×
20.06.2013
216.012.4daa

Результат интеллектуальной деятельности: ЕМКОСТНЫЙ ДАТЧИК ДАВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002485464
Дата охранного документа
20.06.2013
Аннотация: Изобретение относится к измерительной технике, в частности для измерения статического и динамического давления без нарушения целостности обтекания потока газа и изделий. Емкостный датчик давления состоит из двухсторонней фольгированной диэлектрической пленки, являющейся основанием датчика. На верхней поверхности основания датчика сформированы обкладки конденсатора с выводами. Фольга на нижней поверхности основания является экраном датчика. Мембрана датчика жестко закреплена на поверхности второй диэлектрической пленки. На обе поверхности мембраны нанесены третья и четвертая диэлектрические пленки. В датчик дополнительно введена пятая диэлектрическая пленка. Для защиты выводов установлен экран, покрытый шестой и седьмой диэлектрическими пленками. Дополнительно введен вывод в виде провода диаметром 1-2 мкм, покрытого изоляцией. Экран выполнен из того же материала, что и мембрана. Вторая пленка выполнена перфорированной с газообразным диэлектриком внутри ячейки и пропитана клеем. На основании датчика обкладки перфорированы и имеют не менее пяти отверстий для связи полости датчика под мембраной с атмосферным давлением. Техническим результатом является уменьшение гистерезиса датчика и повышение чувствительности и точности измерения статического давления. 1 ил.
Основные результаты: Емкостный датчик давления, состоящий из двухсторонней фольгированной диэлектрической пленки, являющейся основанием датчика, на верхней поверхности основания датчика сформированы обкладки конденсатора с выводами, охваченные экраном, фольга на нижней поверхности основания является экраном датчика, мембрана датчика жестко закреплена на поверхности второй диэлектрической пленки, причем на обе поверхности мембраны нанесены третья и четвертая диэлектрические пленки, отличающийся тем, что в него дополнительно введены пятая диэлектрическая пленка, для защиты выводов установлен экран, покрытый шестой и седьмой диэлектрическими пленками, а для подачи напряжения на мембрану дополнительно введен вывод в виде провода диаметром 1-2 мкм, покрытого изоляцией, причем экран выполнен из того же материала, что и мембрана, они имеют одинаковую толщину и для защиты их выводов между собой экран и мембрана электрически изолированы слоем герметика или пленкой толщиной 3-5 мкм, вторая пленка выполнена перфорированной с газообразным диэлектриком внутри ячейки и пропитана клеем, на основании датчика обкладки перфорированы и имеют не менее пяти отверстий для связи полости датчика под мембраной с атмосферным давлением, датчик смонтирован на поверхности изделия через пятую диэлектрическую пленку с канавками для поддержания связи ячейки с атмосферой через опорные отверстия.

Изобретение относится к измерительной технике и может быть использовано для измерения статического давления в машиностроении, авиационно-космической, криогенной технике.

Известен пленочный емкостный датчик давления, который состоит из четырех слоев диэлектрической пленки, выполненных из однородного материала. Первая пленка является изолятором. На второй пленке снизу металлизирован основной экран, сверху на поверхности этой пленки металлизированы верхние обкладки датчика прямоугольной формы. Вторые обкладки датчика металлизированы на наружной поверхности четвертой пленки. Между второй и четвертой пленками расположена третья перфорированная пленка. Соединение четырех пленок между собой и установка датчика на поверхности исследуемой модели осуществляется с помощью клея. Такое решение в указанной конструкции обеспечивает измерение динамического давления на поверхности исследуемого объекта без нарушения целостности модели и обтекаемого аэродинамического воздействия (см. а.с. СССР №1503472, 1987 г. Способ изготовления матричных емкостных датчиков давления, 1987, авторы А.А.Казарян, И.И.Чикин).

Недостатки в конструкции датчика заключаются в том, что в чувствительном элементе (ЧЭ), т.е. в мембране из полиимидной пленки, покрытой металлом толщиной 300-400 A°, при воздействии статического давления и при длительном режиме работы и после снятия нагрузки наблюдается большой гистерезис. Кроме этого в замкнутом объеме под мембраной перфорированная пленка, наполненная газом (воздухом) и не связанная с атмосферным давлением, при нагревании газа расширяется, и в результате на выходе датчика к полезному сигналу прибавляется тепловой шум и вследствие искажаются результаты измерения статического давления.

Наиболее близким к изобретению техническим решением является емкостный датчик давления, основанный на принципе зависимости параметров, определяющих его электрическую емкость. Такими параметрами являются диэлектрическая постоянная среды между обкладками, расстояние между ними или площадь взаимного перекрытия.

Основание датчика из фольгированной диэлектрической пленки содержит экран на нижней поверхности диэлектрической пленки. На верхней поверхности сформированы экран, обкладка конденсатора, контактные площадки. Датчик имеет отверстие для связи с атмосферным давлением, четыре сквозных отверстия, нижнее кольцо жесткости, между мембраной и обкладками. Мембрана покрыта полиимидной пленкой с обеих сторон и содержит верхнее кольцо жесткости. Собранный пакет между собой скрепляют клеем. На поверхности диэлектрической пленки обкладки, экран, контактные площадки формируют способом фотолитографии. Реальная толщина диэлектрической пленки 100-140 мкм, толщина пленки обкладки из меди или другого материала 10-20 мкм. Нижнее кольцо жесткости изготавливают из твердого диэлектрика или из металла. С целью обеспечения гибкости, защиты мембраны от механических повреждений и внешних воздействий ее покрывают с обеих сторон полиамидокислотным лаком толщиной 5-15 мкм по известной технологии. Высоту нижнего кольца жесткости выбирают 0,8-1,0 мм. При этом толщину мембраны выбирают 5-140 мкм.

Такое решение позволяет измерить статическое давление (см. патент РФ №2055334, 1996 г. Емкостный датчик давления и способ его сборки. Автор А.А.Казарян).

Датчик имеет следующий недостаток: конструкция не гибкая, трудно наклеить на поверхности модели большой кривизны.

Задачей настоящего изобретения является реализация метода бездренажного измерения полей давления на поверхности изделия обтекаемым потоком газа. Поставленной задачи достигают путем снижения жесткости конструкции датчика за счет использования гибких тонких диэлектрических пленок и пленок из высококачественных сплавов например FeNi или Ni. Техническим результатом является существенное уменьшение гистерезиса датчика и повышение чувствительности и точности измерения статического давления.

Задача и технический результат также достигаются тем, что в емкостный датчик давления, состоящий из двухсторонней фольгированной диэлектрической пленки, являющейся основанием датчика, на верхней поверхности основания датчика сформированы обкладки конденсатора с выводами, охваченные экраном, фольга на нижней поверхности основания является экраном датчика, мембрана датчика жестко закреплена на поверхности второй диэлектрической пленки, причем на обе поверхности мембраны нанесены третья и четвертая диэлектрические пленки, в него дополнительно введены пятая диэлектрическая пленка, для защиты выводов установлен экран, покрытый шестой и седьмой диэлектрическими пленками, а для подачи напряжения на мембрану дополнительно введен вывод в виде провода диаметром 1-2 мкм, покрытого изоляцией, причем экран выполнен из того же материала, что и мембрана, они имеют одинаковую толщину и для защиты их выводов между собой экран и мембрана электрически изолированы слоем герметика или пленкой толщиной 3-5 мкм, вторая пленка выполнена перфорированной с газообразным диэлектриком внутри ячейки и пропитана клеем, на основании датчика обкладки перфорированы и имеют не менее пяти отверстий для связи полости датчика под мембраной с атмосферным давлением, датчик смонтирован на поверхности изделия через пятую диэлектрическую пленку с канавками для поддержания связи ячейки с атмосферой через опорные отверстия.

На фигуре представлена конструкция датчика из нескольких ЧЭ и отдельные его узлы.

Основание датчика из фольгированной медью или никелем диэлектрической пленки содержит экран 1 на нижней поверхности первой диэлектрической пленки 2. На верхней поверхности сформированы экран 3, обкладки 4 с выводами и контактными площадками 5, образующие ЧЭ датчика. Датчик имеет опорные отверстия 6 для связи с атмосферным давлением, вторую диэлектрическую пленку 7 с ячейками 8, мембрану 9 из металлической пленки, обе стороны которой покрыты третьей 10 и четвертой 11 диэлектрическими пленками (сеч. Г-Г, В-В). Для ЧЭ предусмотрена объединенная мембрана датчика, сформированная из диэлектрических 10 и 11 и металлической 9 пленок. Выводы и контактные площадки от влияния внешних электромагнитных помех защищены экраном для защиты выводов 9, покрытым шестой и седьмой диэлектрическими пленками 10/, 11/. Мембрана 9 и экран 91 между собой электрически изолированы пленкой-изолятором или герметиком 12 (сеч. А-А, Б-Б). Толщину δ изоляционной пленки или герметика между экраном 9/ и мембраной 9 выбирают равной 3-5 мм. Напряжение поляризации на мембрану подают тонким (диаметр 1-2 мкм) проводом (выводом) 13, покрытым изоляцией (сеч. А-А, В-В). Датчик на изделие 14/ монтируют через пятую диэлектрическую пленку 14, образуют канавку 15 и не перекрывают опорные отверстия 6 для связи с атмосферным давлением. Металлические пленки 9, 9/ покрыты диэлектрическими пленками 10, 11 и 10/, 11/, в частности из полиимидной пленки, благодаря чему становятся более технологичными, эластичными для обращения и сборки датчика. Благодаря этому предотвращается появление дефектов, трещин, неровностей и т.д. металлических пленок 9, 9/ в процессе натяжения мембраны на поверхности собранного пакета датчика. При этом сохранены и обеспечены высокие качества сборки датчика, гарантировано обеспечение хороших метрологических характеристик. В зависимости от величины измеряемого давления толщину металлической пленки в конструкции датчика выбирают одинаковой и равной: 2, 5, 7, 10, 20 и 40 мкм. Для измерения локального значения давления диаметр ячейки 8 на второй диэлектрической пленке 7 выбирают 0,5-1,0 мм в количестве нескольких десятков штук. При одиночном отверстии под мембраной диаметр ячейки 8 выбирают 3-6 мм, размеры обкладки 4 4×6-6×9 мм. Неподвижные обкладки 4 датчика выбирают круглой, квадратной, прямоугольной формы из Ni или из Cu толщиной 3-5 мкм. Толщина первой 2, пятой 14 диэлектрических пленок 5-12 мкм. Указанные материалы известны в промышленности. Толщина второй диэлектрической пленки из полиимида или из стеклоткани, пропитанной клеем, 4-60 мкм. Обкладки 4 с выводами 5, разметку опорных отверстий 6 формируют с помощью фотолитографии. Расстояние между выводами 5 и экраном 3 - 0,3-1,0 мм. Ширина выводов 0,5-1,0 мм. Вывод 13 из провода диаметром 1-2 мкм, покрытого изоляцией для подачи напряжения поляризации датчика, располагают между экраном 9/ и второй диэлектрической пленкой 7. Пайка выводов на нижней поверхности мембраны - обычная. Собранный пакет между собой скрепляют жидким или сухим клеем на эпоксидно-каучуковой основе или другими клеями. Пленки на поверхности мембраны и экрана формируют с помощью полиамидокислотного лака по известной технологии.

Из предлагаемой конструкции датчика для измерения давления ЧЭ датчика выбирают от одного до нескольких десятков на одной подложке. При этом в расчете емкостных тонкопленочных датчиков давления допущено, что материал мембраны однороден и ее упругие свойства одинаковы во всех трех направлениях, слои диэлектрических пленок 10, 11 толщиной 5-10 мкм, играющие роль мембраны, не влияют на деформирование (на изгиб) пленки. При этом в теоретической модели конструкции датчика рассмотрен однослойный случай. Если толщина диэлектрических пленок 10, 11 существенно меньше толщины металлической пленки 9, то при расчетах используются модуль упругости металла, и коэффициент Пуассона и толщина металла. При противоположном соотношении берутся те же параметры диэлектрической пленки. Такой упрощенный подход позволил описать основы реализации предложенного датчика и получить хорошее совпадение расчетных и экспериментальных данных.

Размеры ЧЭ и габаритные размеры датчика выбирают, исходя из конфигурации конструкции изделия и требования проводимого эксперимента. Предложенная конструкция датчика позволяет реализовать метод бездренажного определения полей давления и обусловлена выполнением следующих задач:

- проведение прочностных и аэродинамических исследований без нарушения целостности изделия;

- измерение локальных и интегральных значений статического и пульсации давления;

- совмещение и одновременное измерение распределения с весовыми, температурными и другими видами измерений.

Для представления принципов работы предложенного емкостного датчика пренебрегаем амортизирующим действием воздушной подслойки и краевыми эффектами. При этом емкость ЧЭ с газообразным диэлектриком толщиной ячейки δ1 и толщиной диэлектрической пленки δ2, каждая из них одинаковой площадью S, под мембраной определяется как: . Тогда емкость ЧЭ без учета краевых эффектов с относительной диэлектрической проницаемостью можно преобразовать как: . Если воздушный зазор ячейки под мембраной изменяется от воздействий давления Δ, то емкость C возрастает на ΔC; тогда . Следовательно относительное приращение емкости определяется как: , где . Видно из выражений, что учтено полное расстояние (δ12) между обкладками конденсатора. Если толщину диэлектрической пленки δ2 в этих выражениях пренебречь, то получим относительное приращение емкости только с воздушными ячейками; N1 - коэффициент преобразования (чувствительности), который зависит только от относительной диэлектрической проницаемости и отношения толщины слоев диэлектрика. Если в последнем выражении предполагать, что N1·Δδ1/(δ12)<<1, тогда N1 также является и коэффициентом нелинейности. Таким образом, чувствительность и нелинейность возрастают с ростом диэлектрической проницаемости и толщины δ2 [Т.П.Нурберт. Измерительные преобразователи неэлектрических величин. - Л.: Энергия, 1970. - стр.247-249].

Чувствительность датчика в случае конструкции с малым воздушным зазором δ1 не зависит от толщины диэлектрической пленки δ1 при условии, что емкость утечки внешней цепи намного меньше по сравнению с емкостью ЧЭ датчика. Это приводит к отрицанию (аннулированию) возрастания жесткости воздушной прослойки, когда зазор δ1 уменьшается и наоборот, жесткость W воздушной прослойки толщиной δ1 и площадью S для скорости звука в воздухе ν, плотности воздуха ρ и ускорение q=9,81 м/с2 будет .

Как известно, для снижения такого отрицательного влияния, т.е. ограничения чувствительности в обычных конденсаторных микрофонах неподвижную обкладку 4 перфорируют, например микрофоны фирмы Брюль и Къер (Дания). Такое конструктивное решение практически повышает чувствительность датчика не менее чем на порядок. Число перфорированных отверстий (опорные отверстия) выбирают не менее пяти.

Другая особенность, с чем сталкиваются, особенно при высоких частотах - это инерционность воздушной прослойки, соприкасающейся с вибрирующей мембраной. При этом возможно, что масса воздушного слоя может быть сравнима с массой мембраны. Совокупное действие вышесказанного сказывается на динамической чувствительности и частотной характеристике.

Принцип работы датчика. При изменении давления на величину Р изменяется расстояние между обкладками 4 и объединенной мембраной. Изменение этого расстояния приводит к изменению емкости C и приращения емкости ΔC. Напряжение поляризации датчика подают через вывод 13 диаметром 1-2 мкм из провода, покрытого изоляцией. Выходное напряжение, снимаемое с выходов ЧЭ (между выводом 13 и контактами 5) пропорционально коэффициенту приращения емкости ЧЭ и напряжению поляризации датчика U, т.е. .

Технико-экономический эффект предложенной конструкции датчика повышается за счет измерения статического и динамического давления без больших погрешностей, без дополнительных затрат для проведения эксперимента, без механической обработки изделий и крепления датчика. Появляется возможность совместить эксперименты измерения давления с весовыми, тепловыми экспериментами, при этом не нарушая обтекания физического явления.

С этой целью, из многочисленных результатов измерения партии датчиков приводится зависимость нагружения и разгрузки датчиков между давлением, приращение выходной емкости практически линейно. Экспериментально получено приращение выходного сигнала (емкости) - оно практически линейно, и приращение выходного сигнала изменяется на величину упругой части изгибным удлинением мембраны. Нагружение датчика давлением 0-25000 Па показало, что мембрана во внутрь ячейки перемещается упругой и при повторных (от 2 до 8) нагружения и разгрузках наблюдается линейность, параллельность прямых и обратных ходов выходных параметров ΔC от давления P.

Параметры датчиков при нагружении статическим давлением, в условиях влажности ~90%, температуры 25°C, атмосферном давлении 100±4 кПа (750±3 мм рт.ст.):

размер обкладки конденсатора, мм 6×9
размер ячейки, мм ⌀2; ⌀3; ⌀4; ⌀5
толщина мембраны датчика из FeNi сплава, мкм 20
толщина датчика, мкм 100-130
верхний предел ожидаемого измеряемого
давления, Па 2·105; 104; 2,5·103; 2,5·102
нижний порог измерения давления, Па 20; 10; 5; 1
вариация выходного сигнала (при уровне
давления 25000 Па), % 1,5; 2,3; 3,1; 3,5
начальная емкость датчика, пФ 22-31; 13-23; -; 15-16
коэффициент преобразования, 1/Па ~(1,2÷6)10-6.

Емкостный датчик давления, состоящий из двухсторонней фольгированной диэлектрической пленки, являющейся основанием датчика, на верхней поверхности основания датчика сформированы обкладки конденсатора с выводами, охваченные экраном, фольга на нижней поверхности основания является экраном датчика, мембрана датчика жестко закреплена на поверхности второй диэлектрической пленки, причем на обе поверхности мембраны нанесены третья и четвертая диэлектрические пленки, отличающийся тем, что в него дополнительно введены пятая диэлектрическая пленка, для защиты выводов установлен экран, покрытый шестой и седьмой диэлектрическими пленками, а для подачи напряжения на мембрану дополнительно введен вывод в виде провода диаметром 1-2 мкм, покрытого изоляцией, причем экран выполнен из того же материала, что и мембрана, они имеют одинаковую толщину и для защиты их выводов между собой экран и мембрана электрически изолированы слоем герметика или пленкой толщиной 3-5 мкм, вторая пленка выполнена перфорированной с газообразным диэлектриком внутри ячейки и пропитана клеем, на основании датчика обкладки перфорированы и имеют не менее пяти отверстий для связи полости датчика под мембраной с атмосферным давлением, датчик смонтирован на поверхности изделия через пятую диэлектрическую пленку с канавками для поддержания связи ячейки с атмосферой через опорные отверстия.
ЕМКОСТНЫЙ ДАТЧИК ДАВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 258.
20.06.2015
№216.013.56d9

Композиционный наноструктурированный порошок для нанесения покрытий

Изобретение относится к области порошковой металлургии, в частности к получению порошка для нанесения износо- и коррозионно-стойких покрытий с высокой адгезионной и когезионной прочностью методом холодного газодинамического напыления (ХГДН). Композиционный наноструктурированный порошок для...
Тип: Изобретение
Номер охранного документа: 0002553763
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56df

Способ импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов

Изобретение относится к способу импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов. Изобретение может быть использовано в судостроении, авиастроении, ракетостроении и других отраслях машиностроения. Формируют X-образный профиль свариваемых кромок и выполняют многопроходную...
Тип: Изобретение
Номер охранного документа: 0002553769
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56fd

Износо-коррозионностойкий медно-никелевый сплав

Изобретение относится к разработке прецизионных сплавов для микрометаллургических процессов, в том числе для получения функциональных покрытий, пленок, микропроводов, порошковых материалов, конструкционно-функциональные элементы из которых эффективно работают в жестких условиях эксплуатации,...
Тип: Изобретение
Номер охранного документа: 0002553799
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.59b5

Движительно-рулевая колонка

Изобретение относится к области судостроения и может быть использовано в конструкциях судовых движителей. Движительно-рулевая колонка содержит основание колонки, баллер, приводной вал, который расположен внутри баллера, механизм поворота колонки, угловой редуктор, обтекаемую гондолу,...
Тип: Изобретение
Номер охранного документа: 0002554506
Дата охранного документа: 27.06.2015
20.07.2015
№216.013.63e0

Способ термической обработки поковок из высокопрочной коррозионно-стойкой стали мартенситного класса

Изобретение относится к области термообработки поковок из легированных сталей и предназначено для использования в судовом машиностроении при изготовлении гребных валов. Для получения требуемой категории прочности металла с пределом текучести не менее 800 МПа и повышения коррозионной стойкости...
Тип: Изобретение
Номер охранного документа: 0002557115
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.695b

Способ индикации летчику о положении летательного аппарата относительно заданной глиссады при заходе на посадку на корабль

Изобретение относится к способам индикации летчику положения летательного аппарата (ЛА) при посадке на корабль. Определяют взаимное положение ЛА и корабля с помощью глобальной или корабельной системы позиционирования и бортовой цифровой вычислительной машины. Формируют и отображают на...
Тип: Изобретение
Номер охранного документа: 0002558524
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.695c

Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового бпла

Изобретение относится к авиационной и ракетной технике, в частности к активной тепловой защите теплонапряженных передних кромок гиперзвукового беспилотного летательного аппарата (БПЛА). Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА содержит...
Тип: Изобретение
Номер охранного документа: 0002558525
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6be8

Способ активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового летательного аппарата

Изобретение относится к активной тепловой защите теплонапряженных элементов конструкции летательного аппарата (ЛА), управлению его обтеканием и работой силовой установки. Способ включает формирование защитного слоя из продуктов разложения метангидрата (смеси паров воды и метана). Последние...
Тип: Изобретение
Номер охранного документа: 0002559182
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cec

Состав эпоксиполиуретанового компаунда и способ его получения

Изобретение относится к составу двухкомпонентного эпоксиполиуретанового заливочного электроизоляционного компаунда и способу его получения. Компонента «А» состоит из мономерно-олигомерной смеси полиэпоксидов, состоящей из диглицидилового эфира бисфенола А, моноглицидилового эфира бисфенола А и...
Тип: Изобретение
Номер охранного документа: 0002559442
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.70e6

Способ получения многослойного материала

Изобретение может быть использовано для получения крупногабаритных многослойных материалов, используемых в атомной, нефтегазовой, химической отраслях промышленности, а также в судостроении. Для повышения прочности сцепления металлических плит из разнородных материалов применяют нанесение...
Тип: Изобретение
Номер охранного документа: 0002560472
Дата охранного документа: 20.08.2015
Показаны записи 111-120 из 193.
10.03.2015
№216.013.3111

Судовая электроэнергетическая установка

Изобретение относится к судостроению, в частности к судовым электроэнергетическим установкам. Судовая электроэнергетическая установка содержит главный двигатель, соединенный с главным генератором, дополнительный двигатель, соединенный с дополнительным генератором, гребной электродвигатель,...
Тип: Изобретение
Номер охранного документа: 0002544029
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3e10

Лигатура для титановых сплавов

Изобретение относится к области цветной металлургии и может быть использовано при производстве сплавов титана. Лигатура содержит, мас.%: ванадий 40-50, титан 5-20, углерод 3-5, алюминий - остальное. Изобретение позволяет улучшить свариваемость и механические характеристики в зоне термического...
Тип: Изобретение
Номер охранного документа: 0002547376
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42da

Способ изготовления термоанемометра (варианты)

Изобретение относится к измерительной технике и может быть использовано в аэродинамических экспериментах, в энергетике турбинных машин при исследовании структуры потока газа в жидкости. Конструкция датчика разработана на базе пленки из полиимида. На этой пленке формируют конструкцию датчика...
Тип: Изобретение
Номер охранного документа: 0002548612
Дата охранного документа: 20.04.2015
20.05.2015
№216.013.4c43

Способ получения износо-коррозионностойкого градиентного покрытия

Изобретение относится к области получения покрытий со специальными свойствами, в частности к покрытиям с высокой стойкостью к коррозионным повреждениям и износу. Способ холодного газодинамического напыления износо-коррозионностойкого градиентного покрытия включает подачу металлического порошка...
Тип: Изобретение
Номер охранного документа: 0002551037
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d69

Способ получения многослойного градиентного покрытия методом магнетронного напыления

Изобретение относится к способу нанесения градиентных покрытий магнетронным напылением, в частности к нанесению покрытий на основе тугоплавких металлов, и может быть использовано для получения покрытий с высокими адгезивными и когезивными характеристиками, а также с оптимальным сочетанием...
Тип: Изобретение
Номер охранного документа: 0002551331
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4da5

Устройство для измерения подводного шума плавсредства и система для проверки его рабочего состояния

Изобретения относятся к области гидроакустики и могут быть использованы для контроля уровня шумоизлучения подводного объекта в натурном водоеме. Техническим результатом, получаемым от внедрения изобретений, является получение возможности измерений уровня шума подводного плавсредства...
Тип: Изобретение
Номер охранного документа: 0002551391
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4daa

Способ бесконтактных измерений геометрических параметров объекта в пространстве и устройство для его осуществления

Изобретение относится к способу бесконтактных измерений геометрических параметров объекта в пространстве. При реализации способа на поверхности объекта выделяют одну и/или более обособленную зону, для которой можно заранее составить несколько разных упрощенных математических параметрических...
Тип: Изобретение
Номер охранного документа: 0002551396
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5189

Способ изготовления конусных изделий из стеклообразного материала

Изобретение относится к технологии получения изделий из кварцсодержащих материалов и может быть использовано в стекольной промышленности, кварцевом производстве. Способ получения изделий конусной формы наплавом из кристаллического исходного сырья осуществляют путем подачи сырья во вращаемую...
Тип: Изобретение
Номер охранного документа: 0002552394
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.51cf

Способ получения слоистого композиционного материала на основе алюминиевых сплавов и низколегированной стали

Изобретение относится к металлургической промышленности и касается способа получения слоистого композиционного материала на основе алюминиевых сплавов и низколегированной стали. Способ включает: зачистку контактных поверхностей заготовок из стали и алюминия механическим способом,...
Тип: Изобретение
Номер охранного документа: 0002552464
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5265

Способ получения сталеалюминиевого соединения сваркой плавлением

Изобретение относится к области сварочного производства, в частности к способу получения сварного сталеалюминиевого соединения, и может быть использовано в судостроении, при строительстве железнодорожного транспорта и автомобилестроении. Сталеалюминиевое соединение получают сваркой плавлением...
Тип: Изобретение
Номер охранного документа: 0002552614
Дата охранного документа: 10.06.2015
+ добавить свой РИД