×
27.05.2013
216.012.449b

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО НАНОСТРУКТУРИРОВАННОГО ПОКРЫТИЯ ПЛАЗМЕННЫМ РАСПЫЛЕНИЕМ ПОРОШКА

Вид РИД

Изобретение

№ охранного документа
0002483140
Дата охранного документа
27.05.2013
Аннотация: Изобретение относится к области нанотехнологий, используемых для нанесения покрытий, и может найти применение в ракетостроении, авиационной и машиностроительной промышленности. Осуществляют поддержание динамического вакуума в камере для нанесения покрытия и проводят поочередное напыление слоя покрытия пористостью 0,1-0,2% из мелкодисперсных частиц и наночастиц порошка с использованием недорасширенной струи плазмы при поддержании в камере динамического вакуума с давлением, меньшим статического давления в струе плазмы с распыляемым порошком на входе в камеру, а затем напыление слоя покрытия пористостью 3,5-5,0% из пластифицированных частиц порошка с использованием перерасширенной струи плазмы при поддержании в камере динамического вакуума с давлением, большим статического давления в струе плазмы с распыляемым порошком на входе в камеру. Поочередное напыление осуществляют до получения требуемого покрытия. Получается наноструктурированное теплозащитное покрытие с пониженными напряжениями и повышенной устойчивостью к воздействию термоциклических нагрузок. 7 ил., 2 пр.
Основные результаты: Способ нанесения теплозащитного наноструктурированного покрытия плазменным распылением порошка, включающий поддержание динамического вакуума в камере для нанесения покрытия и напыление слоя покрытия, отличающийся тем, что осуществляют поочередное напыление слоя покрытия пористостью 0,1-0,2% из мелкодисперсных частиц и наночастиц порошка с использованием недорасширенной струи плазмы при поддержании в камере динамического вакуума с давлением, меньшим статического давления в струе плазмы с распыляемым порошком на входе в камеру, а затем напыление слоя покрытия пористостью 3,5-5,0% из пластифицированных частиц порошка с использованием перерасширенной струи плазмы при поддержании в камере динамического вакуума с давлением, большим статического давления в струе плазмы с распыляемым порошком на входе в камеру, при этом поочередное напыление осуществляют до получения требуемого покрытия.

Изобретение относится к области нанотехнологий, используемых для нанесения покрытий, и может найти применение в ракетостроении, авиационной и машиностроительной промышленности.

Известен способ нанесения покрытий [1], в котором при помощи плазменного распыления порошков материалов микронных размеров сверхзвуковыми потоками плазмы в камерах с пониженным давлением наносятся покрытия на подложку. При этом осуществляется истечение в камеру недорасширенной струи плазмы с частицами напыляемого вещества. Во время нанесения покрытия в камере поддерживается динамический вакуум, т.е. процесс происходит в камере, в которую, с одной стороны, из плазмотрона поступает плазма, а с другой стороны, постоянно ведется откачка атмосферы камеры вакуумными насосами. Получающиеся при помощи плазменного напыления в динамическом вакууме покрытия обладают хорошей адгезией (65-70, МПа) и максимальной плотностью (пористость 0,1-0,2%). Это объясняется тем, что в этом случае происходит дополнительное диспергирование и частичное испарение напыляемого вещества, в результате чего напыление производится мелкими частицами, которые скрепляются друг с другом дополнительно при помощи наночастиц, образующихся из паровой фазы.

Недостатком данного способа является то, что в покрытии при этом остается достаточно высокий уровень напряжений. Одним из способов снижения уровня напряжений является увеличение пористости покрытия до ~ 3,5-5%, который реализуется при плазменном напылении на воздухе, но в этом случае, к сожалению, имеется относительно низкий уровень адгезии (25-35 МПа) [2].

Задачей предлагаемого изобретения является существенное улучшение рабочих характеристик покрытия (например, теплозащитных) за счет создания наноструктурированного в поперечном направлении покрытия, в этом случае происходит совмещение положительных свойств покрытий, получающихся при плазменном напылении в динамическом вакууме и при плазменном напылении на воздухе.

Технический результат достигается заявляемым способом нанесения теплозащитного наноструктурированного покрытия плазменным распылением порошка, который включает поддержание динамического вакуума в камере для нанесения покрытия и напыление слоя покрытия, отличающимся тем, что осуществляют поочередное напыление слоя покрытия пористостью 0,1-0,2% из мелкодисперсных частиц и наночастиц порошка с использованием недорасширенной струи плазмы при поддержании в камере динамического вакуума с давлением, меньшим статического давления в струе плазмы с распыляемым порошком на входе в камеру, а затем напыление слоя покрытия пористостью 3,5-5,0% из пластифицированных частиц порошка с использованием перерасширенной струи плазмы при поддержании в камере динамического вакуума с давлением, большим статического давления в струе плазмы с распыляемым порошком на входе в камеру, при этом поочередное напыление осуществляют до получения требуемого покрытия.

Газодинамические отличия в недорасширенных и перерасширенных струях приведены в [3].

Изобретение поясняется фигурами.

На фиг.1 представлена фотография, соответствующая истечению воздушной струи из сопла с числом Маха, равным 3, в воздушное пространство на режиме недорасширения.

На фиг.2 представлена фотография, соответствующая истечению воздушной струи из сопла с числом Маха, равным 3, в воздушное пространство на режиме перерасширения.

На фиг.3 представлена схема расположения плазмотрона 1 и подложки 2, на которую наносится покрытие (режим недорасширения плазменной струи).

На фиг.4 представлена фотография покрытия, полученного под воздействием недорасширенной плазменной струи.

На фиг.5 представлена схема расположения плазмотрона 1 и подложки 2, на которую наносится покрытие (режим перерасширения плазменной струи).

На фиг.6 представлена фотография покрытия, полученного под воздействием перерасширенной плазменной струи.

В недорасширенной струе (фиг.1) происходит сильное расширение плазмы, истекающей из сопла. При этом внутри струи зарождается висячий скачок уплотнения, имеющий бочкообразную форму. Важно иметь в виду, что область течения сильно недорасширенной струи, ограниченная висячим скачком уплотнения, имеет такое же распределение параметров, которое реализовывалось бы на этом участке при истечении плазмы в вакуум с теми же условиями на срезе сопла [3]. Это приводит к тому, что внутри висячего скачка газ непрерывно разгоняется до скоростей ~ 2 км/с; статическое давление на линиях тока при этом сильно падает, что приводит к конденсации паровой фазы напыляемого вещества с образованием наночастиц.

Сильно недорасширенная струя плазмы, определяемая низким уровнем динамического вакуума в камере (~ 0,5-1,0 Торр), содержащая плазмообразующий газ, расплавленные частицы порошка и материал в паровой фазе, в которую он частично перешел в плазмотроне и сверхзвуковом сопле плазмотрона 3, истекает в камеру с образованием висячего скачка уплотнения 4, внутри которого реализуется сверхзвуковое течение плазмы. Покрытие в этом случае состоит из мелких частиц 5, диспергированных из исходного расплавленного материала, скрепленных друг с другом наночастицами 6, образованными из конденсированной паровой фазы напыляемого вещества (фиг.3).

Пример 1.

Данный пример относится к получению покрытия, состоящего из мелкодисперсных частиц и наночастиц оксида циркония. В этом примере использовался плазмотрон (мощность 10 кВт), число Маха на срезе сопла - 3.8, диаметр выходного сечения сопла - 18 мм, напыляемый материал - порошок оксида циркония с размерами частиц 5-10 мкм. Давление в вакуумной камере поддерживалось на уровне - 0.5 Торр, статическое давление на срезе сопла плазмотрона - 25 Торр. Результат напыления на пластину, помещенную в вакуумной камере, приведен на фиг.4. Диагностика покрытия на растровом электронном микроскопе показала, что напыленный слой состоит из мелкодисперсных частиц и наночастиц, размер которых значительно меньше исходных частиц порошка.

На фиг.5 представлена схема, аналогичная представленной на фиг.3, но для случая истечения в камеру струи плазмы на перерасширенном режиме, определяемом повышенным, относительно первого случая, уровнем динамического вакуума в камере (~50-100 Торр). В случае истечения струи плазмы в вакуумную камеру в перерасширенном режиме (фиг.2), висячий скачок уплотнения вырождается из бочкообразной формы в изобарическую область 7 (фиг.5), внутри которой частицы не разгоняются и статическое давление на линиях тока не падает. В этом случае покрытие образуется из более крупных частиц, т.к. в струе в этом случае не происходит диспергирование расплавленных частиц в достаточно большом объеме по сравнению с первым случаем. Покрытие в этом случае имеет большую пористость, чем в первом случае.

Пример 2.

В данном примере параметры плазмотрона остаются теми же, что и в примере 1, но давление в вакуумной камере поддерживалось на уровне 50 Торр, что дает перерасширенный режим течения в плазме, истекающей в вакуумную камеру. Результат напыления оксида циркония на пластину, расположенную в вакуумной камере, приведен на фиг.6. Из фотографии, изображенной на фиг.6, видно, что покрытие состоит из крупных, пластифицированных при ударе о поверхность частиц, гораздо больших по размеру, чем в примере 1.

Меняя уровни давления в камере можно, не открывая камеру, поочередно наносить слои из мелкодисперсных частиц и наночастиц (адгезия 65-70 МПа, пористость 0,1-0,2%) и слои из крупных пластифицированных частиц (адгезия 25-35 МПа, пористость 3,5-5,0%) одним и тем же порошком напыляемого вещества (см. фиг.7). Таким образом наносится требуемое число слоев для выполнения защитных функций покрытия, которое, обладая на интерфейсах с подложкой и между слоями хорошей когезией, имеет при этом низкий уровень напряжений в нем.

Предлагаемое техническое решение позволяет достаточно просто получать наноструктурированное в поперечном направлении покрытие, полученное при напылении одним и тем же порошком в одной и той же камере, которое обладает низким уровнем напряжений в нем и повышенной устойчивостью к воздействию на него, например, многоразовых термоциклических нагрузок.

Использованные источники

1. В.В.Кудинов, Г.В.Бобров. Нанесение покрытий напылением. Теория, технология и оборудование. - М.: «Металлургия», 1992, стр.144-148.

2. Л.Х.Болдеев, Б.М.Захаров, В.М.Иванов и др. «Увеличение термостойкости газотермического теплозащитного покрытия». Металловедение и термическая обработка металлов, 2002, №3, с.32-36.

3. B.C.Авдуевский, Э.А.Ашратов, А.В.Иванов, У.Г.Пирумов. Газодинамика сверхзвуковых неизобарических струй. - М.: Машиностроение, 1989.

Способ нанесения теплозащитного наноструктурированного покрытия плазменным распылением порошка, включающий поддержание динамического вакуума в камере для нанесения покрытия и напыление слоя покрытия, отличающийся тем, что осуществляют поочередное напыление слоя покрытия пористостью 0,1-0,2% из мелкодисперсных частиц и наночастиц порошка с использованием недорасширенной струи плазмы при поддержании в камере динамического вакуума с давлением, меньшим статического давления в струе плазмы с распыляемым порошком на входе в камеру, а затем напыление слоя покрытия пористостью 3,5-5,0% из пластифицированных частиц порошка с использованием перерасширенной струи плазмы при поддержании в камере динамического вакуума с давлением, большим статического давления в струе плазмы с распыляемым порошком на входе в камеру, при этом поочередное напыление осуществляют до получения требуемого покрытия.
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО НАНОСТРУКТУРИРОВАННОГО ПОКРЫТИЯ ПЛАЗМЕННЫМ РАСПЫЛЕНИЕМ ПОРОШКА
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО НАНОСТРУКТУРИРОВАННОГО ПОКРЫТИЯ ПЛАЗМЕННЫМ РАСПЫЛЕНИЕМ ПОРОШКА
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО НАНОСТРУКТУРИРОВАННОГО ПОКРЫТИЯ ПЛАЗМЕННЫМ РАСПЫЛЕНИЕМ ПОРОШКА
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО НАНОСТРУКТУРИРОВАННОГО ПОКРЫТИЯ ПЛАЗМЕННЫМ РАСПЫЛЕНИЕМ ПОРОШКА
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО НАНОСТРУКТУРИРОВАННОГО ПОКРЫТИЯ ПЛАЗМЕННЫМ РАСПЫЛЕНИЕМ ПОРОШКА
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО НАНОСТРУКТУРИРОВАННОГО ПОКРЫТИЯ ПЛАЗМЕННЫМ РАСПЫЛЕНИЕМ ПОРОШКА
СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО НАНОСТРУКТУРИРОВАННОГО ПОКРЫТИЯ ПЛАЗМЕННЫМ РАСПЫЛЕНИЕМ ПОРОШКА
Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
10.04.2015
№216.013.3c7e

Плазматрон для нанесения покрытий в динамическом вакууме

Изобретение относится к области плазменной обработки материалов, в частности для нанесения покрытий, и может найти применение в плазмометаллургии, плазмохимии и машиностроительной промышленности. Технический результат - повышение надежности работы плазматрона при нанесении покрытий из порошков...
Тип: Изобретение
Номер охранного документа: 0002546974
Дата охранного документа: 10.04.2015
20.06.2016
№217.015.04d3

Установка для определения коэффициента теплопроводности и ресурсных характеристик теплозащитных покрытий

Изобретение относится к измерительной технике и может быть использовано при теплофизических исследованиях теплозащитных покрытий. Заявлена установка для определения коэффициента теплопроводности и ресурсных характеристик теплозащитных покрытий, содержащая вакуумную камеру и источник нагрева...
Тип: Изобретение
Номер охранного документа: 0002587524
Дата охранного документа: 20.06.2016
10.06.2016
№216.015.45f8

Способ нанесения покрытия плазменным напылением в динамическом вакууме

Изобретение относится к способу нанесения покрытий плазменным напылением в динамическом вакууме и может найти применение в плазмометаллургии, авиационной и ракетно-космической промышленности. Направляют поток плазмы с напыляемым порошком на поверхность вращающейся детали, находящейся в области...
Тип: Изобретение
Номер охранного документа: 0002586932
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4f80

Дисперсно-упрочненный композиционный материал на основе алюминиевой матрицы и способ его получения

Группа изобретений относится к получению дисперсно-упрочненного композиционного материала на основе алюминиевой матрицы, армированной наночастицами оксидной керамики. Способ включает обработку шихты в шаровой мельнице, одноосное холодное прессование и спекание. Предварительно наночастицы...
Тип: Изобретение
Номер охранного документа: 0002595080
Дата охранного документа: 20.08.2016
Показаны записи 1-9 из 9.
10.04.2015
№216.013.3c7e

Плазматрон для нанесения покрытий в динамическом вакууме

Изобретение относится к области плазменной обработки материалов, в частности для нанесения покрытий, и может найти применение в плазмометаллургии, плазмохимии и машиностроительной промышленности. Технический результат - повышение надежности работы плазматрона при нанесении покрытий из порошков...
Тип: Изобретение
Номер охранного документа: 0002546974
Дата охранного документа: 10.04.2015
20.06.2016
№217.015.04d3

Установка для определения коэффициента теплопроводности и ресурсных характеристик теплозащитных покрытий

Изобретение относится к измерительной технике и может быть использовано при теплофизических исследованиях теплозащитных покрытий. Заявлена установка для определения коэффициента теплопроводности и ресурсных характеристик теплозащитных покрытий, содержащая вакуумную камеру и источник нагрева...
Тип: Изобретение
Номер охранного документа: 0002587524
Дата охранного документа: 20.06.2016
10.06.2016
№216.015.45f8

Способ нанесения покрытия плазменным напылением в динамическом вакууме

Изобретение относится к способу нанесения покрытий плазменным напылением в динамическом вакууме и может найти применение в плазмометаллургии, авиационной и ракетно-космической промышленности. Направляют поток плазмы с напыляемым порошком на поверхность вращающейся детали, находящейся в области...
Тип: Изобретение
Номер охранного документа: 0002586932
Дата охранного документа: 10.06.2016
01.11.2018
№218.016.98e7

Установка для получения частиц порошка и способ ее работы

Группа изобретений относится к получению порошка, который может быть использован в аддитивных технологиях. Установка для получения частиц порошка содержит плазматрон, выполненный с возможностью подачи в плазму исходного материала в форме удлиненного элемента, распылительный блок с соплами для...
Тип: Изобретение
Номер охранного документа: 0002671034
Дата охранного документа: 29.10.2018
15.12.2018
№218.016.a7c4

Теплозащитное покрытие

Изобретение относится к области порошковой металлургии, в частности к теплозащитным покрытиям для защиты поверхности деталей, подверженных воздействию высокотемпературных газовых потоков и выполненных, в том числе, из двухслойных паяных конструкций и может быть использовано для защиты изделий...
Тип: Изобретение
Номер охранного документа: 0002675005
Дата охранного документа: 14.12.2018
20.02.2019
№219.016.c36a

Способ нанесения покрытий

Изобретение относится к способам нанесения покрытий из наночастиц и может быть использовано в плазмометаллургии, плазмохимии и машиностроительной промышленности. Технический результат - повышение рабочих характеристик покрытий, упрощение технологии, повышение ее экологичности. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002436862
Дата охранного документа: 20.12.2011
20.02.2019
№219.016.c40c

Способ нанесения теплозащитного покрытия

Изобретение относится к вакуумной технологии нанесения теплозащитных покрытий на изделия из меди и может быть использовано в авиа- и машиностроении и других областях. Способ нанесения теплозащитного покрытия включает размещение изделия в вакуумной камере. Затем осуществляют наноструктурирование...
Тип: Изобретение
Номер охранного документа: 0002467878
Дата охранного документа: 27.11.2012
29.03.2019
№219.016.eded

Способ плазменного нанесения наноструктурированного теплозащитного покрытия

Изобретение относится к способу плазменного нанесения наноструктурированного теплозащитного покрытия. Предварительно на срезе сверхзвукового сопла плазмотрона устанавливают конический насадок, внутренняя поверхность которого образует с внутренней поверхностью сопла излом, что позволяет после...
Тип: Изобретение
Номер охранного документа: 0002683177
Дата охранного документа: 26.03.2019
19.04.2019
№219.017.3412

Способ нанесения покрытий

Изобретение относится к области нанотехнологий, используемых для нанесения покрытий, и может быть использовано в машиностроительной промышленности, а именно в ракетостроении и авиастроении. Способ включает установку плазмотрона в камеру с пониженным давлением, размещение подложки для нанесения...
Тип: Изобретение
Номер охранного документа: 0002462536
Дата охранного документа: 27.09.2012
+ добавить свой РИД