×
27.05.2013
216.012.4539

Результат интеллектуальной деятельности: ТВЕРДОЭЛЕКТРОЛИТНЫЙ ДАТЧИК ДЛЯ АМПЕРОМЕТРИЧЕСКОГО ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ВОДОРОДА И КИСЛОРОДА В ГАЗОВЫХ СМЕСЯХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к аналитической технике, в частности к твердо-электролитным датчикам для анализа газовых сред. Твердоэлектролитный датчик для амперометрического измерения концентрации водорода и кислорода в газовых смесях содержит диск из твердого электролита с кислородной проводимостью, два электрода, нанесенные на противоположные поверхности этого диска, диск из протонпроводящего твердого электролита с двумя электродами, нанесенными на его противоположные поверхности, и капилляр, оба диска и капилляр герметично соединены между собой, а между дисками датчик имеет внутреннюю полость. Технический результат заключается в возможности одновременного измерения концентрации водорода и кислорода в газовой смеси, в упрощении конструкции датчика и повышении его быстродействия. 2 з.п. ф-лы, 1 ил.

Изобретение относится к аналитической технике, в частности к твердоэлектролитным датчикам для анализа газовых сред, и может быть использовано для измерения концентрации как водорода, так и кислорода в газовых смесях различного состава.

Известен электрохимический потенциометрический твердоэлектролитный датчик измерения концентрации водорода в газовых и жидких средах (патент RU 2120624, опубл. 20.10.1998 г.) [1]. В корпусе известного датчика установлен керамический электрический изолятор, закрытый в нижней части пробкой из твердого электролита, токоотводы, эталонный и платиновый электроды. Со стороны пробки из твердого электролита в корпусе последовательно установлены таблетка из пористой электроизоляционной керамики и гофрированная селективная мембрана. Керамический изолятор выполнен на основе коррозионно-стойкой к парам воды и непроницаемой водородом керамики из смеси оксидов ВеО (52-70% мас.), MgO (30-45% мас.), СаО (0,005-3% мас.) и пробки из монокристалла, стабилизированного ZrO2 или HfO2. Нагрев датчика до рабочей температуры (500°C и выше) осуществляется за счет нагревательного элемента.

В качестве основы известный датчик содержит твердый электролит с кислородно-ионной проводимостью, поэтому измерение концентрации водорода в газовых смесях этим датчиком можно производить лишь косвенно, а кислорода - невозможно.

Известен диффузионный амперометрический датчик измерения кислорода с использованием твердых электролитов с кислородно-ионной проводимостью на основе окиси циркония с добавками оксидов кальция или иттрия (RU 55143, опубл. 06.07.2005 г.) [2]. Датчик содержит пробирку из твердого электролита с кислородно-ионной проводимостью, с электродами из пористой платины, нанесенными на внутреннюю и внешнюю поверхности пробирки, и герметично присоединенный к пробирке капилляр, который служит диффузионным сопротивлением. В качестве анализируемого газа используется газовая смесь кислород-азот или кислород-аргон. Рабочая температура датчика постоянна и составляет 750°C. В рабочем режиме под действием напряжения, приложенного от внешнего источника питания к электродам ячейки, кислород извлекается из катодной камеры и переносится через слой твердого электролита в окружающую среду, а в катодной камере накапливается аргон или азот. С течением времени устанавливается стационарное состояние, когда диффузионный поток азота (аргона) из катодной камеры ячейки становится равным потоку азота (аргона), поступающему в катодную камеру. При этом поток кислорода через диффузионный барьер в катодную камеру имеет постоянное значение.

Сфера применения известного датчика ограничена смесями «азот-кислород» и «инертный газ - кислород», т.к. датчик способен измерять только концентрацию кислорода. Низкое быстродействие известного датчика обусловлено значительным объемом пробирки. Датчик имеет большие габариты.

Известен электрохимический датчик для измерения концентрации кислорода, содержащий диск из твердого электролита на основе ZrO2, стабиллизированного Y2O3, обладающего кислородно-ионной проводимостью, и два электрода, нанесенные на противоположные поверхности диска (US №4,547,281, опубл. 15.10.1985 г.) [3]. Электроды выполнены из композиции LaCrO3 с добавками графита. Графит при прокалке выгорает и создает в объеме электродов большое количество пор, которые выполняют функцию полостей, из которых и происходит откачка кислорода с помощью источника напряжения. По величине предельного тока и определяют количество кислорода в анализируемом объеме. Путем дозирования графита в электродную массу меняют пористость одного электрода относительно другого и регулируют таким образом характеристики (быстродействие, величину предельного тока) датчика. Посредством известного датчика возможно измерять только концентрацию кислорода, притом что технология приготовления электродов с заданной пористостью является сложной.

Заявлен твердоэлектролитный датчик для амперометрического измерения концентрации водорода и кислорода в газовых смесях, который, как и датчик [3], содержит диск из твердого электролита с кислородной проводимостью, два электрода, нанесенные на противоположные поверхности этого диска. Датчик отличается тем, что дополнительно содержит диск из протонпроводящего твердого электролита с двумя электродами, нанесенными на его противоположные поверхности, и капилляр, при этом оба диска и капилляр герметично соединены между собой, а между дисками датчик имеет внутреннюю полость. В качестве протонпроводящего твердого электролита датчик содержит цирконат кальция, а электроды выполнены из пористого некаталитического материала.

Сущность заявленного изобретения заключается в следующем. Состав кислородпроводящего и протонпроводящего твердых электролитов выбран из максимальной ионной проводимости указанных материалов для работы при температуре 500-600°C. Под действием напряжения, подаваемого к электродам кислородпроводящего диска, кислород будет откачиваться из внутренней полости датчика в анализируемый газ. При этом через капилляр анализируемый газ будет непрерывно поступать из окружающей среды во внутреннюю полость датчика и вытеснять оттуда газ, уже обедненный по кислороду. Установится стационарное состояние, когда диффузионный поток анализируемого газа, обедненного по кислороду, из внутреннего объема датчика станет равным потоку анализируемого газа, поступающего во внутреннюю камеру датчика. В процессе достижения стационарного состояния ток, протекающий через кислородпроводящий диск, достигнет постоянного значения, называемого предельным диффузионным током кислородного канала датчика - Iкис.cm. Аналогичные процессы будут идти на протонпроводящем диске. Под воздействием напряжения, приложенного к его электродам, водород будет откачиваться из внутренней полости датчика. С течением времени установится стационарное состояние, когда диффузионный поток анализируемого газа, обедненного по водороду, из внутреннего объема датчика станет равным потоку анализируемого газа, поступающего во внутреннюю камеру датчика извне. Ток, протекающий через протонпроводящий диск, достигнет постоянного значения, называемого предельным диффузионным током водородного канала датчика - Iвод.cm. Таким образом, в режиме измерения из полости датчика по раздельным каналам, но аналогичным образом, можно постоянно откачивать как кислород, так и водород.

То, что использование электродов из пористых материалов способствует увеличению скорости диффузии газа через слой электродного материала к поверхности твердого электролита и что из внутренней полости датчика одновременно идет откачка двух газов, способствует повышению быстродействия датчика. Применение электродов из некаталитических материалов снижает вероятность взаимодействия водорода и кислорода на поверхности электродов с образованием воды, что повышает точность анализа.

Новый технический результат, достигаемый заявленным изобретением, заключается в возможности одновременного измерения концентрации водорода и кислорода в газовой смеси, а также в упрощении конструкции датчика и повышении его быстродействия.

Предлагаемый твердоэлектролитный датчик содержит диск 1 из кислородпроводящего твердого электролита на основе ZrO2, стабилизированного Y2O3. На противоположные поверхности этого диска нанесены внутренний 2 и внешний 3 пористые электроды, выполненные из некаталитического материала - Ag. Пористые электроды могут быть выполнены, например, из In2O3. Датчик содержит второй диск 4 из протонпроводящего твердого электролита - цирконата кальция. Диск 4 может быть выполнен из других оксидных композиций, обеспечивающих число переноса за счет ионов водорода, равное или близкое 1. На противоположные поверхности диска 4 нанесены внутренний 5 и наружный 6 пористые электроды из некаталитического материала. Эти электроды могут быть выполнены из других оксидных композиций, обеспечивающих число переноса за счет ионов кислорода, равное или близкое 1. Датчик имеет полость 7, которая может быть организована за счет того, что внутренняя поверхность одного или обоих дисков выполнена с выемкой. Капилляр 8 служит диффузионным барьером и омывается потоком анализируемого газа. Оба диска и капилляр соединены между собой стеклом - герметиком 9. Датчик находится в равномерном температурном поле, которое создается анализируемой газовой средой или нагревателем.

В режиме измерения, под действием напряжения, приложенного от внешнего источника питания ИН-1 к электродам диска 1 (плюс источника - к наружному электроду), кислород откачивается из внутренней полости датчика в анализируемый газ. Для исключения электролиза водяных паров величина приложенного напряжения от источника ИН-1 должна быть менее 1 В. Анализируемый газ через капилляр непрерывно поступает из окружающей среды во внутреннюю полость датчика и вытесняет оттуда газ, уже обедненный по кислороду. С течением небольшого промежутка времени устанавливается стационарное состояние, когда диффузионный поток анализируемого газа, обедненного по кислороду, из внутреннего объема датчика становится равным потоку анализируемого газа, поступающего во внутреннюю камеру датчика. Ток, протекающий через диск из кислородпроводящего твердого электролита в процессе достижения стационарного состояния, изменяется, достигая при установлении стационарного состояния постоянного значения, называемого предельным диффузионным током кислородного канала датчика - Iкис.cm. Значение диффузионного тока кислородного канала измеряется измерителем тока ИТ-1. Аналогичные процессы идут на протонпроводящем диске 4. Под воздействием напряжения, приложенного к электродам диска 4 (минус источника - к наружному электроду), водород откачивается из внутренней полости датчика. Через небольшой промежуток времени устанавливается стационарное состояние, когда диффузионный поток анализируемого газа, обедненного по водороду, из внутреннего объема датчика становится равным потоку анализируемого газа, поступающего во внутреннюю камеру датчика извне. Ток от внешнего источника ИН-2, протекающий через диск из протонпроводящего твердого электролита в процессе достижения стационарного состояния, изменяется, достигая при установлении стационарного состояния постоянного значения, называемого предельным диффузионным током водородного канала датчика - Iвод.cm. Диффузионный ток водородного канала измеряется измерителем тока ИТ-2. В общем виде, как для кислородного, так и для водородного каналов предлагаемого датчика объемная доля кислорода и водорода в анализируемом газе связана с предельным диффузионным током Iкис.cm. и Iвод.cm., соответственно, соотношением /3/:

где С - объемная доля анализируемого компонента в анализируемом газе, %;

Icm. - предельный ток соответствующего канала, А;

K - коэффициент, зависящий от длины капилляра и диаметра его внутреннего канала, от рабочих условий и коэффициента диффузии.

Таким образом, измерив величину предельных токов по кислороду и водороду Iкис.cm. и Iвод.cm, характерных для данных концентраций водорода и кислорода, по уравнению (1) можно однозначно определить концентрации каждого из этих газов в анализируемой среде. При этом заявленный датчик имеет упрощенную конструкцию и обладает быстродействием.


ТВЕРДОЭЛЕКТРОЛИТНЫЙ ДАТЧИК ДЛЯ АМПЕРОМЕТРИЧЕСКОГО ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ВОДОРОДА И КИСЛОРОДА В ГАЗОВЫХ СМЕСЯХ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 40.
25.08.2017
№217.015.aa94

Амперометрический способ измерения концентрации диоксида углерода в азоте

Изобретение относится к области газового анализа. Способ измерения содержания углекислого газа в азоте согласно изобретению заключается в том, что в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из протонопроводящего твердого электролита...
Тип: Изобретение
Номер охранного документа: 0002611578
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.b1df

Электрохимический способ измерения концентрации метана в азоте

Использование: для получения возможности измерения содержания метана в азоте в широком диапазоне температур и концентраций при одновременном контроле работоспособности электрохимической ячейки в процессе измерений. Сущность изобретения заключается в том, что в поток анализируемого газа,...
Тип: Изобретение
Номер охранного документа: 0002613328
Дата охранного документа: 16.03.2017
26.08.2017
№217.015.e765

Амперометрический способ измерения концентрации закиси азота в газовых смесях

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO + 0,1YO. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002627174
Дата охранного документа: 03.08.2017
19.01.2018
№218.016.00d9

Способ утилизации углеродсодержащих отходов

Способ утилизации углеродсодержащих отходов включает отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты. В качестве отходов используют отработавшие газы из газотурбинных установок...
Тип: Изобретение
Номер охранного документа: 0002629666
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0ad7

Пневматический ручной ударный инструмент для граверных работ

Изобретение относится к пневматическому ручному ударному инструменту для граверных работ. Инструмент содержит цилиндрический корпус с кольцевой перемычкой на внутренней поверхности корпуса и сквозными отверстиями для прохода воздуха. В корпусе расположен двухступенчатый поршень с продольным и...
Тип: Изобретение
Номер охранного документа: 0002632307
Дата охранного документа: 03.10.2017
13.02.2018
№218.016.296f

Способ изготовления газодиффузионного электрода

Изобретение относится к области электротехники и может быть использовано для изготовления источников тока (топливных элементов), систем жизнеобеспечения, для регенерации газов в замкнутых объемных, электролизеров для водородной энергетики, кислородных насосов, датчиков для метрологии и т.д....
Тип: Изобретение
Номер охранного документа: 0001840851
Дата охранного документа: 20.01.2013
10.04.2019
№219.017.068b

Способ получения высоко- и нанодисперсного порошка металлов или сплавов

Изобретение относится к области электрохимического получения металлических порошков из расплавленных солей, в частности для получения высоко- и нанодисперсных порошков металлов и сплавов. Порошки металлов и их сплавов получают путем электрохимического растворения металлических анодов. Осаждение...
Тип: Изобретение
Номер охранного документа: 0002423557
Дата охранного документа: 10.07.2011
09.06.2019
№219.017.7d54

Способ получения нано- и микроволокон кремния электролизом диоксида кремния из расплавов солей

Изобретение относится к производству электролитического кремния в виде нановолокон или микроволокон с использованием сырья - диоксида кремния. Сущность изобретения: способ получения нано- или микрооволокон кремния характеризуется тем, что процесс электролиза SiO ведут в расплаве LiF (0÷3) - KCl...
Тип: Изобретение
Номер охранного документа: 0002427526
Дата охранного документа: 27.08.2011
09.06.2019
№219.017.7e1f

Инертный анод для электролитического получения металлов

Изобретение относится к области цветной металлургии и электролитическому получению металлов и может быть использовано при получении алюминия электролизом криолит-глиноземного расплава с применением инертных анодов. Инертный анод содержит металлическую фазу и керамическую фазу, включающую оксид...
Тип: Изобретение
Номер охранного документа: 0002401324
Дата охранного документа: 10.10.2010
09.06.2019
№219.017.7e28

Способ получения алюминиевых сплавов электролизом

Изобретение относится к цветной металлургии, в частности для получения сплавов на основе алюминия электрохимическим способом. Способ включает введение в расплавленный алюминий катода легирующих элементов из малорастворимого анода путем растворения его в калиевом криолит-глиноземном расплаве,...
Тип: Изобретение
Номер охранного документа: 0002401327
Дата охранного документа: 10.10.2010
Показаны записи 41-45 из 45.
13.07.2019
№219.017.b36b

Электрохимическое устройство для дозирования кислорода в газовой среде и одновременного контроля кислородосодержания газа на входе и выходе из кислородного насоса

Изобретение относится к области электротехники, а именно к электрохимическому устройству для дозирования кислорода в газовой среде и одновременного контроля его содержания на входе и выходе из кислородного насоса, и может быть использовано для очистки газовых смесей от кислорода, а также для...
Тип: Изобретение
Номер охранного документа: 0002694275
Дата охранного документа: 11.07.2019
04.06.2020
№220.018.2405

Сенсор для измерения кислородосодержания расплава licl-lio-li и атмосферы над расплавом

Изобретение относится к аналитической технике и может быть использовано в технологиях переработки оксидного ядерного топлива преимущественно в замкнутом ядерном топливном цикле. Сенсор содержит пробирку из твердого электролита, эталонный электрод, токосъемник с эталонного электрода, токосъемник...
Тип: Изобретение
Номер охранного документа: 0002722613
Дата охранного документа: 02.06.2020
14.05.2023
№223.018.552f

Амперометрический датчик для измерения концентрации метана и примеси водорода в анализируемой газовой смеси

Изобретение относится к аналитической технике и может быть использовано для измерения содержания в газовых смесях предельных углеводородов, таких как метан и этан, а также содержание в них примеси водорода. Амперометрический датчик для измерения концентрации метана и примеси водорода в...
Тип: Изобретение
Номер охранного документа: 0002735628
Дата охранного документа: 05.11.2020
21.05.2023
№223.018.6b16

Сенсор для измерения концентрации кислорода в газовой смеси

Изобретение относится к аналитической технике, в частности к сенсорам для анализа газовых сред и может быть использовано для измерения концентрации кислорода в газовых смесях в широком диапазоне. Сенсор содержит три диска, крайние из которых выполнены из кислородопроводящего твердого...
Тип: Изобретение
Номер охранного документа: 0002795670
Дата охранного документа: 05.05.2023
05.06.2023
№223.018.7744

Способ активации электродов электрохимических устройств на твердых электролитах

Изобретение относится к области электрохимической энергетики и может быть использовано в производстве высокотемпературных электрохимических устройств на основе твердых электролитов, таких, например, как топливные элементы, электролизеры, электрохимические насосы, сенсоры и т.п., работающие при...
Тип: Изобретение
Номер охранного документа: 0002760430
Дата охранного документа: 25.11.2021
+ добавить свой РИД