×
20.06.2013
216.012.4ca2

Результат интеллектуальной деятельности: ЖАРОПРОЧНЫЙ ХРОМОНИКЕЛЕВЫЙ СПЛАВ С АУСТЕНИТНОЙ СТРУКТУРОЙ

Вид РИД

Изобретение

№ охранного документа
0002485200
Дата охранного документа
20.06.2013
Аннотация: Изобретение относится к области металлургии, в частности к жаропрочным хромоникелевым сплавам с аустенитной структурой, и может быть использовано при изготовлении отливок для коллекторов и реакционных труб печей риформинга крупнотоннажных агрегатов аммиака и метанола с температурой эксплуатации до 1200°С и давлении до 50 атм. Жаропрочный хромоникелевый сплав с аустенитной структурой, содержащий, мас.%: углерод 0,40-0,45, кремний 1,10-1,50, марганец 1,10-1,40, хром 24,0-27,0, никель 33,0-35,0, ниобий 0,6-1,1; титан 0,05-0,15, цирконий 0,01-0,20, церий 0,005-0,10, вольфрам 0,005-0,10, алюминий 0,01-0,05, ванадий 0,0005-0,10, кобальт 0,01-0,10, железо и примеси - остальное. Содержание примесей не превышает следующих значений, мас.%: сера - 0,03, фосфор - 0,03, свинец - 0,01, олово - 0,01, мышьяк - 0,01, цинк -0,01, сурьма - 0,01, азот - 0,01, молибден - 0,20, медь - 0,20. Технический результат - повышение жаростойкости сплава за счет формирования однородной аустенитной структуры. 1 табл., 1 пр.
Основные результаты: Жаропрочный хромоникелевый сплав с аустенитной структурой, включающий углерод, кремний, марганец, хром, никель, ниобий, титан, цирконий, церий, вольфрам, серу, фосфор, свинец, олово, мышьяк, цинк, сурьму, азот, молибден, медь и железо, отличающийся тем, что он дополнительно содержит алюминий, ванадий и кобальт при следующем соотношении компонентов, мас.%: а содержание примесей - серы, фосфора, свинца, олова, мышьяка, цинка, сурьмы, азота, молибдена и меди не превышает следующих значений, мас.%:

Изобретение относится к области металлургии, а именно к составам жаропрочных хромоникелевых сплавов с аустенитной структурой, и может быть использовано при изготовлении реакционных труб для метанольных, аммиачных и других нефтегазоперерабатывающих установок с температурным режимом 800-1100°С и давлением до 50 атмосфер.

Срок службы центробежнолитых труб, работающих при температурах 800-1100°С и давлениях до 50 атмосфер, составляет от 20000 до 65000 часов. После такого длительного периода эксплуатации их прочность в рабочих условиях (температура, давление) резко понижается, что может привести к аварийному разрушению трубы и выходу из строя всей установки.

Возможными причинами недостаточно высокой жаропрочности труб, изготовленных из известных жаропрочных хромоникелевых сплавов, являются увеличенный относительный размер частиц вторичных карбидов их низкая однородность и неравномерность распределения в аустенитных зернах жаропрочного сплава.

Известен жаропрочный сплав, описанный в RU №2149206 (заявка 98109103/02 от 13.05.1998 г.), кл. С22С 30/00, опубл. 20.05.2000 в БИ №14 и содержащий в мас.%: углерод 0,35÷0,45; хром 24,0÷27,0; никель 34,0÷36,0; ниобий 1,30÷1,70; кремний 1,1995÷1,59; марганец 1,0005÷1,51; ванадий 0,0005÷0,20; титан 0,0005÷0,10; алюминий 0,0005÷0,10; железо - остальное. Содержание в сплаве серы, фосфора, свинца, олова, мышьяка, цинка, молибдена и меди не превышает следующих значений, мас.%: сера - 0,03; фосфор - 0,03; свинец - 0,01; олово - 0,01; мышьяк - 0,01; цинк - 0,01; молибден - 0,50; медь - 0,20. Кроме того, для данного жаропрочного сплава необходимо одновременное выполнение двух условий, мас.%:

%Ni+32%С+0,6%Mn+%Cu=46?94184-51?506;

%Cr+3%Ti+%V+%Mo+l,6%Si+0,6%Nb=26,7017-30,59154.

К его недостаткам можно отнести повышенную ползучесть реакционных труб при воздействии высоких значений температуры и напряжений, которая обусловлена недостаточно высокой однородностью распределения вторичных карбидов в кристаллической структуре металла.

Наиболее близким по технической сущности является жаропрочный хромоникелевый сплав, описанный в RU №2395606, кл. С22С 30/00 и включающий, мас.%: углерод - 0,35-0,45; кремний - 1,20-1,60; марганец - 1,00-1,50; хром - 24,0-27,0; никель - 34,0-36,0; ниобий - 1,40-1,90; титан -0,1-0,25; цирконий - 0,10-0,25; церий - 0,005-0,10; вольфрам - 0,005-0,10; сера ≤0,02; фосфор ≤0,02; свинец ≤0,007; олово ≤0,007; мышьяк ≤0,007; цинк ≤0,007; сурьма ≤0,007; азот ≤0,02; молибден ≤0,5; медь ≤0,2; железо - остальное, при выполнении следующих условий, мас.%:

%Ni+32%С+0,6%Mn+%Cu=48,65÷51,50;

%Cr+3%Ti+Mo+l,6×Si+0,6×Nb+W=27,065÷29,6025.

Известный сплав характеризуется повышенным разбросом содержания углерода, что обусловливает колебание эксплуатационных показателей жаропрочных труб на его основе.

Технической задачей изобретения является оптимизация химического состава жаропрочного хромоникелевого сплава с аустенитной структурой с целью повышения его физико-механических показателей и, соответственно, жаропрочности.

Указанный технический результат достигается за счет того, что в жаропрочном хромоникелевом сплаве снижено содержание ниобия, введены новые компоненты - ванадий, алюминий и кобальт, что позитивно отразилось на структуре сплава и его физико-механических показателях. Одновременно с этим сужены интервалы варьирования содержания углерода, титана и марганца.

Таким образом, сущностью предлагаемого технического решения является жаропрочный хромоникелевый сплав с аустенитной структурой, включающий углерод, кремний, марганец, хром, никель, ниобий, титан, цирконий, церий, вольфрам, серу, фосфор, свинец, олово, мышьяк, цинк, сурьму, азот, молибден, медь, железо и дополнительно алюминий, ванадий и кобальт, при следующем соотношении компонентов, мас.%: углерод 0,40-0,45; кремний 1,10-1,50; марганец 1,10-1,40; хром 24,0-27,0; никель 33,0-35,0; ниобий 0,6-1,1; титан 0,05-0,15; цирконий 0,01-0,20; церий 0,005-0,10; вольфрам 0,005-0,10; алюминий 0,01-0,05; ванадий 0,0005-0,10; кобальт 0,01-0.10; железо и примеси - остальное, а содержание примесей - серы, фосфора, свинца, олова, мышьяка, цинка, сурьмы, азота, молибдена и меди - не превышает следующих значений, мас.%: сера - 0,03; фосфор - 0,03; свинец - 0,01; олово - 0,01; мышьяк - 0,01; цинк - 0,01; сурьма - 0,01; азот - 0,01; молибден - 0,20; медь - 0,20.

Заявленный жаропрочный хромоникелевый сплав относится к высокоуглеродистым аустенитным и для его выплавки используются только индукционные печи с основной футеровкой с применением чистых шихтовых материалов. Применение указанного способа плавления шихты обеспечивает хорошее перемешивание компонентов сплава, что дополнительно снижает отрицательное воздействие ликвационных процессов.

Указанный сплав является строго литейным (не является деформируемым, т.е. не поддается прессованию, ковке или прокатке), поэтому не требуется дополнительных мер по существенному ограничению содержания вредных примесей, таких как сера и фосфор, резко снижающих пластичность сплава и не позволяющих производить его деформирование без разрушения. В свою очередь, сера и фосфор в заявленных количествах улучшают обрабатываемость сплава резанием.

Изделия на основе заявляемого жаропрочного хромоникелевого сплава получались из центробежнолитых трубных заготовок или отливок, изготовленных путем заливки расплавленного жаропрочного сплава во вращающийся кокиль (для центробежнолитой трубы) или в специально подготовленную форму (для фасонной отливки). При его производстве на завершающей стадии в расплавленный металл вводят по специальным режимам некоторые легирующие компоненты (титан, ванадий и др.) во избежание их окисления и угара. В дальнейшем после кристаллизации жаропрочного сплава полученные литые заготовки подвергались механической обработке без деформации структуры материала, то есть путем расточки.

Пример. Основные результаты исследований были получены при использовании сплава следующего состава, мас.%: углерод 0,42; кремний - 1,20; марганец - 1,15; хром - 25; никель - 35; ниобий - 0,9; титан - 0,10; цирконий - 0,10; церий - 0,05; вольфрам - 0,05; алюминий - 0,03; ванадий - 0,04; кобальт - 0,02; железо - остальное.

Для проведения исследований жаропрочных свойств заявленного сплава от торцевой части изготовленной центробежнолитой трубной заготовки вырезали патрубок длиной 150 мм, из которого изготавливали образцы для испытаний. При этом направление оси вырезаемых образцов совпадало с направлением оси центробежнолитой трубы.

Среднюю величину зерна определяли в окуляре металлографического микроскопа на матовом стекле (ГОСТ 5639 «Сталь. Методы выявления и определения величины зерна»); Равномерность распределения мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава оценивалась с помощью коэффициента К, который определяется как отношение K=Rmax/Rmin, где Rmax и Rmin - максимальное и минимальное расстояние между мелкодиспергированными частицами вторичных карбидов в аустенитных зернах жаропрочного сплава соответственно. В известном сплаве-прототипе А=5,0, в заявленном - 4,6, что свидетельствует о повышении однородности мелкодиспергированных частиц вторичных карбидов в аустенитных зернах заявленного сплава.

Испытания на длительную прочность были проведены при температуре 960°С на образцах типа ДП-5 с рабочей частью ф5, длиной 25 мм на испытательных машинах типа МПЗ с прямым нагружением образцов в соответствии с ГОСТ 10145.

Полученные данные позволяют построить график зависимости времени до разрушения от уровня растягивающих механических напряжений.

Испытание механических свойств было выполнено при температурах 20 и 960°С на образцах с рабочей частью ф5, длиной 25 мм по ГОСТ 9651 на машине FP-100/1 при скорости растяжения образца 2 мм/мин.

Полученные результаты исследования жаропрочного сплава представлены в таблице.

Таблица.
Физико-механические показатели предлагаемого сплава.
Наименование показателя Значение показателя
Предел прочности на разрыв, МПа, при
20°С 600
960°С 130
Предел текучести (σ02), МПа, при
20°С 300
960°С 125
Характеристика ползучести (напряжение на разрыв за 100000 часов), Мпа 19,4

Из описания изобретения и таблицы следует, что по заявленному техническому решению удается улучшить аустенитную структуру и механические свойства жаропрочного хромоникелевого сплава и тем самым повысить его жаропрочность. Это позволит использовать сплав при изготовлении изделий, эксплуатируемых при температурах до 1100°С и давлении до 50 атм.

Жаропрочный хромоникелевый сплав с аустенитной структурой, включающий углерод, кремний, марганец, хром, никель, ниобий, титан, цирконий, церий, вольфрам, серу, фосфор, свинец, олово, мышьяк, цинк, сурьму, азот, молибден, медь и железо, отличающийся тем, что он дополнительно содержит алюминий, ванадий и кобальт при следующем соотношении компонентов, мас.%: а содержание примесей - серы, фосфора, свинца, олова, мышьяка, цинка, сурьмы, азота, молибдена и меди не превышает следующих значений, мас.%:
Источник поступления информации: Роспатент

Показаны записи 11-20 из 23.
22.08.2018
№218.016.7e25

Энергосберегающий унифицированный способ генерации синтез-газа из углеводородов

Изобретение относится к способу получения синтез-газа и может быть использовано в химической и нефтехимической промышленности при производстве водорода, аммиака, синтетических жидких углеводородов, альдегидов и спиртов. Способ включает стадию сжигания топлива в дымовой газ, используемый в...
Тип: Изобретение
Номер охранного документа: 0002664526
Дата охранного документа: 20.08.2018
01.03.2019
№219.016.d004

Жаропрочный хромоникелевый сплав с аустенитной структурой

Изобретение относится к области металлургии, в частности к жаропрочным хромоникелевым сплавам с аустенитной структурой, и может быть использовано при изготовлении отливок для коллекторов и реакционных труб печей риформинга крупнотоннажных агрегатов аммиака и метанола с температурой эксплуатации...
Тип: Изобретение
Номер охранного документа: 0002446223
Дата охранного документа: 27.03.2012
10.04.2019
№219.017.01e9

Способ получения карбамидоформальдегидной смолы

Изобретение относится к способам получения карбамидоформальдегидных смол, применяемых в качестве связующих и клеев для склеивания древесины в производстве ДСП и МДФ и других целей. Способ заключается в конденсации карбамидоформальдегидного концентрата с первой порцией карбамида в присутствии...
Тип: Изобретение
Номер охранного документа: 02213749
Дата охранного документа: 10.10.2003
10.04.2019
№219.017.03c5

Способ получения синтез-газа, обогащенного водородом и монооксидом углерода, путем каталитического риформинга углеводородсодержащего сырья

Изобретение относится к области химии и может быть использовано при получении синтез-газа. Углеводородное сырье в смеси с водяным паром пропускают через обогреваемые трубы реактора, внутри которых размещают катализатор в виде слоя гранул, включающих никель, причем участки поверхностей...
Тип: Изобретение
Номер охранного документа: 0002357919
Дата охранного документа: 10.06.2009
21.04.2019
№219.017.3647

Способ получения карбамидоформальдегидного концентрата

Изобретение относится к способу получения карбамидоформальдегидного концентрата. Способ включает хемосорбцию формальдегида, образующегося при окислительном дегидрировании метанола на железомолибденовом катализаторе в реакторе трубчатого или полочного типа, 50-65%-ным водным раствором карбамида...
Тип: Изобретение
Номер охранного документа: 0002685503
Дата охранного документа: 19.04.2019
05.07.2019
№219.017.a66f

Жаропрочный сплав аустенитной структуры с интерметаллидным упрочнением

Изобретение относится к металлургии, в частности к жаропрочным сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 850-950°С и давлением 2,5-5 МПа и...
Тип: Изобретение
Номер охранного документа: 0002693417
Дата охранного документа: 02.07.2019
03.08.2019
№219.017.bc0d

Совмещённый способ получения гидрокарбоната натрия и азотного удобрения смешанного типа

Изобретение относится к технологии получения гидрокарбоната натрия и азотных удобрений смешанного типа конверсией раствора солей углекислым аммонием или смесью аммиака и диоксида углерода и может найти применение на крупнотоннажных агрегатах нефтехимии, имеющих в своем составе цеха...
Тип: Изобретение
Номер охранного документа: 0002696450
Дата охранного документа: 01.08.2019
24.08.2019
№219.017.c390

Способ получения метанола

Настоящее изобретение относится к области основого органического синтеза, в частности к способу получения метанола. Способ заключается в подаче синтез-газа с циркуляционным газом на компримирование и контактирование в реакторе с медно-цинковым катализатором при температуре 220-290°С, с...
Тип: Изобретение
Номер охранного документа: 0002698200
Дата охранного документа: 23.08.2019
02.10.2019
№219.017.cc32

Тренажёр для скрининг - мониторинга вестибулярной устойчивости

Изобретение относится к области медицины, а именно оториноларингологии и лечебно-физической культуре, и может быть рекомендовано для тренировки и укрепления вестибулярного аппарата у спортсменов, отдыхающих в санаториях лиц и специалистов, занятых работой на высоте, для которых важна...
Тип: Изобретение
Номер охранного документа: 0002701410
Дата охранного документа: 26.09.2019
02.10.2019
№219.017.cde7

Жаропрочный сплав

Изобретение относится к металлургии, в частности к жаропрочным хромоникелевым сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 800-950°С и давлением 2,5-5 МПа и...
Тип: Изобретение
Номер охранного документа: 0002700346
Дата охранного документа: 16.09.2019
Показаны записи 11-20 из 32.
10.05.2018
№218.016.4c42

Способ газоциклической закачки жидкого диоксида углерода при сверхкритических условиях в нефтедобывающую скважину

Изобретение относится к области добычи трудно извлекаемых запасов нефти и газового конденсата с помощью диоксида углерода. Технический результат - повышение эффективности добычи остаточных запасов нефти за счет использования геологически аккумулированного при технологических процессах диоксида...
Тип: Изобретение
Номер охранного документа: 0002652049
Дата охранного документа: 24.04.2018
22.08.2018
№218.016.7e25

Энергосберегающий унифицированный способ генерации синтез-газа из углеводородов

Изобретение относится к способу получения синтез-газа и может быть использовано в химической и нефтехимической промышленности при производстве водорода, аммиака, синтетических жидких углеводородов, альдегидов и спиртов. Способ включает стадию сжигания топлива в дымовой газ, используемый в...
Тип: Изобретение
Номер охранного документа: 0002664526
Дата охранного документа: 20.08.2018
01.03.2019
№219.016.d004

Жаропрочный хромоникелевый сплав с аустенитной структурой

Изобретение относится к области металлургии, в частности к жаропрочным хромоникелевым сплавам с аустенитной структурой, и может быть использовано при изготовлении отливок для коллекторов и реакционных труб печей риформинга крупнотоннажных агрегатов аммиака и метанола с температурой эксплуатации...
Тип: Изобретение
Номер охранного документа: 0002446223
Дата охранного документа: 27.03.2012
10.04.2019
№219.016.ff4b

Способ получения огнезащитного состава

Изобретение относится к способам получения антипиренов и может быть использовано в деревообрабатывающей промышленности, а также в строительстве при проведении профилактических мероприятий по огнезащите изделий из сухой древесины. Способ осуществляют путем смешения алюмохромфосфата,...
Тип: Изобретение
Номер охранного документа: 0002277046
Дата охранного документа: 27.05.2006
10.04.2019
№219.017.03c5

Способ получения синтез-газа, обогащенного водородом и монооксидом углерода, путем каталитического риформинга углеводородсодержащего сырья

Изобретение относится к области химии и может быть использовано при получении синтез-газа. Углеводородное сырье в смеси с водяным паром пропускают через обогреваемые трубы реактора, внутри которых размещают катализатор в виде слоя гранул, включающих никель, причем участки поверхностей...
Тип: Изобретение
Номер охранного документа: 0002357919
Дата охранного документа: 10.06.2009
21.04.2019
№219.017.3647

Способ получения карбамидоформальдегидного концентрата

Изобретение относится к способу получения карбамидоформальдегидного концентрата. Способ включает хемосорбцию формальдегида, образующегося при окислительном дегидрировании метанола на железомолибденовом катализаторе в реакторе трубчатого или полочного типа, 50-65%-ным водным раствором карбамида...
Тип: Изобретение
Номер охранного документа: 0002685503
Дата охранного документа: 19.04.2019
18.05.2019
№219.017.57e1

Прозрачная глазурь

Использование в производстве материалов для стройиндустрии, в частности для покрытия изделий декоративного, утилитарного и хозяйственного назначения, керамических плиток. Прозрачная глазурь включает, мас.%: SiO - 51,0-66,0; AlО - 5,0-12,0; ВО - 8,1-15,0; CaO - 1,0-7,0; MgO - 1,0-7,0; SrO -...
Тип: Изобретение
Номер охранного документа: 0002338705
Дата охранного документа: 20.11.2008
18.05.2019
№219.017.5802

Способ определения концентрации карбамидоформальдегидного концентрата

Изобретение относится к аналитической химии и может быть использовано для определения суммарного содержания карбамида и формальдегида в карбамидоформальдегидном концентрате. Способ определения концентрации карбамидоформальдегидного концентрата включает измерение двух его характерных параметров....
Тип: Изобретение
Номер охранного документа: 0002339035
Дата охранного документа: 20.11.2008
18.05.2019
№219.017.5815

Огнетушащий состав

Изобретение относится к огнетушащим составам и может быть использовано при пожаротушении твердых материалов. Огнетушащий состав включает смачиватель и воду. В качестве смачивателя используют антипирен марки "ОСА-1", полученный путем взаимодействия карбамидоформальдегидного концентрата с...
Тип: Изобретение
Номер охранного документа: 0002333025
Дата охранного документа: 10.09.2008
18.05.2019
№219.017.581c

Способ получения метанола

Изобретение относится к способу получения метанола контактированием газовой смеси, содержащей оксиды углерода и водород, с медно-цинковым катализатором при температуре 200-290°С, давлении 5-15 МПа и объемной скорости 3000-10000 ч. При этом конвертированный газ состава, об.%: Н - 64,0-75,5; Ar -...
Тип: Изобретение
Номер охранного документа: 0002331625
Дата охранного документа: 20.08.2008
+ добавить свой РИД