×
27.05.2013
216.012.45c0

СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области радиосвязи и может использоваться для демодуляции фазоманипулированных, а также фазомодулированных сигналов. Достигаемый технический результат - обеспечение демодуляции без использования генератора опорных колебаний с преобразованием фазомодулированного сигнала в амплитудно-фазомодулированный сигнал с помощью высокочастотной части демодулятора при заданном коэффициенте амплитудной модуляции на высокочастотной нагрузке. Способ демодуляции фазомодулированных сигналов характеризуется тем, что фазомодулированный сигнал подают на демодулятор, содержащий линейный четырехполюсник, трехэлектродный нелинейный элемент, высокочастотную нагрузку, содержащую реактивные двухполюсники в виде параллельных колебательных контуров, фильтр нижних частот и низкочастотную нагрузку, при этом фазомодулированный сигнал преобразовывают в амплитудно-фазомодулированный сигнал путем подачи этого сигнала на правый или на левый склон АЧХ высокочастотной части демодулятора в заданной полосе частот, значения параметров элементов реактивных двухполюсников, индуктивностей и емкостей определяются с помощью приведенных в формуле математических выражений. 2 н.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретения относятся к области радиосвязи и радиолокации и могут быть использованы для демодуляции фазоманипулированных, а также фазомодулированных сигналов.

Известен способ демодуляции фазомодулированных сигналов (ФМС), состоящий в том, что на два нелинейных элемента одновременно подаются в противофазе высокочастотный ФМС и в фазе высокочастотное опорное колебание с частотой, равной несущей частоте ФМС. В результате происходит сравнение изменяемой во времени фазы ФМС и постоянной фазы опорного колебания, вследствие чего осуществляется преобразование ФМС в амплитудно-модулированный и фазомодулированный сигнал (АФМС). При этом амплитуда изменяется по закону изменения фазы. Этот сигнал далее испытывает такие же преобразования, как и в амплитудном демодуляторе [Баскаков С.И. Радиотехнические цепи и сигналы. М.: Высшая школа, 1988, стр.286-292]. Это означает, что на нелинейных элементах спектр АФМС разрушается (разлагается) на низкочастотные и высокочастотные составляющие. Далее с помощью фильтра нижних частот выделяется низкочастотная составляющая, амплитуда которой изменяется по закону изменения фазы входного ФМС. Затем, с помощью разделительной емкости, включенной в продольную цепь (последовательно), устраняется постоянная составляющая, возникшая на нелинейных элементах в результате взаимодействия с АФМС. После этого низкочастотные колебания, содержащие полезную информацию, выделяются на низкочастотной нагрузке.

Недостаток такого способа и устройства его реализации состоит в том, что для выделения низкочастотного сигнала, амплитуда которого изменяется в соответствии с законом изменения фазы высокочастотного ФМС, необходимо наличие генератора опорных колебаний. Другим недостатком является отсутствие возможности коррекции коэффициента амплитудной модуляции АФМС, что при прохождении через резонансные цепи приводит к уменьшению этой характеристики, то есть к известному явлению частичной демодуляции АФМС или к снижению помехоустойчивости. Основным недостатком является малая величина квазилинейного участка демодуляционной характеристики из-за использования недостаточного количества колебательных контуров и отсутствия выбора их параметров по критерию преобразования ФМС в АФМС в заданной полосе частот или на заданном количестве частот.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ демодуляции фазомодулированных сигналов, состоящий в том, что для демодуляции ФМС используют частотный детектор, состоящий из каскадно-соединенных амплитудного ограничителя, преобразователя частотно-модулированного сигнала (ЧМС) в амплитудно-частотно-модулированный сигнал (АЧМС) в виде параллельного колебательного контура и обычного амплитудного демодулятора. Далее процесс выделения низкочастотной составляющей осуществляется так же, как описано выше. Особенность использования частотного детектора для демодуляции ФМС состоит в том, что если частота несущего сигнала ФМС расположена на правом склоне амплитудно-частотной характеристики (АЧХ) контура, то низкочастотную составляющую подают на дифференцирующую цепь. Если частота несущего сигнала ФМС расположена на левом склоне АЧХ контура, то низкочастотную составляющую подают на интегрирующую цепь [Баскаков С.И. Радиотехнические цепи и сигналы. М.: Высшая школа, 1988, стр.286-292]. При необходимости между источником модулированных сигналов и нелинейным элементом или между нелинейным элементом и нагрузкой включают реактивный или резистивный четырехполюсник для согласования и дополнительной селекции сигнала и помехи. В результате на выходе устройства имеем низкочастотное колебание, амплитуда которого изменяется по закону изменения огибающей входного высокочастотного фазомодулированного колебания.

Недостаток способа и устройства его реализации состоит в том, что после преобразования ФМС в АФМС коэффициент амплитудной модуляции АФМС не контролируется и, как правило, бывает незначительным по величине, что ухудшает помехоустойчивость [Баскаков С.И. Радиотехнические цепи и сигналы. М.: Высшая школа, 1988, стр.286-292. Гоноровский И.С. Радиотехнические цепи и сигналы. М.: Радио и связь, 1986, стр.247-252]. Основным недостатком является малая величина квазилинейного участка демодуляционной характеристики из-за использования недостаточного количества колебательных контуров и отсутствия выбора их параметров по критерию преобразования ФМС в АФМС в заданной полосе частот или на заданном количестве частот. Кроме того, классическая теория радиотехнических цепей предполагает, что нелинейный элемент является чисто резистивным и безынерционным, в связи с чем он никак не реагирует на изменение частоты и фазы входного сигнала, а реагирует только на изменение амплитуды. Между тем, повседневный опыт показывает, что нелинейные элементы имеют внутренние емкости и индуктивности, которые оказывают существенное влияние на формирование зависимости их проводимости (сопротивления или элементов матрицы проводимостей или сопротивлений) от частоты и фазы. Особенно существенно это проявляется с повышением частоты, к чему в настоящее время в основном стремятся проектировщики новых систем и средств радиосвязи.

Техническим результатом изобретения является обеспечение демодуляции ФМС без использования генератора опорных колебаний с преобразованием ФМС в АФМС с помощью высокочастотной части демодулятора при заданном коэффициенте амплитудной модуляции АФМС на высокочастотной нагрузке при одновременном увеличении полосы частот, в которой это преобразование возможно, что повышает помехоустойчивость приемника.

Указанный результат достигается тем, что в способе демодуляции фазомодулиро-ванных сигналов, состоящем в том, что фазомодулированный сигнал подают на демодулятор, выполненный из линейного четырехполюсника, нелинейного элемента и избирательной нагрузки, фазомодулированный сигнал преобразовывают в амплитудно-фазомодулированный сигнал, преобразование фазомодулированного сигнала в амплитудно-фазомодулированный сигнал осуществляют путем подачи этого сигнала на правый или на левый склон АЧХ, низкочастотную составляющую амплитудно-фазомодулированного сигнала подают на дифференцирующую или на интегрирующую цепь соответственно, с помощью нелинейного элемента разрушают спектр амплитудно-фазомодулированного сигнала на высокочастотные и низкочастотные составляющие, с помощью фильтра нижних частот выделяют информационный низкочастотный сигнал, амплитуда которого изменяется по закону изменения фазы фазомодулированного входного сигнала, дополнительно четырехполюсник выполняют резистивным, в качестве нелинейного элемента используют трехэлектродный нелинейный элемент, который включают между выходом источника фазомодулированного сигнала и входом четырехполюсника по схеме с общим одним из трех электродов, между выходом четырехполюсника и фильтром нижних частот включают высокочастотную нагрузку в поперечную цепь, преобразование фазомодулированного сигнала в амплитудно-фазомодулированный сигнал осуществляют путем формирования квазилинейного склона АЧХ высокочастотной части демодулятора в заданной полосе частот за счет выбора частотных характеристик мнимых составляющих сопротивлений высокочастотной нагрузки xн и источника высокочастотного сигнала x0 с помощью следующих математических выражений:

- заданные отношения элементов классической матрицы передачи резистивного четырехполюсника; m, φ - заданные зависимости модуля и фазы передаточной функции от частоты из условия формирования квазилинейных склонов АЧХ и ФЧХ с заданной крутизной и в заданной полосе частот; g11, g12, g21, g22, b11, b12, b21, b22 - заданные зависимости действительных и мнимых составляющих соответствующих элементов матрицы проводимостей трехэлектродного нелинейного элемента от частоты; r0, rn - заданные зависимости действительных составляющих сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки от частоты.

Указанный результат достигается также тем, что в устройстве демодуляции фазомодулированных сигналов, включенном между источником фазомодулированных сигналов и низкочастотной нагрузкой и состоящем из преобразователя фазомодулированных сигналов в амплитудно-фазомодулированный сигнал в виде линейного четырехполюсника, нелинейного элемента, фильтра нижних частот, дополнительно четырехполюсник выполнен в виде перекрытого Т-образного соединения четырех резистивных двухполюсников, в качестве нелинейного элемента использован трехэлектродный нелинейный элемент, который включен между выходом источника фазомодулированного сигнала и входом четырехполюсника по схеме с общим одним из трех электродов, между выходом четырехполюсника и фильтром нижних частот включена высокочастотная нагрузка в поперечную цепь, причем мнимые составляющие сопротивлений высокочастотной нагрузки xn и источника высокочастотного сигнала x0 реализованы реактивными двухполюсниками в виде последовательно соединенных двух параллельных колебательных контуров, значения параметров которых L1k, C1k и L2k, C2k выбраны из условия обеспечения операции преобразования фазомодулированного сигнала в амплитудно-фазомодулированный сигнал путем формирования квазилинейного склона АЧХ высокочастотной части демодулятора в заданной полосе частот с помощью следующих математических выражений:

- заданные отношения элементов классической матрицы передачи

резистивного четырехполюсника, равные на четырех заданных частотах ωn=2πƒn; n=1, 2, 3, 4 - номер частоты; r1, r2, r3, r4 - заданные значения сопротивлений резистивных двухполюсников перекрытого Т-образного соединения; mn, φn - заданные значения модуля и фазы передаточной функции на четырех заданных частотах из условия формирования квазилинейных склонов АЧХ и ФЧХ с заданной крутизной и в заданной полосе частот; g11n, g12n, g21n, g22n, b11n, b12n, b21n, b22n - заданные значения действительных и мнимых составляющих соответствующих элементов матрицы проводимостей трехэлектродного нелинейного элемента на четырех заданных частотах; r0n, rнn - заданные значения действительных составляющих сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки на четырех заданных частотах; k = 0, н - индекс, характеризующий действительные и мнимые составляющие сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки; xkn - оптимальные значения мнимых составляющих сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки на четырех заданных частотах.

На фиг.1 показана схема устройства демодуляции фазомодулированных радиочастотных сигналов (прототип).

На фиг.2 показана структурная схема предлагаемого устройства по п.2.

На фиг.3 приведена схема четырехполюсника предлагаемого устройства по п.2.

На фиг.4 приведена схема каждого из двухполюсников, формирующих мнимые составляющие сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки предлагаемого устройства по п.2.

Устройство-прототип (фиг.1) содержит источник 1 фазомодулированных сигналов, четырехполюсник 2, нелинейный элемент 3, фильтр нижних частот 4 на элементах R, C, разделительная емкость 5 на элементе Ср и низкочастотную нагрузку 6 на элементах Rн, Cн.

Принцип действия устройства демодуляции фазомодулированных сигналов (прототипа) состоит в следующем.

Фазомодулированный сигнал от источника 1 подают на демодулятор (фиг.1). Принцип действия устройства, реализующего этот способ, состоит в том, что с помощью реактивного четырехполюсника 2, представляющего собой параллельный колебательный контур и включенного между источником ФМС и нелинейным элементом, преобразовывают ФМС в АФМС, с помощью нелинейного элемента 3 разрушают спектр АФМС на высокочастотные и низкочастотные составляющие. Последние выделяются с помощью фильтра нижних частот 4 и поступают в низкочастотную нагрузку 6. Разделительная емкость 5 устраняет постоянную составляющую. В результате на выходе устройства имеем низкочастотное колебание, амплитуда которого изменяется по закону изменения огибающей высокочастотного АФМС, то есть по закону изменения фазы входного ФМС, изменяющейся по закону изменения амплитуды первичного сигнала.

Недостаток способа и устройства его реализации состоит в том, что при прохождении ФМС через указанную цепь, после преобразования ФМС в АФМС, коэффициент амплитудной модуляции последнего является незначительным. Это связано с большой шириной спектра ФМС, или с малой добротностью контура. С другой стороны, чем уже полоса пропускания контура, тем большим искажениям подвергается принятый сигнал. В общем случае коэффициент амплитудной модуляции АФМС уменьшается и становится, как правило, неизвестным. Таким образом, основной недостаток состоит в неразрешимости в рамках прототипа противоречия предъявляемых требований к увеличению крутизны и полосы частот квазилинейного склона АЧХ высокочастотной части демодулятора.

Высокочастотная часть (до фильтра нижних частот) структурной схемы обобщенного предлагаемого устройства по п.2 (фиг.2) состоит из источника ФМС 1, резистивного четырехполюсника 2, трехэлектродного нелинейного элемента 3 и высокочастотной нагрузки 7. Низкочастотная часть структурной схемы содержит фильтр нижних частот 4, разделительную емкость 5 и низкочастотную нагрузку 6. Резистивный четырехполюсник 2 выполнен в виде перекрытого Т-образного соединения четырех резистивных двухполюсников (фиг.3), сопротивления которых могут быть выбраны произвольно или из каких-либо физических соображений. Частотные зависимости мнимых составляющих сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки выбраны из условия формирования квазилинейного склона АЧХ демодулятора с заданными значениями модулей передаточной функции на четырех заданных частотах требуемой полосы частот. Реализация этих зависимостей осуществлена реактивными двухполюсниками в виде последовательно соединенных двух параллельных колебательных контуров (фиг.4), значения параметров которых L1k, С1k и L2k, C2k выбраны из условия обеспечения операции преобразования фазомодулированного сигнала в амплитудно-фазомодулированный сигнал путем формирования квазилинейного склона АЧХ высокочастотной части демодулятора в заданной полосе частот с помощью определенных математических выражений. Реальные сопротивления источника высокочастотного сигнала и высокочастотной нагрузки могут быть чисто активными (это часто встречается на практике). В этом случае мнимые составляющие сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки, реализованные указанным образом, подключаются последовательно к соответствующим активным сопротивлениям. Выполнение четырехполюсника резистивным является дополнительной возможностью увеличения квазилинейного участка склона АЧХ, поскольку параметры резистивных элементов не зависят от частоты в очень большой полосе частот.

Принцип действия данного устройства состоит в том, что при подаче ФМС от источника 1 с сопротивлением z0 в результате специального выбора значений элементов реактивных двухполюсников будет сформирован левый или правый склон АЧХ демодулятора с заданными значениями модулей передаточной функции на четырех заданных частотах требуемой полосы частот. Это обеспечивает заданный коэффициент амплитудной модуляции АФМС в большей полосе частот, что повышает помехоустойчивость приемника. Одновременно спектр АФМС разрушается при помощи нелинейного элемента 3, включенного между источником ФМС и четырехполюсником. В результате низкочастотное колебание, амплитуда которого изменяется по закону изменения фазы входного ФМС, выделяется на низкочастотной нагрузке 6.

Докажем возможность реализации указанных свойств.

Пусть известны зависимости действительных составляющих комплексных сопротивлений нагрузки zн=rн+jxн и источника ФМС z0=r0+jx0 от частоты. Известны также зависимости элементов матрицы проводимостей трехполюсного нелинейного элемента y11=g11+jb11, y12=g12+jb12, y21=g21+jb21, y22=g22+jb22 при выбранной рабочей точке от частоты. Здесь и далее аргумент (частота) для простоты опущен. Таким образом, нелинейный элемент характеризуется матрицей передачи:

Резистивный четырехполюсник (РЧ) характеризуется матрицей передачи:

где - элементы классической матрицы передачи.

Матрице проводимостей (1) соответствует классическая матрица передачи:

где |y|=y11y22-y12y21.

Общая нормированная классическая матрица передачи демодулятора получается перемножением матриц (3) и (2) и учетом условий нормировки:

Используя известную связь элементов матрицы рассеяния с элементами матрицы передачи (3) [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1965. 40 с.], получим выражение для коэффициента передачи высокочастотной части (до фильтра нижних частот) демодулятора S21:

Денормированный коэффициент передачи связан с физически реализуемой передаточной функцией следующим образом

Пусть требуется определить частотные зависимости мнимых составляющих сопротивлений нагрузки xн и источника ФМС x0, оптимальные по критерию обеспечения заданных зависимостей модуля m и фазы φ передаточной функции от частоты в интересах формирования АЧХ и ФЧХ высокочастотной части демодулятора с требуемой крутизной и в заданной полосе частот:

Подставим (5) в (6) и после несложных преобразований и разделения комплексного уравнения на действительную и мнимую части, получим систему двух алгебраических уравнений, эквивалентных заданным зависимостям модуля m и фазы φ передаточной функции от частоты:

где R=(rн+β)g220+g210(α+γrн)-xн(b220-γb110); g220=-g22-r0A1; g110=1+g11r0-x0b11; I=(rн+β)b220-b110(α+γrн)+xн(g220+γg110); b220=-b22-r0A1-x0B1; b110=-(g11x0+r0b11); A1=b11g22+g11b22-b12g21-g12b21; B1=g11g22-b11b22-g12g21+b12b21.

Решение системы (7) относительно x0, xн имеет смысл зависимостей мнимых составляющих сопротивления источника сигнала и высокочастотной нагрузки от частоты, оптимальных по критерию обеспечения заданных АЧХ и ФЧХ (аппроксимирующих функций):

Для реализации оптимальных характеристик (8) методом интерполяции необходимо сформировать двухполюсники с сопротивлениями x0, xн из не менее чем N (числа частот интерполяции) реактивных элементов, найти выражения для их сопротивлений, приравнять их оптимальным значениям сопротивлений двухполюсников на заданных частотах, определенным по формулам (8) и решить сформированную таким образом систему N уравнений относительно N выбранных параметров реактивных элементов. Значения параметров остальных элементов могут быть выбраны произвольно или исходя из каких-либо других физических соображений, например из условия физической реализуемости.

В соответствии с этим алгоритмом получены математические выражения для определения значений параметров L1k, С1k. и L2k, С2k реактивного двухполюсника в виде последовательно соединенных двух параллельных контуров (фиг.4), оптимальных по критерию обеспечения указанных условий совпадения реальных сопротивлений с характеристиками (7) на четырех частотах:

Исходная система уравнений:

Реализация оптимальных аппроксимаций частотных характеристик (8) с помощью (9), (10) обеспечивает увеличение полосы частот, в пределах которой склон АЧХ отличается от линейного не более, чем заданная некоторая малая величина, поскольку выполняются условия совпадения (10) реальных частотных характеристик (9) с оптимальными (8) на четырех частотах заданной полосы частот. Это позволяет при разумном выборе положений заданных частот относительно друг друга ω12, ω13, ω14, ω23, ω24, ω34 расширить квазилинейный участок склона АЧХ высокочастотной части демодулятора и фазовой демодуляционной характеристики. При этом индекс n (номер частоты) необходимо учесть в обозначениях всех частотно-зависимых величин.

В качестве резистивного четырехполюсника может быть выбрана любая типовая схема с известными элементами классической матрицы передачи [Гуревич И.В. Основы расчета радиотехнических цепей (линейные цепи при гармонических воздействиях). М.: Связь, 1975. - 396 с.], например перекрытое Т-образное соединение четырех резистивных двухполюсников (фиг.3), для которого:

Значения сопротивлений r1, r2, r3, r4 могут быть выбраны произвольно или исходя из каких-либо других физических соображений, например из условий физической реализуемости параметров, определяемых с помощью (9), или из условия дополнительного увеличения полосы частот, в пределах которой сохраняется заданное отклонение склона АЧХ от линейной зависимости модуля передаточной функции от частоты.

Предлагаемые технические решения являются новыми, поскольку из общедоступных сведений неизвестен способ, обеспечивающий формирование левого или правого склона АЧХ демодулятора с заданными зависимостями модуля и фазы передаточной функции устройства демодуляции ФМС от частоты в заданной полосе частот, что позволяет осуществить преобразование ФМС в АФМС с заданным коэффициентом амплитудной модуляции АФМС в большей полосе частот, причем устройство демодуляции состоит из нелинейного трехэлектродного элемента, включенного между выходом источника ФМС и входом резистивного четырехполюсника, между выходом резистивного четырехполюсника и фильтром нижних частот в поперечную цепь введена высокочастотная нагрузка, при этом четырехполюсник выполнен в виде перекрытого Т-образного соединения четырех резистивных двухполюсников, а мнимые составляющие сопротивлений высокочастотной нагрузки xn и источника высокочастотного сигнала x0 реализованы реактивными двухполюсниками в виде последовательно соединенных двух параллельных колебательных контуров, значения параметров которых L1k, С1k и L2k, C2k выбраны по соответствующим математическим выражениям.

Предлагаемые технические решения имеют изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленная последовательность операций (выполнение четырехполюсника резистивным в виде указанной выше схемы, включение трехполюсного нелинейного элемента между выходом источника ФМС и входом резистивного четырехполюсника, введение между выходом резистивного четырехполюсника и фильтром нижних частот в поперечную цепь высокочастотной нагрузки, реализация мнимых составляющих сопротивлений высокочастотной нагрузки и источника высокочастотного сигнала реактивными двухполюсниками в виде последовательно соединенных двух параллельных колебательных контуров, значения параметров которых L1k, С1k и L2k, C2k выбраны по соответствующим математическим выражениям из условия обеспечения заданного коэффициента амплитудной модуляции АФМС) осуществляет преобразование ФМС в АФМС без наличия источника опорного сигнала в большей полосе частот.

Предлагаемые технические решения практически применимы, так как для их реализации могут быть использованы серийно выпускаемые промышленностью полупроводниковые транзисторы, а также индуктивности и емкости, сформированные в заявленную схему реактивных двухполюсников. Значения сопротивлений реактивных двухполюсников, индуктивностей и емкостей могут быть определены с помощью математических выражений, приведенных в формуле изобретения.

Технико-экономическая эффективность предложенного устройства заключается в одновременном обеспечении операции преобразования входного ФМС в АФМС с заданным коэффициентом амплитудной модуляции за счет формирования квазилинейного склона АЧХ с заданной крутизной в большей полосе частот, что способствует повышению помехоустойчивости.


СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
СПОСОБ ДЕМОДУЛЯЦИИ ФАЗОМОДУЛИРОВАННЫХ СИГНАЛОВ И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 97.
20.01.2013
№216.012.1df7

Способ генерации высокочастотных сигналов и устройство для его реализации

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот. Технический результат заключается в обеспечении генерации высокочастотных сигналов на заданном количестве частот. Для этого способ...
Тип: Изобретение
Номер охранного документа: 0002473165
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.28ae

Способ генерации высокочастотных сигналов

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных (ВЧ) сигналов на заданном количестве частот при произвольных частотных характеристиках нагрузки. Технический результат - формирование сложных сигналов и создание эффективных...
Тип: Изобретение
Номер охранного документа: 0002475934
Дата охранного документа: 20.02.2013
10.05.2013
№216.012.3f05

Способ фазовой модуляции и демодуляции высокочастотных сигналов и устройство его реализации

Изобретение относится к радиосвязи и может быть использовано для формирования фазоманипулированных, а также фазомодулированных сигналов и их демодуляции. Достигаемый технический результат - обеспечение операций формирования фазомодулированных сигналов(ФМС) с изменяемой фазой по закону изменения...
Тип: Изобретение
Номер охранного документа: 0002481700
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.4286

Способ генерации высокочастотных сигналов и устройство для его реализации

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот, что позволяет формировать сложные сигналы и создавать эффективные средства радиосвязи с заданным количеством радиоканалов. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002482600
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4287

Способ генерации высокочастотных сигналов и устройство его реализации

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот, что позволяет формировать сложные сигналы и создавать эффективные средства радиосвязи с заданным количеством радиоканалов. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002482601
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4288

Способ амплитудной и фазовой модуляции, частотной и амплитудной демодуляции высокочастотных сигналов и многофункциональное устройство его реализации

Изобретение относится к радиосвязи и может быть использовано для модуляции амплитуды и фазы высокочастотных гармонических колебаний, а также для демодуляции частотно-модулированных и амплитудно-модулированных сигналов с одновременными фильтрацией и усилением. Достигаемый технический результат -...
Тип: Изобретение
Номер охранного документа: 0002482602
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.45b8

Способ генерации высокочастотных сигналов и устройство его реализации

Группа изобретений относится к области радиосвязи и может быть использована для создания устройств генерации высокочастотных сигналов на заданном количестве частот. Технический результат заключается в повышении диапазона генерируемых колебаний при использовании реактивного базиса с...
Тип: Изобретение
Номер охранного документа: 0002483425
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.45bb

Способ частотной модуляции и демодуляции высокочастотных сигналов и устройство его реализации

Изобретение относится к области радиосвязи и может быть использовано для формирования частотно-манипулированных, а также частотно-модулированных сигналов или их демодуляции. Достигаемый технический результат - обеспечение операции формирования частотно-модулированного сигнала (ЧМС) с изменяемой...
Тип: Изобретение
Номер охранного документа: 0002483428
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.45bc

Способ частотной модуляции и демодуляции высокочастотных сигналов и устройство его реализации

Изобретение относится к средствам для формирования частотно-манипулированных, а также частотно-модулированных сигналов или их демодуляции с одновременными фильтрацией и усилением. Технический результат заключается в повышении помехоустойчивости приемника. В режиме демодуляции высокочастотный...
Тип: Изобретение
Номер охранного документа: 0002483429
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.45bd

Способ демодуляции и фильтрации фазомодулированных сигналов и устройство его реализации

Изобретение относится к области радиосвязи и может использоваться для демодуляции фазоманипулированных, а также фазомодулированных сигналов. Достигаемый технический результат - обеспечение демодуляции и фильтрации без использования генератора опорных колебаний с преобразованием...
Тип: Изобретение
Номер охранного документа: 0002483430
Дата охранного документа: 27.05.2013
Показаны записи 1-10 из 140.
10.02.2013
№216.012.247c

Приемник простого импульсного сигнала

Изобретение относится к радиотехнике и может быть использовано в средствах радиоконтроля, радиолокации и радионавигации для приема и обработки сигналов. Достигаемый технический результат изобретения - улучшение разрешающей способности по времени и обеспечиваемой потенциальной точности измерения...
Тип: Изобретение
Номер охранного документа: 0002474842
Дата охранного документа: 10.02.2013
20.03.2013
№216.012.3069

Способ оценки информационной эффективности системы связи

Изобретение относится к электросвязи, в частности к способам оценки информационной эффективности систем связи. Техническим результатом предлагаемого способа является получение универсального параметра для оценки информационной эффективности системы связи - КПД передачи информации. Для этого за...
Тип: Изобретение
Номер охранного документа: 0002477928
Дата охранного документа: 20.03.2013
10.04.2013
№216.012.342b

Способ распознавания цели и устройство для его осуществления

Изобретение может быть использовано в системах управления огнем противовоздушной обороны. Способ заключается в том, что обнаруживают воздушную цель, выбирают угловую скорость наведения оптико-электронного модуля (ОЭМ) путем совмещения перекрестья на экране монитора с целью, переводят ОЭМ в...
Тип: Изобретение
Номер охранного документа: 0002478898
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.3820

Способ распознавания импульсных радиосигналов в условиях мешающих радиоимпульсов на фоне белого шума

Изобретение относится к технике распознавания импульсных радиосигналов и может быть использовано в аппаратуре приема дискретной информации. Технический результат - повышение помехоустойчивости распознавания импульсных радиосигналов на фоне мешающих радиоимпульсов и белого шума при неизменных...
Тип: Изобретение
Номер охранного документа: 0002479921
Дата охранного документа: 20.04.2013
10.05.2013
№216.012.3f05

Способ фазовой модуляции и демодуляции высокочастотных сигналов и устройство его реализации

Изобретение относится к радиосвязи и может быть использовано для формирования фазоманипулированных, а также фазомодулированных сигналов и их демодуляции. Достигаемый технический результат - обеспечение операций формирования фазомодулированных сигналов(ФМС) с изменяемой фазой по закону изменения...
Тип: Изобретение
Номер охранного документа: 0002481700
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.4288

Способ амплитудной и фазовой модуляции, частотной и амплитудной демодуляции высокочастотных сигналов и многофункциональное устройство его реализации

Изобретение относится к радиосвязи и может быть использовано для модуляции амплитуды и фазы высокочастотных гармонических колебаний, а также для демодуляции частотно-модулированных и амплитудно-модулированных сигналов с одновременными фильтрацией и усилением. Достигаемый технический результат -...
Тип: Изобретение
Номер охранного документа: 0002482602
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.4416

Устройство для буксировки самолетов

Изобретение относится к устройствам транспортировки воздушных судов. Устройство для буксировки самолета содержит буксировочную тележку (5) со сцепным устройством (4), источник энергии, преобразователь энергии, муфту сцепления, редуктор, маховик инерционный (6), соединенный через съемную тягу...
Тип: Изобретение
Номер охранного документа: 0002483007
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4421

Устройство выравнивания платформы подъемных механизмов

Изобретение относится к области машиностроения, и может быть использовано при конструировании подъемно-транспортных машин. Устройство выравнивания платформы подъемных механизмов содержит передвижное шасси, опорную платформу, датчики уровня горизонтального положения, гидроприводы, панель...
Тип: Изобретение
Номер охранного документа: 0002483018
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.454c

Устройство для измерения эффективной площади рассеяния крупногабаритных объектов

Изобретение относится к радиолокационным измерениям и может быть использовано на открытых радиоизмерительных полигонах. Устройство для измерения эффективной площади рассеяния (ЭПР) крупногабаритных объектов, содержащее последовательно соединенные импульсный передатчик, антенный переключатель,...
Тип: Изобретение
Номер охранного документа: 0002483317
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.459b

Аэродромный энергомодуль на топливных элементах

Изобретение относится к энергетике и может использоваться в автономных, резервных, мобильных аэродромных и авиационных энергоустановках. Техническим результатом является возможность обеспечения энергией потребителей при выходе из строя одного или нескольких топливных элементов в генераторе,...
Тип: Изобретение
Номер охранного документа: 0002483396
Дата охранного документа: 27.05.2013
+ добавить свой РИД