретение относится к метрологии. Устройство контроля состояния сооружений содержит радиочастотные метки-транспондеры, блок предварительной обработки сигналов, включающий плату аналого-цифрового преобразования, линию связи - цифровую шину, конвертор, компьютер, дисплей, устройство звуковой...
Тип: Изобретение
Номер охранного документа: 0002678109
Дата охранного документа: 23.01.2019
01.03.2019
№219.016.ce63

Система радиочастотной идентификации на поверхностных акустических волнах

Предлагаемая система относится к области радиотехники и может быть использована для идентификации и охраны различных объектов. Технической задачей изобретения является повышение эффективности охраны объектов путем применения надежной системы, контроля над действиями охранных патрулей. Система...
Тип: Изобретение
Номер охранного документа: 0002422848
Дата охранного документа: 27.06.2011
01.03.2019
№219.016.d0bb

Способ маркировки автотранспорта

Изобретение относится к области предотвращения несанкционированного использования транспортных средств и предназначено для использования при идентификации автомобиля или его частей с целью предупреждения угона, затруднения преступной продажи угнанного транспорта или его частей, а также...
Тип: Изобретение
Номер охранного документа: 0002464644
Дата охранного документа: 20.10.2012
+ добавить свой РИД