×
27.05.2013
216.012.453b

Результат интеллектуальной деятельности: ТВЕРДОЭЛЕКТРОЛИТНЫЙ ДАТЧИК ДЛЯ АМПЕРОМЕТРИЧЕСКОГО ИЗМЕРЕНИЯ ВЛАЖНОСТИ ГАЗОВЫХ СМЕСЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред. Твердоэлектролитный датчик для амперометрического измерения влажности газовых смесей содержит диск из твердого электролита с кислородной проводимостью с двумя электродами - наружным и внутренним, нанесенными на противоположные поверхности этого диска, диск из протонпроводящего твердого электролита с двумя электродами - наружным и внутренним, нанесенными на его противоположные поверхности, и капилляр. Оба диска и капилляр герметично соединены между собой, а внутренние электроды обоих дисков соединены между собой напрямую. Изобретение обеспечивает упрощение процесса измерения влажности газовых смесей в широком диапазоне температур и упрощение конструкции датчика. 1 з.п. ф-лы, 1 ил.

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред и может быть использовано для измерения влажности, как чистых газов, так и газовых смесей различного состава.

Известен датчик для термометрического измерения абсолютной влажности газов (Сенсорика - датчики и измерительные элементы для автоматизации производства, URL: http//www.sensorica.ru/docs/art3.shtml) [1]. Датчик состоит из двух согласованных NTC термисторов, включенных по мостовой схеме. Выходное напряжение моста прямо пропорционально абсолютной влажности. Один термистор герметично изолирован в сухом азоте, а корпус другого открыт. При прохождении тока через термисторы термосопротивление увеличивает температуру до более 200°C. Тепло, рассеиваемое с герметичного термистора, больше, чем тепло открытого термистора, за счет разницы в теплопроводности водяного пара и сухого азота. Поскольку рассеиваемое тепло создает разные рабочие температуры, разница сопротивлений термисторов пропорциональна абсолютной влажности. К недостаткам известного датчика относится: зависимость выходного сигнала (мВ) от температуры анализируемого газа, т.к. его калибровка должна производиться при определенной выбранной температуре. Кроме того, известный датчик обеспечивает ограниченный диапазон измерения влажности, т.к. при больших содержаниях влажности (>100-120 г/м куб.) наступает насыщение. Датчик не может работать при повышенных температурах (>250°C).

Известен датчик для электрического измерения влажности газов (патент РФ №2298781, опубл. 10.05.2007 г.) [2]. Датчик содержит чувствительный элемент, выполненный в виде кварцевого пьезоэлемента с серебряными электродами, покрытыми слоем сернистого серебра с нанесенным на электроды сорбционным покрытием, например капроном, имеющим термодинамически устойчивую кристаллическую структуру. Частота кварцевого пьезоэлемента (F) и толщина пленки сорбента (h) выбираются в соответствии с выражением hF=13 ч 15 мкмМГц, причем частота кварцевого пьезоэлемента выбрана в пределах от 9 до 25 МГц. К недостаткам известного датчика относится невысокая точность измерения, т.к. характеристика кварцевого пьезоэлемента зависит от температуры анализируемого газа. Кроме того, известный датчик характеризуется ограничениями по температуре анализируемой среды, обусловленными термостойкостью сорбционного покрытия (капрон), а также необходимостью в очистке пробы газа от пыли, которая будет сорбироваться на капроне и искажать результаты измерения. Датчик сложен в изготовлении.

Известен гигрометр, содержащий датчик для кулонометрического измерения влажности газов (патент РФ №2413935, публ. 10.03.2011 г.) [3]. Датчик включает блок формирования потока со стабилизатором расхода газа, кулонометрическую ячейку, состоящую из двух частей - рабочей и контрольной, которые расположены друг за другом. При этом соотношение длин контрольной и рабочей частей не менее 1/3. К недостаткам известного датчика относится необходимость в стабилизации расхода анализируемого газа. Вследствие низкой термостойкости органического сорбента известный датчик может анализировать газ в узком диапазоне температур. Датчик сложен в изготовлении.

Задача настоящего изобретения - расширение сферы использования датчика.

Заявлен твердоэлектролитный датчик для амперометрического измерения влажности газовых смесей. Датчик содержит диск из твердого электролита с кислородной проводимостью с двумя электродами - наружным и внутренним, нанесенными на противоположные поверхности этого диска, диск из протонпроводящего твердого электролита с двумя электродами - наружным и внутренним, нанесенными на его противоположные поверхности, а также капилляр, при этом оба диска и капилляр герметично соединены между собой, внутренние электроды обоих дисков соединены между собой напрямую. Электроды датчика выполнены из пористого некаталитического материала.

Сущность заявленного изобретения заключается в следующем. Состав кислородпроводящего и протонпроводящего твердых электролитов выбран из максимальной ионной проводимости указанных материалов для работы при температуре 400-700°C. Под действием напряжения, приложенного от внешнего источника питания к внешним электродам дисков, идет процесс электролиза паров воды, находящихся в анализируемом газе и их разложение на кислород и водород. При этом кислород откачивается из внутренней полости датчика по электрохимической цепи: внутренний электрод - твердо-электролитный диск - наружный электрод, а водород откачивается по цепи: внутренний электрод - твердоэлектролитный диск - наружный электрод. Откачка кислорода производится в поток анализируемого газа. Величина измеряемого тока зависит только от количества воды, подвергшейся электролизу во внутренней полости датчика, потому что количество кислорода, откаченного через кислородпроводящий электролит, и количество водорода, откаченного через протонпроводящий электролит, будут соответствовать стехиометрии реакции разложения воды на водород и кислород:

2H2O=2H2+O2;

При этом наличие в анализируемом газе свободного кислорода или водорода не будет влиять на величину предельного тока, т.к. электрическая цепь закорочена и протекание кислородных ионов через кислородпроводящий электролит и водородных ионов через протонпроводящий электролит сверх стехиометрического значения исключено. Анализируемый газ через капилляр будет непрерывно поступать из окружающей среды во внутреннюю полость датчика и вытеснять оттуда газ, уже обедненный по влаге. С течением небольшого промежутка времени установится стационарное состояние, когда диффузионный поток анализируемого газа, обедненного по влаге, из внутреннего объема датчика станет равным потоку анализируемого газа, поступающего во внутреннюю полость датчика. Ток, протекающий через датчик в процессе достижения стационарного состояния, изменится, достигая при установлении стационарного состояния постоянного значения, называемого предельным диффузионным током датчика - Icm.

Применение электродов из пористого некаталитического материала позволяет ускорить процесс транспортирования анализируемого газа к поверхности электролитов и исключить взаимодействие водорода и кислорода на поверхности электродов.

Новый технический результат, достигаемый заявленным изобретением, заключается в упрощении процесса измерения влажности газовых смесей за счет исключения необходимости стабилизации расхода анализируемого газа, в возможности измерения влажности газовых смесей в широком диапазоне температур, а также в упрощении конструкции датчика.

Изобретение иллюстрируется рисунком, на котором изображен заявляемый датчик. Твердоэлектролитный датчик содержит диск 1 из кислород-проводящего твердого электролита с внутренним 2 и наружным 3 пористыми электродами, выполненными из некаталитического материала (например из Ag или In2O3). Второй диск 4 выполнен из протонпроводящего твердого электролита с внутренним 5 и наружным 6 пористыми электродами из некаталитического материала (например из Ag или In2O3 или других композиций). Датчик содержит капилляр 7, который служит диффузионным барьером и омывается потоком анализируемого газа. Оба диска и капилляр соединены между собой стеклом-герметиком 8. Внутренние электроды дисков 1 и 4 закорочены между собой проводником 9. Датчик находится в равномерном температурном поле, которое создается анализируемой газовой средой или нагревателем 10.

В качестве кислородпроводящего твердого электролита 1 используется двуокись циркония, стабилизированная оксидом иттрия, или другие оксидные композиции, обеспечивающие число переноса за счет ионов кислорода, равное или близкое 1. В качестве протонпроводящего твердого электролита 4 используется цирконат кальция или другие оксидные композиции, обеспечивающие число переноса за счет ионов водорода, равное или близкое 1. В режиме измерения анализируемый газ диффундирует из газового потока через капилляр 7 во внутреннюю полость датчика. Под действием напряжения, приложенного от внешнего источника питания ИН-1 к внешним электродам 3 и 6 дисков 1 и 4, идет процесс электролиза паров воды, находящихся в анализируемом газе, и их разложение на кислород и водород. При этом кислород откачивается из внутренней полости датчика по электрохимической цепи: внутренний электрод 2 - твердоэлектролитный диск 1 - наружный электрод 3, а водород откачивается по цепи: внутренний электрод 5 - твердоэлектролитный диск 4 - наружный электрод 6. Откачка кислорода производится в поток анализируемого газа. Величина приложенного напряжения от источника ПН-1 должна быть не менее 1 В, что позволит обеспечить полный электролиз водяных паров. Величина тока датчика, измеряемая измерителем тока ИТ-1, зависит только от количества воды, подвергшейся электролизу во внутренней полости датчика, потому что количество кислорода, откачанного через электролит 1, и количество водорода, откачанного через электролит 4, будут соответствовать стехиометрии реакции разложения воды на водород и кислород:

.

Анализируемый газ через капилляр 7 непрерывно поступает из окружающей среды во внутреннюю полость датчика и вытесняет оттуда газ, уже обедненный по влаге. С течением небольшого промежутка времени устанавливается стационарное состояние, когда диффузионный поток анализируемого газа, обедненного по влаге, из внутреннего объема датчика становится равным потоку анализируемого газа, поступающего во внутреннюю полость датчика. Ток, протекающий через датчик в процессе достижения стационарного состояния, изменяется, достигая при установлении стационарного состояния постоянного значения, называемого предельным диффузионным током датчика - Icm.

Таким образом, измерив величину предельного диффузионного тока датчика - Icm. известными методами можно однозначно определить влажность анализируемого газа.


ТВЕРДОЭЛЕКТРОЛИТНЫЙ ДАТЧИК ДЛЯ АМПЕРОМЕТРИЧЕСКОГО ИЗМЕРЕНИЯ ВЛАЖНОСТИ ГАЗОВЫХ СМЕСЕЙ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 40.
10.02.2014
№216.012.9e5a

Способ получения газоплотной керамики на основе оксида церия и церата бария

Изобретение относится к области электротехники, а именно к способам получения газоплотных композитных электролитов со смешанной кислород-ионной и протонной проводимостью. Заявлен способ получения газоплотной керамики на основе оксида церия и церата бария путем спекания порошков состава...
Тип: Изобретение
Номер охранного документа: 0002506246
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f99

Генератор влажности газов

Изобретение относится к аналитической технике, в частности к генераторам создания и поддержания заданной влажности или осушения газов. Генератор влажности газов содержит помещенную в термостат рабочую камеру, включающую в себя кислородпроводящий и протонпроводящий твердые электролиты,...
Тип: Изобретение
Номер охранного документа: 0002506565
Дата охранного документа: 10.02.2014
27.03.2014
№216.012.ae7e

Твердооксидный композитный материал для мембран электрохимических устройств

Изобретение относится к области электротехники, а именно к твердооксидным мембранным материалам, и может быть использовано, в частности, для получения кислорода или водорода. Твердооксидный композитный материал для мембран электрохимических устройств содержит титанато-феррит стронция и...
Тип: Изобретение
Номер охранного документа: 0002510385
Дата охранного документа: 27.03.2014
20.06.2014
№216.012.d435

Способ получения неканцерогенного ароматического технологического масла

Настоящее изобретение относится к нефтехимической и нефтеперерабатывающей промышленности. Изобретение касается способа получения неканцерогенного ароматического технологического масла, содержащего менее 3,0% экстракта полициклических ароматических углеводородов (ПЦА) по методу IP-346,...
Тип: Изобретение
Номер охранного документа: 0002520096
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.dd82

Способ изготовления газоплотной керамики для элементов электрохимических устройств

Изобретение относится к изготовлению газоплотной оксидной керамики со смешанной ионно-электронной проводимостью. Заявлен способ изготовления газоплотной керамики для элементов электрохимических устройств, который включает получение оксидо-органической формовочной массы смешиванием оксидного...
Тип: Изобретение
Номер охранного документа: 0002522492
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dec5

Чувствительный элемент электрохимического датчика монооксида углерода в газовых смесях

Изобретение может быть использовано для измерения концентрации монооксида углерода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика монооксида углерода в газовых смесях выполнен в виде таблетки из твердого оксидного электролита, на одну из поверхностей таблетки...
Тип: Изобретение
Номер охранного документа: 0002522815
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ebfc

Чувствительный элемент электрохимического датчика водорода в газовых смесях

Чувствительный элемент электрохимического датчика водорода в газовых смесях. Может быть использован для измерения концентрации водорода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика водорода в газовых смесях, выполненный в виде таблетки из твердого электролита,...
Тип: Изобретение
Номер охранного документа: 0002526220
Дата охранного документа: 20.08.2014
27.10.2014
№216.013.02e5

Способ измерения кислорода в газовых средах

Использование: для измерения концентрации кислорода в газовых смесях различного состава. Сущность изобретения заключается в том, что используют ячейку с полостью, образованную кислородопроводящим твердым электролитом, на противоположных поверхностях электролита расположены электроды, включая...
Тип: Изобретение
Номер охранного документа: 0002532139
Дата охранного документа: 27.10.2014
20.12.2014
№216.013.1034

Полуавтомат для формовки стеклянных флаконов

Изобретение относится к стекольному производству и предназначено для формовки флаконов из размягченной заготовки (стеклодрота) с использованием механизмов. Полуавтомат для формовки стеклянных флаконов содержит основание с направляющими роликами и приводом их перемещения, загрузочные устройства...
Тип: Изобретение
Номер охранного документа: 0002535570
Дата охранного документа: 20.12.2014
10.02.2015
№216.013.2325

Способ измерения кислородосодержания и влажности газа

Изобретение относится к аналитической технике и может быть использовано для измерения кислородосодержания и влажности газов. Способ измерения кислородосодержания и влажности газа. В поток анализируемого газа помещают электрохимическую ячейку с полостью, образованную двумя дисками из...
Тип: Изобретение
Номер охранного документа: 0002540450
Дата охранного документа: 10.02.2015
Показаны записи 11-20 из 47.
10.02.2014
№216.012.9e5a

Способ получения газоплотной керамики на основе оксида церия и церата бария

Изобретение относится к области электротехники, а именно к способам получения газоплотных композитных электролитов со смешанной кислород-ионной и протонной проводимостью. Заявлен способ получения газоплотной керамики на основе оксида церия и церата бария путем спекания порошков состава...
Тип: Изобретение
Номер охранного документа: 0002506246
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f99

Генератор влажности газов

Изобретение относится к аналитической технике, в частности к генераторам создания и поддержания заданной влажности или осушения газов. Генератор влажности газов содержит помещенную в термостат рабочую камеру, включающую в себя кислородпроводящий и протонпроводящий твердые электролиты,...
Тип: Изобретение
Номер охранного документа: 0002506565
Дата охранного документа: 10.02.2014
27.03.2014
№216.012.ae7e

Твердооксидный композитный материал для мембран электрохимических устройств

Изобретение относится к области электротехники, а именно к твердооксидным мембранным материалам, и может быть использовано, в частности, для получения кислорода или водорода. Твердооксидный композитный материал для мембран электрохимических устройств содержит титанато-феррит стронция и...
Тип: Изобретение
Номер охранного документа: 0002510385
Дата охранного документа: 27.03.2014
20.06.2014
№216.012.d435

Способ получения неканцерогенного ароматического технологического масла

Настоящее изобретение относится к нефтехимической и нефтеперерабатывающей промышленности. Изобретение касается способа получения неканцерогенного ароматического технологического масла, содержащего менее 3,0% экстракта полициклических ароматических углеводородов (ПЦА) по методу IP-346,...
Тип: Изобретение
Номер охранного документа: 0002520096
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.dd82

Способ изготовления газоплотной керамики для элементов электрохимических устройств

Изобретение относится к изготовлению газоплотной оксидной керамики со смешанной ионно-электронной проводимостью. Заявлен способ изготовления газоплотной керамики для элементов электрохимических устройств, который включает получение оксидо-органической формовочной массы смешиванием оксидного...
Тип: Изобретение
Номер охранного документа: 0002522492
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dec5

Чувствительный элемент электрохимического датчика монооксида углерода в газовых смесях

Изобретение может быть использовано для измерения концентрации монооксида углерода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика монооксида углерода в газовых смесях выполнен в виде таблетки из твердого оксидного электролита, на одну из поверхностей таблетки...
Тип: Изобретение
Номер охранного документа: 0002522815
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ebfc

Чувствительный элемент электрохимического датчика водорода в газовых смесях

Чувствительный элемент электрохимического датчика водорода в газовых смесях. Может быть использован для измерения концентрации водорода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика водорода в газовых смесях, выполненный в виде таблетки из твердого электролита,...
Тип: Изобретение
Номер охранного документа: 0002526220
Дата охранного документа: 20.08.2014
27.10.2014
№216.013.02e5

Способ измерения кислорода в газовых средах

Использование: для измерения концентрации кислорода в газовых смесях различного состава. Сущность изобретения заключается в том, что используют ячейку с полостью, образованную кислородопроводящим твердым электролитом, на противоположных поверхностях электролита расположены электроды, включая...
Тип: Изобретение
Номер охранного документа: 0002532139
Дата охранного документа: 27.10.2014
10.02.2015
№216.013.2325

Способ измерения кислородосодержания и влажности газа

Изобретение относится к аналитической технике и может быть использовано для измерения кислородосодержания и влажности газов. Способ измерения кислородосодержания и влажности газа. В поток анализируемого газа помещают электрохимическую ячейку с полостью, образованную двумя дисками из...
Тип: Изобретение
Номер охранного документа: 0002540450
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2d53

Способ изготовления электродов электрохимических устройств с твердым электролитом

Изобретение относится к области электротехники, а именно к способу изготовления электродов электрохимических устройств с твердым электролитом. Снижение поляризационного сопротивления электрода, а также улучшение протекания электродных реакций газообмена является техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002543071
Дата охранного документа: 27.02.2015
+ добавить свой РИД