×
20.05.2013
216.012.3fc0

Результат интеллектуальной деятельности: СПОСОБ СЕЛЕКТИВНОЙ КАТАЛИТИЧЕСКОЙ ОЧИСТКИ ВЫХЛОПНЫХ И ТОПОЧНЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области селективной каталитической очистки выхлопных и топочных газов от оксидов азота. Способ селективной каталитической очистки выхлопных и топочных газов от оксидов азота включает каталитическое удаление оксидов азота из очищаемого газа при использовании аммиака в качестве восстанавливающего агента с удалением непрореагировавшего аммиака из газовой фазы. Причем удаление непрореагировавшего аммиака не сопровождается повторным образованием оксидов азота, для чего удаление непрореагировавшего аммиака из газовой фазы осуществляют при помощи катионита, заряженного металлом/металлами, образующими с аммиаком прочные комплексы. Изобретение обеспечивает повышение эффективности каталитического восстановления оксидов азота и позволяет снизить концентрацию аммиака практически до любых значений. 2 з.п. ф-лы, 1 ил., 3 табл.

Изобретение относится к области селективной каталитической очистки от оксидов азота выхлопных, топочных и отходящих газов, выделяющихся в процессе работы парогенераторных и отопительных систем, теплоэлектростанций, двигателей внутреннего сгорания, а также производств, связанных с получением азотной кислоты и нитрованием.

В известных способах каталитической очистки отходящих газов от оксидов азота в качестве восстанавливающего агента обычно используется аммиак. Необходимый для протекания реакции восстановления окислов азота до азота аммиак поступает в зону реакции или от внешнего источника, или при каталитическом гидролизе мочевины, или при разложении соли аммония (US 3885019, B01D 53/00, 20.05.1975; US 5869419, B01J 23/00, 09.02.1999; RU 2405946, F01N 3/00, 15.08.2007; US 7749938, B01J 23/00, 06.06.2010), либо образуется в результате реакции компонентов выхлопных газов между собой, инициируемой каталитически (US 6872365, F01N 3/10, 29.05.2005), или пропусканием бедной горючей смеси через плазму электрического разряда (US 6334986, B01D 53/58, 01.01.2002).

Известные способы селективной каталитической очистки газов от оксидов азота с использованием аммиака в качестве восстанавливающего агента позволяют эффективно снижать концентрации оксидов азота в газовых потоках от их исходных достаточно высоких значений. Однако общим недостатком данных способов является тот факт, что после процедуры очистки в составе очищаемого газа остается довольно большое количество аммиака, что связано с необходимостью поддержания некоторого избытка NH3 против стехиометрии по отношению к NOx. Аммиак в атмосфере может трансформироваться в NOx, и поэтому как вредное вещество приравнивается к NOx. Перед выбросом в атмосферу концентрацию аммиака желательно снижать хотя бы до максимальной разовой ПДКмр=0,2 мг/м3, а лучше до предельной среднесуточной ПДКсс=0,04 мг/м3 согласно гигиеническим нормативам ГН 2.1.6.1338-03.

В некоторых способах селективного каталитического восстановления NOx предусмотрена доочистка выхлопных газов от аммиака после удаления из них оксидов азота (см., например, US 6334986, B01D 53/58, 01.01.2002), что позволяет в определенной мере снизить концентрацию аммиака. Однако эти способы обладают неустранимым недостатком: в их основе лежит каталитическое окисление аммиака, в результате которого вновь образуются оксиды азота, ранее удаляемые на этапе основной очистки.

Наиболее близким к предлагаемому способу селективной каталитической очистки выхлопных и топочных газов от оксидов азота является способ обработки выхлопного газа, в котором оксиды азота каталитически удаляются из выхлопного газа при использовании аммиака в качестве восстанавливающего агента, с разложением и удалением при этом непрореагировавшего аммиака - причем, как восстановление оксидов азота, так и разложение (окисление) непрореагировавшего аммиака осуществляется одним и тем же катализатором, содержащим оксид титана и, по меньшей мере, одно соединение, выбранное из группы, состоящей из оксидов ванадия (V), оксидов вольфрама (W) и оксидов молибдена (Мо) (RU 2406567, кл. B01J 23/652, 20.12.2010 - прототип).

Недостаток способа-прототипа (как и упомянутого выше способа по патенту US 6334986) связан с тем, что при использовании бифункциональных (окислительно-восстановительных) катализаторов уменьшение концентрации аммиака в газовом потоке возможно только за счет повторного образования оксидов азота, то есть возникает "порочный круг": снижение концентрации оксидов азота в реакции их селективного каталитического восстановления сопровождается накоплением аммиака, а снижение концентрации аммиака за счет реакции его каталитического окисления снова приводит к образованию оксидов азота.

Результаты испытаний бифункциональных катализаторов, приведенные в описании способа-прототипа, показывают, что при снижении концентрации оксидов азота в потоке выхлопного газа в 20 раз концентрация аммиака остается довольно высокой (2-8 ppm = 1,5-6 мг/м3), то есть в 7,5-40 и 37,5-200 раз выше ПДКмр и ПДКсс, соответственно. Если же добиваться еще большего снижения концентрации оксидов азота, то концентрация аммиака еще более возрастает.

Задачей предлагаемого изобретения является разработка такого способа селективной каталитической очистки выхлопных и топочных газов от оксидов азота при использовании аммиака в качестве восстанавливающего агента, в котором доочистка потока очищаемого газа от непрореагировавшего аммиака не будет сопровождаться повторным образованием оксидов азота, что позволит снижать концентрацию аммиака практически до любых значений, в частности до значений ниже ПДКсс, и позволит повысить эффективность каталитического восстановления оксидов азота.

Решение поставленной задачи достигается предлагаемым способом селективной каталитической очистки выхлопных и топочных газов от оксидов азота, включающим каталитическое удаление оксидов азота из очищаемого газа при использовании аммиака в качестве восстанавливающего агента с удалением непрореагировавшего аммиака из газовой фазы, в котором удаление непрореагировавшего аммиака не сопровождается повторным образованием оксидов азота, для чего удаление непрореагировавшего аммиака из газовой фазы осуществляют при помощи катионита, заряженного металлом/металлами, образующими с аммиаком прочные комплексы.

В качестве катионита, заряженного металлом/металлами, образующими с аммиаком прочные комплексы, используют сульфокатионит следующей формулы: [(П-SO3-)2Ме2+), где П - сополимер стирола и дивинилбензола, Me2+ - ионы меди или/и кальция.

Перед подачей газового потока на сульфокатионит для удаления аммиака газовый поток охлаждают до оптимальной рабочей температуры сорбента.

Катализаторы селективного каталитического восстановления оксидов азота при использовании аммиака в качестве восстановителя выпускаются промышленностью и широко применяются, они представляют собой содержащие V2O5 смеси оксидов металлов (в России обычно используется ванадиевый катализатор АВК-10).

Выбор сорбента при разработке предлагаемого способа определялся поставленной задачей - способ должен обеспечивать снижение концентрации аммиака до значений меньших ПДКсс (ПДКСС=0,04 мг/м), то есть используемый в способе сорбент должен эффективно поглощать аммиак из газовой фазы и прочно его удерживать, не допуская проскока.

Проведенные нами экспериментальные исследования нескольких катионитов с различной структурой ионогенных групп показали, что при сорбции аммиака из газовой фазы на катионитах в Н-форме, которые обычно используются для сорбции аммиака из водных растворов, наблюдается дегидратация фазы катионита, приводящая к снижению равновесных и кинетических характеристик сорбента.

Для дальнейших экспериментов катиониты в Н-форме были нами модифицированы - заряжены металлами. При использовании для сорбции аммиака из газового потока Ме-форм сульфокатионитов: [(П-SO3-)2Ме2+), где Me2+ - ионы меди или/и кальция, было установлено, что сорбционная емкость по аммиаку увеличивается в 3-3,5 раза. Так, Ме-форма связывает до 4 молей аммиака на моль сульфогрупп: [(П-SO3-)2·Ме(NH3)n2+], тогда как немодифицированная металлом Н-форма сульфокатионита может связать не более 1 моля аммиака на моль сульфогрупп: [П-SO3 NH4]. He менее важным явился факт, что прочность и термическая устойчивость внешнесферного комплекса аммиака с металлом: [(П-SO3-)2·Ме(NH3)n2+] значительно выше, чем прочность чисто ионной формы: [П-SO3NH4].

При исследовании влияния химического строения полимера в сульфокатионите на процесс сорбции аммиака было установлено, что наилучшие сорбционные свойства проявляют сульфокатиониты на основе стиролдивинилбензольных сополимеров. Такие катиониты наиболее сильно удерживают воду, что позволяет эффективно работать при малой влажности и, следовательно, при повышенной температуре (≥120°С) очищаемой газовой смеси. Кроме того, было обнаружено, что в исследуемых газовых средах сульфополистирольные катиониты проявляют высокую термостабильность, особенно их солевые формы (Са, Cu), это позволило поднять рабочую температуру очищаемой газовой смеси до 120-140°С, избежать необходимости ее предварительного охлаждения и тем самым улучшить технико-экономические характеристики предлагаемого способа.

Дальнейшие исследования сорбционного процесса на сульфокатионитах выявили ряд дополнительных факторов, оказывающих существенное влияние на эффективность сорбции аммиака. Так, Ме-формы сульфокатионитов по сравнению с Н-формой обладают более высоким сродством к аммиаку (имеют большие константы обмена), что приводит к увеличению коэффициентов распределения для малых концентраций аммиака, а также обладают большей селективностью к аммиаку, что делает возможным удалять очень низкие исходные концентрации аммиака в очищаемом газе. Регулирование соотношения меди и кальция при зарядке катионита позволяет увеличивать сродство и термостойкость за счет преимущественной зарядки медью или увеличивать емкость по аммиаку при преимущественной зарядке кальцием.

Предлагаемый способ очистки выхлопных и топочных газов осуществляют следующим образом (см. чертеж). В поток очищаемого газа перед его поступлением в каталитическую ячейку (1) добавляют аммиак, поступающий либо из внешнего источника, либо образующийся при каталитическом гидролизе мочевины или при разложении соли аммония. В каталитической ячейке оксиды азота восстанавливаются до молекулярного азота. Далее газовый поток направляется в сорбционную ячейку (2) для его доочистки от непрореагировавшего аммиака. В случае необходимости газовый поток перед подачей на сорбент предварительно охлаждают до оптимальной рабочей температуры сорбента в охлаждающем устройстве (3).

Используемые в предлагаемом способе сорбенты, представляющие собой Ме-форму сульфированных стиролдивинилбензольных катионитов, были нами испытаны для подтверждения их способности эффективно поглощать аммиак из газовой фазы и прочно его удерживать.

В таблицах 1-3 в качестве примера приведены данные по зависимости времени до проскока (t) (времени, когда концентрация NH3 на выходе из слоя сорбента начинает превышать предельно допустимую величину, в данном случае ПДКсс=0,04 мг/м3) от влажности катионита (φ), от концентрации NH3 в газовоздушной смеси (С) и от скорости газопотока (W) для стиролдивинилбензольного сульфокатионита, заряженного медью: [(П-SO3-)2Cu2+].

Измерив время до проскока и зная скорость газового потока и концентрацию аммиака в газовоздушной смеси, можно рассчитать динамическую емкость сорбента до проскока δ (мг/см3) (проскоковую емкость), которая представляет собой количество вещества (NH3), сорбированного и удерживаемого слоем сорбента площадью 1 см2 и длиной l 1 см вплоть до момента, когда концентрация NH3 на выходе из слоя сорбента превысит предельно допустимую величину, в данном случае ПДКсс=0,04 мг/м3:

δ=W×C×t/l,

где W л·мин-1 см-2 - скорость газопотока, С мг/л - концентрация аммиака в газовоздушной смеси, t мин - время до проскока, l см - длина слоя сорбента. В таблицах 1-3 приведены данные для динамической емкости δ при различных условиях.

Таблица 1
Зависимость времени до проскока (t) и динамической емкости (δ) стиролдивинилбензольного сульфокатионита: [(П-SO3-)2Cu2+] от его влажности (φ) при скорости газопотока W=0,47 л·мин-1·см-2, концентрации NH3 С=2,5 мг/л и длине слоя сорбента l=1,3 см.
Параметр Значение параметра
φ, % 50 75 90
t, мин 17 22 28
δ, мг/см3 15,4 19,9 25,3

Таблица 2
Зависимость времени до проскока (t) и динамической емкости (δ) стиролдивинилбензольного сульфокатионита: [(П-SO3-)2Cu2+] от концентрации NH3 при скорости газопотока W=0,47 л·мин-1·см-2, длине слоя сорбента l=1,3 см и влажности сорбента φ=50%.
Параметр Значение параметра
С, мг/л 0,2 1,0 2,0
t, мин 567 45 22
δ, мг/см3 41 16.3 15,9

Таблица 3
Зависимость времени до проскока (t) и динамической емкости (δ) стиролдивинилбензольного сульфокатионита: [(П-SO3-)2Cu2+] от скорости газопотока при концентрации NH3 С=2,0 мг/л, длине слоя сорбента l=1,3 см и влажности сорбента φ=50%.
Параметр Значение параметра
Скорость газопотока W, л·мин-1·см-2 0,236 0,47 0,71
t, мин 45 23 15
δ, мг/см3 16,3 16,6 16,4

Из приведенных данных видно, что при влажности катионита 50%, которая присутствовала во всех экспериментах, величина динамической емкости сорбента до проскока колебалась в районе 16 мг/см. Исключение наблюдалось только для малых концентраций аммиака в газо-воздушном потоке: δ=41 мг/см3 для С=0,2 мг/л (таблица 2). Вместе с тем, при увеличении влажности катионита до 90% динамическая емкость сорбента до проскока возрастает до δ=25,3 мг/см3 (таблица 1).

Величина динамической емкости сорбента до проскока δ позволяет оценить его эффективность при поглощении аммиака из газовой фазы.

Пример. Допустим, что в результате селективной каталитической очистки выхлопных или топочных газов от оксидов азота при использовании аммиака в качестве восстанавливающего агента в очищаемом газе остается непрореагировавший аммиак в концентрации 2 ppm (1,5 мг/м3), например, как это наблюдалось при испытаниях способа-прототипа (RU 2406567). Если в предлагаемом способе используется сорбент с динамической емкостью δ=16 мг/см3 и объемом 1 л, то заявляемый способ позволит без замены сорбента очистить суммарный объем выхлопных (или топочных) газов от оксидов азота с одновременным удалением при этом непрореагировавшего аммиака до концентрации ниже ПДКсс=0,04 мг/м3, равный 104 м3:

Отметим, что согласно грубой оценке такой объем выхлопных (топочных) газов выбрасывает средний легковой автомобиль при пробеге 105 км или отопительная система на солярке мощностью 10 кВт в течение 400 дней.

Таким образом, в предлагаемом способе селективной каталитической очистки выхлопных и топочных газов от оксидов азота при использовании аммиака в качестве восстанавливающего агента доочистка потока очищаемого газа от непрореагировавшего аммиака не сопровождается повторным образованием оксидов азота, что позволяет снижать концентрацию аммиака практически до любых значений, в частности до значений ниже ПДКсс, и повысить эффективность каталитического восстановления оксидов азота.


СПОСОБ СЕЛЕКТИВНОЙ КАТАЛИТИЧЕСКОЙ ОЧИСТКИ ВЫХЛОПНЫХ И ТОПОЧНЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА
Источник поступления информации: Роспатент

Показаны записи 111-120 из 255.
20.06.2015
№216.013.55e2

Способ разрушения ледяного покрова

Изобретение относится к технологиям разрушения ледяного покрова для вскрытия прохода через ледовое поле. Способ разрушения ледяного покрова основан на использовании двух видов воздействия на ледяное поле: облучение мощным лазерным излучением и нагружение льда корпусом ледокола. На ледоколе...
Тип: Изобретение
Номер охранного документа: 0002553516
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56d9

Композиционный наноструктурированный порошок для нанесения покрытий

Изобретение относится к области порошковой металлургии, в частности к получению порошка для нанесения износо- и коррозионно-стойких покрытий с высокой адгезионной и когезионной прочностью методом холодного газодинамического напыления (ХГДН). Композиционный наноструктурированный порошок для...
Тип: Изобретение
Номер охранного документа: 0002553763
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56df

Способ импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов

Изобретение относится к способу импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов. Изобретение может быть использовано в судостроении, авиастроении, ракетостроении и других отраслях машиностроения. Формируют X-образный профиль свариваемых кромок и выполняют многопроходную...
Тип: Изобретение
Номер охранного документа: 0002553769
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56fd

Износо-коррозионностойкий медно-никелевый сплав

Изобретение относится к разработке прецизионных сплавов для микрометаллургических процессов, в том числе для получения функциональных покрытий, пленок, микропроводов, порошковых материалов, конструкционно-функциональные элементы из которых эффективно работают в жестких условиях эксплуатации,...
Тип: Изобретение
Номер охранного документа: 0002553799
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.59b5

Движительно-рулевая колонка

Изобретение относится к области судостроения и может быть использовано в конструкциях судовых движителей. Движительно-рулевая колонка содержит основание колонки, баллер, приводной вал, который расположен внутри баллера, механизм поворота колонки, угловой редуктор, обтекаемую гондолу,...
Тип: Изобретение
Номер охранного документа: 0002554506
Дата охранного документа: 27.06.2015
20.07.2015
№216.013.63e0

Способ термической обработки поковок из высокопрочной коррозионно-стойкой стали мартенситного класса

Изобретение относится к области термообработки поковок из легированных сталей и предназначено для использования в судовом машиностроении при изготовлении гребных валов. Для получения требуемой категории прочности металла с пределом текучести не менее 800 МПа и повышения коррозионной стойкости...
Тип: Изобретение
Номер охранного документа: 0002557115
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.695b

Способ индикации летчику о положении летательного аппарата относительно заданной глиссады при заходе на посадку на корабль

Изобретение относится к способам индикации летчику положения летательного аппарата (ЛА) при посадке на корабль. Определяют взаимное положение ЛА и корабля с помощью глобальной или корабельной системы позиционирования и бортовой цифровой вычислительной машины. Формируют и отображают на...
Тип: Изобретение
Номер охранного документа: 0002558524
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.695c

Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового бпла

Изобретение относится к авиационной и ракетной технике, в частности к активной тепловой защите теплонапряженных передних кромок гиперзвукового беспилотного летательного аппарата (БПЛА). Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА содержит...
Тип: Изобретение
Номер охранного документа: 0002558525
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6be8

Способ активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового летательного аппарата

Изобретение относится к активной тепловой защите теплонапряженных элементов конструкции летательного аппарата (ЛА), управлению его обтеканием и работой силовой установки. Способ включает формирование защитного слоя из продуктов разложения метангидрата (смеси паров воды и метана). Последние...
Тип: Изобретение
Номер охранного документа: 0002559182
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cec

Состав эпоксиполиуретанового компаунда и способ его получения

Изобретение относится к составу двухкомпонентного эпоксиполиуретанового заливочного электроизоляционного компаунда и способу его получения. Компонента «А» состоит из мономерно-олигомерной смеси полиэпоксидов, состоящей из диглицидилового эфира бисфенола А, моноглицидилового эфира бисфенола А и...
Тип: Изобретение
Номер охранного документа: 0002559442
Дата охранного документа: 10.08.2015
Показаны записи 111-120 из 190.
10.02.2015
№216.013.23fc

Способ изготовления сотового заполнителя

Изобретение относится к способам изготовления сотовых заполнителей для трехслойных панелей и оболочек и касается способа изготовления сотового заполнителя (СЗ) из стеклоткани. На полотно стеклоткани в продольном направлении наносят с заданным шагом клеевые полосы, подсушивают их и разрезают...
Тип: Изобретение
Номер охранного документа: 0002540665
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.29ed

Индуктор для магнитно-импульсной раздачи трубчатых заготовок

Изобретение относится к обработке металлов давлением, в частности к индукторам для магнитно-импульсной обработки. Используют токоподвод коаксильного типа, образованный торцовым токовыводом, выполненным в виде стальной трубы с фланцем, закрепленным на торце спирали индуктора, и изолированно...
Тип: Изобретение
Номер охранного документа: 0002542190
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.3111

Судовая электроэнергетическая установка

Изобретение относится к судостроению, в частности к судовым электроэнергетическим установкам. Судовая электроэнергетическая установка содержит главный двигатель, соединенный с главным генератором, дополнительный двигатель, соединенный с дополнительным генератором, гребной электродвигатель,...
Тип: Изобретение
Номер охранного документа: 0002544029
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3e10

Лигатура для титановых сплавов

Изобретение относится к области цветной металлургии и может быть использовано при производстве сплавов титана. Лигатура содержит, мас.%: ванадий 40-50, титан 5-20, углерод 3-5, алюминий - остальное. Изобретение позволяет улучшить свариваемость и механические характеристики в зоне термического...
Тип: Изобретение
Номер охранного документа: 0002547376
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4c43

Способ получения износо-коррозионностойкого градиентного покрытия

Изобретение относится к области получения покрытий со специальными свойствами, в частности к покрытиям с высокой стойкостью к коррозионным повреждениям и износу. Способ холодного газодинамического напыления износо-коррозионностойкого градиентного покрытия включает подачу металлического порошка...
Тип: Изобретение
Номер охранного документа: 0002551037
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d69

Способ получения многослойного градиентного покрытия методом магнетронного напыления

Изобретение относится к способу нанесения градиентных покрытий магнетронным напылением, в частности к нанесению покрытий на основе тугоплавких металлов, и может быть использовано для получения покрытий с высокими адгезивными и когезивными характеристиками, а также с оптимальным сочетанием...
Тип: Изобретение
Номер охранного документа: 0002551331
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4da5

Устройство для измерения подводного шума плавсредства и система для проверки его рабочего состояния

Изобретения относятся к области гидроакустики и могут быть использованы для контроля уровня шумоизлучения подводного объекта в натурном водоеме. Техническим результатом, получаемым от внедрения изобретений, является получение возможности измерений уровня шума подводного плавсредства...
Тип: Изобретение
Номер охранного документа: 0002551391
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4daa

Способ бесконтактных измерений геометрических параметров объекта в пространстве и устройство для его осуществления

Изобретение относится к способу бесконтактных измерений геометрических параметров объекта в пространстве. При реализации способа на поверхности объекта выделяют одну и/или более обособленную зону, для которой можно заранее составить несколько разных упрощенных математических параметрических...
Тип: Изобретение
Номер охранного документа: 0002551396
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5189

Способ изготовления конусных изделий из стеклообразного материала

Изобретение относится к технологии получения изделий из кварцсодержащих материалов и может быть использовано в стекольной промышленности, кварцевом производстве. Способ получения изделий конусной формы наплавом из кристаллического исходного сырья осуществляют путем подачи сырья во вращаемую...
Тип: Изобретение
Номер охранного документа: 0002552394
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.51cf

Способ получения слоистого композиционного материала на основе алюминиевых сплавов и низколегированной стали

Изобретение относится к металлургической промышленности и касается способа получения слоистого композиционного материала на основе алюминиевых сплавов и низколегированной стали. Способ включает: зачистку контактных поверхностей заготовок из стали и алюминия механическим способом,...
Тип: Изобретение
Номер охранного документа: 0002552464
Дата охранного документа: 10.06.2015
+ добавить свой РИД