×
20.06.2013
216.012.4b4f

Результат интеллектуальной деятельности: СПОСОБ ЛОКАЛЬНОГО ПОВЫШЕНИЯ КОНЦЕНТРАЦИИ МОЛЕКУЛЯРНОГО КИСЛОРОДА В ДЕРМЕ КОЖНОЙ ТКАНИ

Вид РИД

Изобретение

Аннотация: Способ относится к медицине и может быть использован при лечении патологий приповерхностных участков кожи, в частности при низкоинтенсивной лазерной и фотодинамической терапии. Определяют глубину нахождения патологического участка дермы. При глубине меньше 0.22 мм облучение световым пучком осуществляют на длине волны, равной 418±5 нм. При глубине от 0.22 мм до 0.9 мм облучение осуществляют на длине волны 575±5 нм. При глубине 0.9 мм до 2.5 мм облучение осуществляют на длине волны 585±5 нм. При глубине больше 2.5 мм облучение осуществляют на длине волны 600±5 нм. Способ позволяет увеличить число образуемых молекул кислорода в дерме кожной ткани на разных глубинах в дерме за счет фотодиссоциации оксигемоглобина крови под действием света определенного спектрального состава. 2 ил.
Основные результаты: Способ локального повышения концентрации молекулярного кислорода в дерме кожной ткани, основанный на фотодиссоциации оксигемоглобина крови при облучении поверхности кожи световым пучком, отличающийся тем, что определяют глубину нахождения патологического участка дермы, при глубине меньше 0,22 мм облучение световым пучком осуществляют на длине волны, равной 418±5 нм, при глубине от 0,22 мм до 0,9 мм облучение осуществляют на длине волны 575±5 нм, при глубине 0,9 мм до 2,5 мм облучение осуществляют на длине волны 585±5 нм, и при глубине больше 2,5 мм облучение осуществляют на длине волны 600±5 нм.

Изобретение относится к неинвазивной локальной генерации кислорода на заданной глубине в дерме вследствие фотодиссоциации оксигемоглобина крови под действием света определенного спектрального состава. Оно может быть использовано при лечении патологий приповерхностных участков кожи, в частности при низкоинтенсивной лазерной и фотодинамической терапии.

Известно [1], что при облучении кожной ткани светом с частотой ν (или длиной волны λ=c/ν, где c - скорость света в среде) происходит фотодиссоциация оксигемоглобина HbO2, который распадается на деоксигемоглобин Hb и молекулярный кислород O2:

.

Этот механизм используют для повышения уровня O2 в кожных тканях с целью устранению гипоксии (недостатка кислорода), стимулирования аэробного (связанного с потреблением кислорода) обмена веществ в клетках и достижения соответствующих терапевтических эффектов. При этом важно обеспечить возможность генерации кислорода на требуемой глубине в ткани, где, например, находится патологический или опухолевый участок с фотосенсибилизатором при свето- или фото динамической терапии [2].

Известен способ генерации кислорода (оксигенации) в биоткани, заключающийся в том, что одновременно проводят гипербарическую оксигенацию (ГБО) и низкоинтенсивное лазерное облучение на длине волны от 600 до 1000 нм и тем самым неинвазивно воздействуют через кожу на всю толщу дермы, в которой необходимо увеличить концентрацию кислорода [3].

Недостатком этого способа является сложность из-за необходимости сочетать ГБО и облучение, а также невозможность локально повысить концентрацию кислорода на требуемой глубине в биоткани, т.к. процесс ГБО включает оксигенации всего организма в целом. Для реализации метода ГБО требуется громоздкое стационарное оборудование. Кроме того, он обуславливает высокий риск кислородной токсемии (отравление крови токсинами бактерий) как результат длительного воздействия O2 на организм при повышенном давлении.

Наиболее близким к предлагаемому способу является способ [4] повышения концентрации молекулярного кислорода в толще кожной ткани, заключающийся в облучении поверхности кожи светом на длине волны λ=632.8 нм и одновременном повышении температуры в месте облучения ткани примерно до 42°C. Недостатком данного способа является малое число образующихся молекул O2 из-за использования света с λ=632.8 нм. Кроме того, способ не обеспечивает возможность избирательно увеличить уровень оксигенации ткани на требуемой глубине, где может находиться подлежащий терапии патологический участок.

Задачей настоящего изобретения является увеличение числа образуемых молекул кислорода в дерме кожной ткани, а также обеспечение возможности избирательно максимизировать генерацию O2 на разных глубинах в дерме.

Решение поставленной задачи достигается тем, что в способе локального повышения концентрации молекулярного кислорода в дерме кожной ткани, основанном на фотодиссоциации оксигемоглобина крови при облучении поверхности кожи световым пучком, длину волны облучения выбирают равной 418±5 нм при глубине генерации кислорода меньше 0.22 мм, длина волны облучения равна 575±5 нм при глубине генерации кислорода от 0.22 мм до 0.9 мм, длина волны облучения равна 585±5 нм при глубине генерации кислорода 0.9 мм до 2.5 мм, и длина волны облучения равна 600±5 нм при глубине генерации кислорода больше 2.5 мм.

Сущность предлагаемого изобретения поясняется чертежами, где: на фиг.1 показаны зависимости дифференциальных эффективностей фотодиссоциации (ДЭФ), Вт/(см3с) от глубины z в дерме при облучении поверхности кожи на длинах волн 418 (кривые 1), 575 (2), 585 (3) 600 (4) и 632.8 нм (5).

На фиг.2 представлены значения отношения r ДЭФ при облучении поверхности кожи на длинах волн λ1=575 нм и λ=418 нм (кривые 1), λ1=575 нм и λ=585 нм (2), λ1=575 нм и λ=600 нм (3) в зависимости от глубины в дерме.

Введем понятие дифференциальной эффективности фотодиссоциации ДЭФ, под которой понимается количество молекул кислорода n(z, λ), образующихся в единицу времени в единице объема на глубине z, при падении единичной плотности мощности монохроматического света на поверхность:

Здесь

z - глубина в дерме, отсчитываемая от поверхности кожи;

µa(λ) - спектральная зависимость показателя поглощения оксигемоглобина (1/см);

H - гематокрит (объемная концентрация эритроцитов в крови);

f - объемная доля гемоглобина в эритроцитах;

Cv - объемная концентрация капилляров крови (доля единичного объема ткани, занятая капиллярами);

S - степень оксигенации крови (отношение количества оксигемоглобина к полному гемоглобину);

q - квантовый выход фотодиссоциации (при освещении в видимом диапазоне спектра (λ≅300-650 нм) примерно постоянен и составляет 3-5% в зависимости от температуры и других факторов [5]);

E(z, λ) - плотность излучения в биоткани, (Вт/м2), где I(λ, z, Ω) - интенсивность света как функция угловых координат ϑ и ϕ, dΩ=sin(ϑ)dϑdφ - элементарный телесный угол;

h=6.63·10-34 Дж·с - постоянная Планка;

c=3·1010 см/с - скорость света.

В формуле (1) учтено, что в общем случае объемная концентрация капилляров Cv может зависеть от глубины z [6]. Для конкретности ниже полагаем типичные значения следующих параметров: Н=0.4, f=0.25 согласно модели [6].

Введем отношение

показывающее, во сколько раз ДЭФ на заданной глубине z при облучении поверхности кожи на длине волны λ1 больше (или меньше) соответствующей величины при облучении на длине волны λ.

Соотношения (1) и (2) соответствуют монохроматическому освещению поверхности кожи на длине волны λ1 или λ. Если для генерации кислорода используется световой пучок в спектральном интервале Δλ, то формула (2) принимает вид

Ниже будет доказано, что нами найдены длины волн λ1 (или интервалы длин волн λ1±Δλ1), зависящие от z, при которых имеют место максимальные значения ДЭФ на заданных глубинах в толще дермы, или, иными словами, когда при фиксированных z выполняются неравенства r(z, λ1, λ)>1 и r*(z, λ1, λ)>1 для λ1≠λ.

Величины, определенные формулами (1)-(3), зависят, через плотность излучения E(z, λ), от структурных, биофизических и оптических характеристик всех слоев кожи - рогового, эпидермиса и дермы. Далее в расчетах используем модель кожного покрова человека [7].

Фиг.1 иллюстрирует глубинную структуру ДЭФ на нескольких длинах волн - 418 (кривые 1), 575 (2), 585 (3), 600 (4) и 632 нм (5). Эти данные приведены при объемной концентрации меланина в эпидермисе fm=0.04, толщине рогового слоя ds=20 мкм и эпидермиса de=100 мкм, Cv=0.04 и S=0.75. Плотность мощности облучения поверхности E0=1 Вт/см2. Как видно из графиков, при разных величинах z наиболее эффективны разные длины волн. В верхних слоях дермы максимальную фотодиссоциацию HbO2 вызывает синий свет с λ=418 нм. При росте z наиболее эффективные длины волн последовательно смещаются в красную область спектра: в интервале 0.22 мм≤z≤0.9 мм это - λ=575 нм, при 0.9 мм≤z≤2.5 мм - λ=585 нм, при z≥2.5 мм-λ=600 нм. Граничные значения этих глубин изображены на фиг.1 вертикальными штриховыми прямыми. Наши расчеты (на рисунках не приведены) при других структурных и биофизических параметрах ткани, типичных для кожи человека [7], изменяющихся в диапазонах 15 мкм≤ds≤25 мкм, 0.02≤fm≤0.08, 60 мкм≤de≤120 мкм, 0.02≤Cv≤0.06, 0.5≤S≤0.97, а также при Δλ=±5 нм относительно длины волны λ, показали, что положения границ, где наиболее эффективна та или иная длина волны, устойчивы к изменению ds, fm, de, Cv и S. Так, приведенные координаты по глубине могут варьироваться в очень узких пределах - 0.22±0.02, 0.9±0.05 и 2.5±0.1 мм. Это позволяет использовать указанные длины волн 418, 575, 585 и 600 нм для генерации молекулярного кислорода в соответствующих интервалах глубин в дерме. Из данных фиг.1 следует, что облучение на длине волны 632.8 нм (прототип) менее эффективно на любых глубинах с точки зрения повышения уровня O2 в дерме по сравнению с 418, 575, 585 и 600 нм. Иными словами, при облучении поверхности кожи на длине волны 418 нм в дерме образуется примерно в 5-50 раз меньше молекулярного кислорода по сравнению с облучением на указанных длинах волн 418, 575, 585 и 600 нм в соответствующих интервалах глубин z.

Фиг.2 иллюстрирует зависимость отношения r от глубины, когда в качестве λ1 выбрана 575 нм. Здесь также граничные значения указанных выше глубин изображены вертикальными штриховыми прямыми. Приведенные на фиг.2 результаты позволяют оценить, во сколько раз более эффективны длины волн 418, 575, 585 и 600 нм для возбуждения фотодиссоциации оксигемоглобина и повышения уровня молекулярного кислорода в биоткани на соответствующих глубинах в дерме.

Источники информации

1. Q.H.Gibson, S.Ainsworth. Photosensitivity of heme compounds // Nature. 1957. V.180. No.4599. P.1416-1417.

2. M.M.Асимов, P.M.Асимов, A.H.Рубинов. Способ фотодинамической терапии онкологических заболеваний. Патент UA 82211 C2. A61N 5/06. Опубл. 25.03.2008. Офиц. бюл. «Промышленная собственность». Книга 1. 2008. №6.

3. М.М.Асимов, Р.М.Асимов, А.Н.Рубинов. Способ повышения локальной концентрации кислорода в биологических тканях пациента. Патент BY №9855 C1. 30.10.2007.

4. М.М.Асимов, А.Н.Королевич, Е.Э.Константинова. Кинетика оксигенации кожной ткани под воздействием низкоинтенсивного лазерного излучения // Журн. прикл. спектроск. 2007. Т.74. №1. С.120-125.

5. С.В.Лепешкевич, Н.В.Коновалова, Б.М.Джагаров. Исследование методом лазерной кинетической спектроскопии бимолекулярных стадий реакции оксигенации α- и β-субъединиц гемоглобина человека в R-состоянии // Биохимия. 2003. Т.68. №5. С.676-685.

6. И.В.Меглинский. Моделирование методом Монте Карло спектров отражения случайных многослойных сильно рассеивающих и поглощающих свет сред // Квантовая электроника. 2001. Т.31. №12. С.1101-1107.

7. В.В.Барун, А.П.Иванов, А.В.Волотовская, В.С.Улащик. Спектры поглощения и глубина проникновения света в нормальную и патологически измененную кожу человека // Журнал прикладной спектроскопии. 2007. Т.74. №3. С.387-394.

Способ локального повышения концентрации молекулярного кислорода в дерме кожной ткани, основанный на фотодиссоциации оксигемоглобина крови при облучении поверхности кожи световым пучком, отличающийся тем, что определяют глубину нахождения патологического участка дермы, при глубине меньше 0,22 мм облучение световым пучком осуществляют на длине волны, равной 418±5 нм, при глубине от 0,22 мм до 0,9 мм облучение осуществляют на длине волны 575±5 нм, при глубине 0,9 мм до 2,5 мм облучение осуществляют на длине волны 585±5 нм, и при глубине больше 2,5 мм облучение осуществляют на длине волны 600±5 нм.
СПОСОБ ЛОКАЛЬНОГО ПОВЫШЕНИЯ КОНЦЕНТРАЦИИ МОЛЕКУЛЯРНОГО КИСЛОРОДА В ДЕРМЕ КОЖНОЙ ТКАНИ
СПОСОБ ЛОКАЛЬНОГО ПОВЫШЕНИЯ КОНЦЕНТРАЦИИ МОЛЕКУЛЯРНОГО КИСЛОРОДА В ДЕРМЕ КОЖНОЙ ТКАНИ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 12.
10.01.2013
№216.012.1a53

Способ экспериментального моделирования стресс-индуцированного развития острого язвенного кровотечения

Изобретение относится к области экспериментальной медицины, в частности к гастроэнтерологии, и касается моделирования развития острого язвенного кровотечения. Для этого обеспечивают индуцированное последовательное воздействие на крыс путем хронического социального и иммобилизационного стрессов....
Тип: Изобретение
Номер охранного документа: 0002472231
Дата охранного документа: 10.01.2013
20.06.2013
№216.012.4b4e

Способ повышения концентрации молекулярного кислорода в дерме кожной ткани

Способ относится к медицине и может быть использован при лечении патологий приповерхностных участков кожи и, в частности, при низкоинтенсивной лазерной и фотодинамической терапии. Облучают поверхность кожи световым пучком на длине волны 575 нм при полуширине спектра не более 5 нм. Способ...
Тип: Изобретение
Номер охранного документа: 0002484860
Дата охранного документа: 20.06.2013
27.01.2014
№216.012.9cdf

Способ моделирования развития мелкоочаговых мозговых геморрагий в коре головного мозга у новорожденных крыс

Изобретение относится к экспериментальной медицине и касается моделирования мелкоочаговых мозговых геморрагий у новорожденных крыс. Для этого новорожденных крыс в возрасте 3-х дней помещают в камеру и подвергают воздействию звука силой 70 дБ, частотой 110 Гц, на протяжении 60 минут. Способ...
Тип: Изобретение
Номер охранного документа: 0002505865
Дата охранного документа: 27.01.2014
10.04.2015
№216.013.3eed

Многоканальный наконечник для экстракции нуклеиновых кислот, белков и пептидов

Группа изобретений относится к многоканальным устройствам, модифицированным нанослоями анилинсодержащих полимеров. Предложен многоканальный наконечник для выделения нуклеиновых кислот, белков, пептидов и способ изготовления многоканального элемента, входящего в состав многоканального...
Тип: Изобретение
Номер охранного документа: 0002547597
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4c14

Способ оптического захвата частицы в мягкой биологической ткани

Изобретение относится к области изучения свойств частиц биологической ткани и предназначено для удерживания частиц или манипулирования ими путем создания оптической ловушки (лазерного пинцета). Способ оптического захвата частицы в мягкой биологической ткани основан на облучении поверхности...
Тип: Изобретение
Номер охранного документа: 0002550990
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.524d

Фотонно-кристаллическое халькогенидное волокно и способ его изготовления

Изобретение относится к волоконной оптике. Фотонно-кристаллическое халькогенидное волокно состоит из центрального волноведущего стержня из халькогенидного стекла, микроструктурной волноведущей оболочки из чередующихся слоев халькогенидного стекла и воздушных зазоров и второй защитной...
Тип: Изобретение
Номер охранного документа: 0002552590
Дата охранного документа: 10.06.2015
20.08.2015
№216.013.6ed0

Способ получения терагерцовых изображений раковых опухолей и патологий кожи

Изобретение относится к медицине, области нанотехнологий, в частности к усилению контраста и глубины зондирования при получении терагерцовых изображений раковых опухолей и патологий кожи с использованием наночастиц и лазерного нагрева. Способ включает введение плазмонно-резонансных композитных...
Тип: Изобретение
Номер охранного документа: 0002559938
Дата охранного документа: 20.08.2015
25.08.2017
№217.015.9c5d

Способ измерения скорости течения крови

Изобретение относится к измерительной технике и касается способа измерения скорости течения жидкости с рассеивающими свет частицами. Способ включает в себя освещение потока жидкости одновременно двумя пучками лазерного излучения и определение спектра мощности P(f) отраженного сигнала. Затем...
Тип: Изобретение
Номер охранного документа: 0002610559
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.b6b2

Способ плазмонно-резонансной фототермической терапии опухолей в эксперименте

Изобретение относится к медицине, в частности к онкологии и может быть использовано для терапии опухолей. Животному с опухолью внутривенно вводят раствор золотых наностержней, покрытых полиэтиленгликолем. Через 24 часа после введения проводят диагностическое лазерное облучение инфракрасным...
Тип: Изобретение
Номер охранного документа: 0002614507
Дата охранного документа: 28.03.2017
29.12.2017
№217.015.fdf3

Способ наблюдения жировой ткани

Группа изобретений относится к медицине, а именно к хирургии, и касается визуализации кровеносного сосуда в жировой ткани во время операции на этапе удаления этой ткани. Для этого предложены варианты способа исследования жировой ткани. При осуществлении первого варианта способа на жировую ткань...
Тип: Изобретение
Номер охранного документа: 0002638642
Дата охранного документа: 14.12.2017
Показаны записи 1-10 из 79.
10.01.2013
№216.012.1896

Средство терапии раковых заболеваний

Изобретение относится к новым соединениям, соответствующим общим формулам, указанным ниже, в свободном виде либо в виде фармацевтически приемлемых солей, которые обладают противоопухолевой активностью и могут быть использованы в медицинской практике как терапевтическое средство для лечения...
Тип: Изобретение
Номер охранного документа: 0002471786
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a8a

Цифровой генератор хаотического сигнала

Изобретение относится к области радиотехники и может быть использовано в современных, помехозащищенных и конфиденциальных системах связи, в системах защиты информации для создания шумового сигнала, в контрольно-измерительных системах для измерения частотных характеристик, а также в системах...
Тип: Изобретение
Номер охранного документа: 0002472286
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.20eb

Способ поиска залежей нефти и газа

Изобретение относится к области геофизики и может быть использовано при поиске месторождений нефти и газа. Согласно заявленному способу поиска залежей углеводородов пробы образцов отбирают по определенной системе профилей и определяют в них концентрацию тяжелых металлов (Со). Далее измеряют...
Тип: Изобретение
Номер охранного документа: 0002473928
Дата охранного документа: 27.01.2013
10.03.2013
№216.012.2ec4

Полностью оптический модулятор лазерного излучения на основе многослойных гетероструктур (варианты)

Устройство относится к квантовой электронике, а именно к системам для модуляции излучения лазера в заданном спектральном диапазоне. Полностью оптический модулятор лазерного излучения на основе многослойных гетероструктур содержит подложку с выращенной периодической многослойной...
Тип: Изобретение
Номер охранного документа: 0002477503
Дата охранного документа: 10.03.2013
20.05.2013
№216.012.407d

Люминесцирующее кварцевое стекло

Изобретение относится к легированным стеклам, в частности к Yb-содержащему кварцевому стеклу, полученному по золь-гель процессу, которое может использоваться в качестве активного материала лазеров и усилителей инфракрасного диапазона. Техническим результатом изобретения является создание стекла...
Тип: Изобретение
Номер охранного документа: 0002482079
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4095

Способ получения этана из газового конденсата в промысловых условиях

Изобретение относится к газовой промышленности и может быть использовано на газоконденсатных месторождениях, непосредственно на объектах подготовки газа к транспорту или на централизованных объектах по подготовке нестабильного газового конденсата к транспорту или переработке. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002482103
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.426a

Способ получения катодного материала со структурой оливина для литиевой автономной энергетики

Изобретение относится к химической технологии и используется для получения катодных материалов со структурой оливина для литиевой автономной энергетики (гибридного транспорта, электромобилей, буферных систем хранения энергии и т.д.). Способ включает смешение соли лития LiCO, оксида железа (III)...
Тип: Изобретение
Номер охранного документа: 0002482572
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.49a8

Способ измерения импульсного давления и устройство для его осуществления

Устройство для осуществления способа измерения импульсного давления содержит источник, приемник света и приемный корпус. Приемный корпус выполнен в виде жесткого элемента с пропускающим регистрируемые возмущения окном, в котором зафиксированы выход источника и вход приемника света либо торцы...
Тип: Изобретение
Номер охранного документа: 0002484436
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.49c0

Способ обнаружения лизина в смеси α-аминокислот

Изобретение относится к аналитической химии, а именно к способам обнаружения биологически активного соединения - лизина, в сложных смесях. Технический результат заключается в упрощении, ускорении и удешевлении процедуры определения лизина при сохранении высоких метрологических параметров...
Тип: Изобретение
Номер охранного документа: 0002484460
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b4e

Способ повышения концентрации молекулярного кислорода в дерме кожной ткани

Способ относится к медицине и может быть использован при лечении патологий приповерхностных участков кожи и, в частности, при низкоинтенсивной лазерной и фотодинамической терапии. Облучают поверхность кожи световым пучком на длине волны 575 нм при полуширине спектра не более 5 нм. Способ...
Тип: Изобретение
Номер охранного документа: 0002484860
Дата охранного документа: 20.06.2013
+ добавить свой РИД