×
20.05.2013
216.012.3fbf

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ

Вид РИД

Изобретение

№ охранного документа
0002481889
Дата охранного документа
20.05.2013
Аннотация: Изобретение относится к технологии получения волокнистых углеродных материалов методом пиролиза ароматических и неароматических углеводородов. Предложенный способ получения углеродных нанотрубок, заключающийся в том, что в реактор, снабженный нагревателем, помещают мелкодисперсный катализатор, продувают инертным газом и нагревают до температуры пиролиза. После чего производят непрерывную подачу углеродсодержащего газа и отвод газообразных продуктов пиролиза через патрубки. По окончании процесса пиролиза готовый продукт охлаждают, согласно изобретению в объеме реактора помещают катализатор в виде таблеток, после герметизации реактора включают нагреватели и через газораспределительное устройство в полость реактора подают инертный и углеродсодержащий газы, при этом на таблетки катализатора воздействуют акустическим активатором. Изобретение позволяет повысить производительность за счет резкого увеличения массы компактированного катализатора. 2 з.п. ф-лы, 2 ил.

Изобретение относится к технологии получения волокнистых углеродных материалов методом пиролиза ароматических и неароматических углеводородов.

Технология получения волокнистых углеродных материалов, в том числе и углеродных нанотрубок, заключается в проведении пиролиза углеводородных, либо углеродсодержащих газов или материалов в присутствии катализаторов, преимущественно на основе дисперсного никеля, либо сплавов на его основе, а также других активных металлов с последующим охлаждением продуктов пиролиза.

Изобретение относится к синтезу углеродных нанотрубок с наружным диаметром от 15 до 50 нм с количеством слоев от 3 до 15, которые относятся к многослойным нанотрубкам.

Известен способ непрерывного получения углеродных волокон (патент США №5165909, МПК D01F 9/10, 1992 г.), который включает контактирующее формирование волокон на катализаторе, содержащем металлические частицы, с газом, содержащим углерод. Процесс синтеза осуществляют непрерывно за счет непрерывной подачи в реакционную зону содержащего атомы углерода газа и содержащего металл катализатора и выведение из реакционной зоны продуктов пиролиза, причем газ после очистки вновь возвращают в реакционную зону. В качестве содержащего углерод газа может использоваться окись углерода, различные углеводороды, в том числе содержащих кислород, такие, как формальдегид, уксусный альдегид, ацетон, метанол, этиловый спирт или их смесь, а также ароматические углеводороды: бензол, толуол, ксилол, кумол, этилбензол, нафталин, фенантрен, антрацен или их смеси, Кроме того, могут использоваться неароматические углеводороды, такие как метан, этан, пропан, этилен, пропилен или ацетилен или их смеси. При этом предпочтение отдается углеводороду - метану. В качестве катализатора используют сплавы и металлы: железо, кобальт или никель в виде частиц, имеющих диаметр между 3.5 и 70 нанометров с жаропрочной добавкой оксида алюминия, силиката алюминия, и химические соединения на основе углерода.

Согласно патенту синтез ведут при контакте газа с катализатором в течение от 10 секунд до 30 минут и при давлении от одной десятой до десяти атмосфер, и температуре - от 900°С до 1150°С. Способ получения волокнистых углеродных структур каталитическим пиролизом заключается в том, что в реактор подают исходный продукт - углеводородный газ и распыляют катализатор в виде сплава на основе никеля, который нагревают до температуры 600-1150°С, при этом непрерывно подают в реактор углеводородный газ и отводят газообразные продукты пиролиза и готовый продукт вместе с катализатором охлаждают на поверхности фильтра, установленного на входе циркуляционного компрессора. Пиролиз проводят в вертикальной печи, в верхней части которой располагают патрубок подачи углеводородного газа, ленточные нагреватели и бункер с катализатором. На нижней части бункера с катализатором располагают питательный клапан, который подает в реакционную зону печи катализатор в виде порошкообразного никеля с добавлением окиси алюминия. В нижней части располагают второй патрубок подачи углеводородного газа. Расстояние между питающим клапаном и вторым патрубком подачи углеводородного газа является реакционной зоной, ниже которой расположено основание печи, снабженное фильтром, являющимся сборником готового продукта перед его выгрузкой, полость между фильтром и нижней частью корпуса реактора соединена с входом циркуляционного компрессора.

Однако полученные таким способом продукты пиролиза подвергаются длительному нагреву потоком циркулирующего горячего газа, содержащего смесь углеводородного газа, продуктов пиролиза и катализатора, что обуславливает разброс свойств готового продукта, т.е. в продукте кроме углеродных волокон могут образовываться вкрапления графита и сажи, которые снижают качество продукта. Другими недостатками известного способа является невозможность равномерного распределения порошкообразного катализатора по всему живому сечению печи и неравномерность температурного поля в реакционной зоне. Это приводит к снижению эффективности пиролиза.

Наиболее близким к заявленному является способ получения волокнистых углеродных структур каталитическим пиролизом (патент РФ №2296827, МПК D01F 9/127, D01F 9/133, 2007 г.), заключающийся в том, что в продутом аргоном реакторе распыляют катализатор в виде пылевидного сплава на основе никеля, нагревают до температуры 600-1150°С. После этого производят непрерывную подачу углеродсодержащего газа и отвод газообразных продуктов пиролиза, и по окончании процесса пиролиза готовый продукт вместе с катализатором охлаждают, причем в реактор с нагревателями, размещенными над и под установленным диском, струйным распылителем подают инертный газ и катализатор, поступающий в распылитель через дозатор в камеру - осадитель, имеющую вид перевернутого стакана с сечением в виде сектора вращающегося диска, в котором производят осаждение пылевидного катализатора на верхнюю поверхность диска при включенном приводе вращения диска слоем 0,1-0,3 мм, затем подают углесодержащий газ со стороны нижней поверхности диска, который нагревают, при этом отвод газообразных продуктов пиролиза осуществляют через патрубки, которые размещены в верхней части реактора и камеры - осадителя. По окончании процесса пиролиза включают привод вращения диска и скребком удаляют твердые продукты пиролиза в охлаждаемую емкость отбора продуктов пиролиза, в которую также подают инертный газ.

Недостатком такого способа является сложность достижения равномерного распределения катализатора в объеме реактора. Как видно из описания прототипа в реакторе принимает участие в каталитическом синтезе только тонкий осажденный слой катализатора. Это обуславливает низкий выход углеродного материала с единицы объема реактора.

По совокупности общих признаков в качестве прототипа выбран способ по патенту РФ №2296827.

Задачей изобретения является достижение равномерного распределения катализатора в объеме реактора каталитического пиролиза.

Техническим результатом является увеличение производительности реактора при получении углеродных наноматериалов.

Технический результат достигается тем, что в способе получения углеродных наноматериалов, заключающемся в том, что в реактор, снабженный нагревателем, помещают мелкодисперсный катализатор, продувают инертным газом и нагревают до температуры пиролиза, после чего производят непрерывную подачу углеродсодержащего газа и отвод газообразных продуктов пиролиза через патрубки и по окончании процесса пиролиза готовый продукт охлаждают, согласно изобретению в объеме реактора помещают катализатор в виде таблеток, после герметизации реактора включают нагреватели и через газораспределительное устройство в полость реактора подают инертный и углеродсодержащий газы, в процессе синтеза на таблетки катализатора воздействуют акустическим активатором.

В нижней части реактора устанавливают систему охлаждения синтезируемого наноматериала.

В нижней части реактора дополнительно устанавливают устройство для непрерывной выгрузки материала.

В объеме реактора помещают катализатор в виде таблеток, после герметизации реактора включают нагреватели и через газораспределительное устройство в полость реактора подают инертный и углеродсодержащий газы, в процессе синтеза на таблетки катализатора воздействуют акустическим активатором, это обеспечивает резкое повышение производительности реактора за счет компактирования катализатора. При этом обеспечивается получение многослойных углеродных нанотрубок с диаметром от 15 до 50 нм за счет сокращения продолжительности цикла каталитического пиролиза и исключения образования твердых продуктов пиролиза в виде сажи и графита. При этом обеспечивается:

- повышение производительности реактора за счет более полного использования внутреннего объема реактора;

- возможность контроля за срабатыванием катализатора (визуально можно контролировать как уменьшаются размеры таблеток);

- создание равномерного температурного поля на поверхности катализатора за счет подвода тепла в виде лучистой энергии и вместе с разогретым газом, циркулирующим в полости реактора;

- уменьшение энергоемкости за счет разогрева только зоны каталитического пиролиза;

- уменьшение времени процесса синтеза за счет удаления твердых продуктов каталитического пиролиза с поверхности катализатора в зону, охлаждаемую до температуры, исключающей возможность разложения нанотрубок;

- интенсификация процесса синтеза за счет перемешивания газа акустическим активатором при одновременном удалении с поверхности катализатора синтезированного материала;

- уменьшение расхода катализатора, за счет исключения его оседания на поверхностях реактора и его более полного срабатывания.

Установка в нижней части реактора системы охлаждения синтезируемого наноматериала обеспечивает охлаждение его до температуры ниже температуры термического разложения, что повышает качество продукта. Одновременно обеспечивается снижение энергоемкости за счет локализации зоны нагрева.

Дополнительная установка в нижней части реактора устройства для непрерывной выгрузки материала обеспечивает уменьшение габаритов реактора за счет уменьшения зоны выгрузки. Кроме того, обеспечивается уменьшение расхода инертного газа на продувку реактора между циклами.

На представленных чертежах изображена конструкция реактора для реализации способа и иллюстрации процесса синтеза на компактированном катализаторе, где показано:

на фиг.1 - схема реактора синтеза углеродных нанотрубок;

на фиг.2 - показан процесс синтеза углеродных наноматериалов при использовании заявляемого способа, 12 фотоснимков таблетки ⌀20 мм были выполнены за 28 мин.

Перечень позиций, указанных на чертежах:

1 - корпус;

2 - крышка;

3 - решетка;

4 - подвеска

5 - таблетка катализатора;

6 - нагреватель;

7 - теплоизоляция;

8 - нагреватель газа;

9 - патрубок подачи газа

10 - патрубок вывода отработанного газа на рецикл;

11 - шнек;

12 - акустический активатор;

13 - система охлаждения.

Для реализации заявленного способа был создан реактор синтеза углеродных нанотрубок. Реактор содержит корпус 1 с крышкой 2, в расточке корпуса 1 установлена решетка 3, на которой закреплены подвески 4 с таблетками катализатора 5. Внутри корпуса 1 помещен нагреватель 6, а на внешней его поверхности и на крышке 2 установлена теплоизоляция 7. Вне реактора помещен нагреватель газа 8, соединенный с патрубком подачи газа 9, установленным в корпусе 1 подвесками 4 с таблетками катализатора 5. На крышке 2 помещен также патрубок 10 вывода отработанного газа на рецикл. В нижней части корпуса 1 шнек 11 для выгрузки готового продукта и на уровне нижней части подвески 4 с внешней стороны корпуса 1 помещен акустический активатор 12. В нижней части корпуса 1 размещен змеевик системы охлаждения.

Предлагаемый способ реализуют следующим образом.

Перед работой в расточке корпуса 1 устанавливают решетку 3 с подвесками с таблетками катализатора 4. Таблетки 5 могут изготавливаться из катализаторов различных марок либо с каналами для установки на подвеске, либо напрессовываться на стержни, являющимися частью подвески 4, либо укладываться в гнезда подвески 4 и т.д. Эти варианты относятся к общеизвестным приемам размещения продукта в объеме и каждый из них пригоден для реализации заявляемого способа и в данной заявке не рассматривается. После установки решетки 3 устанавливают крышку 2 и полость реактора через патрубок 9 продувают аргоном или другим инертным газом для удаления из нее атмосферного воздуха, так как в смеси кислорода воздуха с метаном или другим углеводородным газом в полости реактора может образоваться взрывоопасная смесь, что недопустимо, исходя из правил техники безопасности. Инертный газ удаляют через патрубок 10. После этого включают нагреватели 6 и нагреватель газа 8. Подогретый углеводородный газ подают через патрубок 9 и на поверхности таблеток 5 происходит процесс каталитического пиролиза с образованием углеродных нанотрубок. Газообразные продукты пиролиза через отверстия решетки 3 и патрубок 10 удаляют из реактора и после очистки вновь подают на вход нагревателя 8. После образования начального слоя синтезируемого материала включают акустический активатор 12, излучение которого не только интенсифицирует процесс каталитического синтеза за счет интенсивного перемешивания подаваемого углеводородного газа, но и обеспечивает отделение синтезированного материала от таблеток 5. Полученные углеродные материалы, отделенные от таблеток 5, осаждают в нижней охлаждаемой части реактора 1 и удаляют из него шнеком 11.

После окончания процесса синтеза прекращают подачу углеводородного газа, отключают нагреватели 6, нагреватель газа 8 и акустический активатор 12, включают систему охлаждения 13 и снимают крышку 2. Из расточки корпуса 1 удаляют решетку 3 и подвески 4 с отработанными таблетками 5 и устанавливают решетку с новыми таблетками 5. После этого вновь включают реактор, как это описано выше.

На фиг.2 показан процесс синтеза на одной таблетке диаметром 20 мм, помещенной в лабораторный реактор на подвеске в виде струны с закрепленным в нижней части струны грузом-ограничителем в виде гайки и подложкой, расположенной под таблеткой. На третьем снимке в верхнем ряду видно образование продуктов пиролиза. Начиная с третьего ряда сверху виден процесс отделения продуктов процесса пиролиза и его осыпание на подложку. На последнем снимке видно, что материал таблетки полностью перешел в синтезируемый материал. Последний снимок сделан через 28 мин после герметизации реактора.

Пример 1. В реактор на подвесках помещали таблетки катализатора диаметром 20 мм и высотой 25 мм, содержащего 90% оксида никеля и 10% оксида магния в количестве 300 г. После герметизации реактора полость его продували аргоном и включали нагревательные элементы и подогреватель газа. В полость реактора подавали метан и в реакционной зоне поддерживали температуру 750°С, которую выдерживали в течение 25 мин. Затем отключали нагрев и включали систему принудительного охлаждения и после снижения температуры в реакторе до безопасной открывали реактор и производили замену отработанных подвесок с таблетками катализатора на новые. После этого повторяли предыдущие операции. Продолжительность одного цикла синтеза составила 28 мин. Результат: 3600 г углеродного наноматериала в виде многослойных нанотрубок без примесей сажи и графита.

Пример 2. В реакторе по примеру 1 на подвесках помещали таблетки катализатора диаметром 22 мм и высотой 16 мм, содержащего 80% соединений оксида железа, кобальта и 20% оксида магния в количестве 420 г. После герметизации реактора полость его продували аргоном и включали нагревательные элементы и подогреватель газа и в полость реактора подавали бытовой газ - смесь пропана и бутана и нагревали катализатор до температуры 650°С, которую выдерживали в течение 30 мин. Затем отключали нагрев и включали систему принудительного охлаждения и после снижения температуры в реакторе до безопасной открывали реактор и производили замену отработанных подвесок с таблетками катализатора на новые. После этого повторяли предыдущие операции. Продолжительность одного цикла синтеза составила 35 мин. Результат: 4800 г углеродного наноматериала в виде многослойных нанотрубок без примесей сажи и графита.

Продукт, полученный согласно примерам 1 и 2, очищали от катализатора химическим способом - обработкой азотной кислотой. После промывки и просушивания были получены одномерные наномасштабные нитевидные образования поликристаллического графита в виде сыпучего порошка со следующими характеристиками:

наружный диаметр от 15 до 50 нм;

длина от 0,5 до 2 µм и более;

насыпная плотность от 0,4 до 0,46 г/см3;

Общий объем примесей не превышал 1,1%.

Предлагаемый способ обеспечивает повышение производительности синтеза углеродных наноматериалов.


СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 35.
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.40d3

Способ модифицирования углеродных наноматериалов

Изобретение относится к химической промышленности и может быть использовано при получении стабильных дисперсий в органических растворителях и изготовлении полимерных композитов. Углеродные наноматериалы - нанотрубки или графен, частицы которых содержат на поверхности гидроксильные и/или...
Тип: Изобретение
Номер охранного документа: 0002548083
Дата охранного документа: 10.04.2015
20.11.2015
№216.013.9268

Способ озонирования углеродных наноматериалов

Изобретение может быть использовано для получения функционализированных углеродных наноматериалов. Углеродные нанотрубки озонируют в проточном сосуде в присутствии трёхокиси серы или азотной кислоты, ускоряющих воздействие озона на их поверхность. Трёхокись серы или азотную кислоту подают в...
Тип: Изобретение
Номер охранного документа: 0002569096
Дата охранного документа: 20.11.2015
27.12.2015
№216.013.9e42

Способ получения порошкового сорбента

Изобретение относится к области сорбционной техники, в частности к способу получения сорбентов для очистки воздуха от неорганических одорантов и микроколичеств высокотоксичных органических веществ. Способ включает приготовление пропиточного раствора, пропитку им активного угля, вылеживание,...
Тип: Изобретение
Номер охранного документа: 0002572144
Дата охранного документа: 27.12.2015
10.06.2016
№216.015.4463

Способ получения слоистого пластика

Изобретение относится к области изготовления слоистых пластиков, которые могут быть использованы в авиа- и судостроении. Способ получения слоистого пластика заключается в получении связующего, модифицированного углеродными нанотрубками посредством совместного диспергирования углеродных...
Тип: Изобретение
Номер охранного документа: 0002586149
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.a2e7

Модифицированный наноуглеродом электролит анодирования детали из алюминия или его сплава

Изобретение относится к области гальванотехники и нанотехнологии. Электролит содержит серную кислоту, композицию «ЭКОМЕТ-А200» и порошок углеродного наноматериала «Таунит», введенный с помощью ультразвукового диспергатора, при этом он содержит компоненты при следующем соотношении, г/л: серная...
Тип: Изобретение
Номер охранного документа: 0002607075
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b441

Способ охлаждения дыхательной газовой смеси в средствах индивидуальной защиты органов дыхания

Изобретение относится к области спасательной техники, а именно к средствам индивидуальной защиты органов дыхания, преимущественно маятникового типа, работающим на химически связанном кислороде. Дыхательную газовую смесь (ДГС) пропускают между волокнистыми подложками, на которые предварительно...
Тип: Изобретение
Номер охранного документа: 0002614028
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.c6e3

Способ получения дисперсий углеродных наноматериалов

Изобретение относится к нанотехнологии и может быть использовано при изготовлении нанокомпозитов. Углеродный наноматериал - нанотрубки или графен, частицы которых содержат на поверхности кислородсодержащие группы, обрабатывают раствором водорастворимого резольного фенолформальдегидного полимера...
Тип: Изобретение
Номер охранного документа: 0002618881
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.cbe2

Способ получения мезопористого углерода

Изобретение направлено на получение углеродных материалов с развитой поверхностью и пористостью. Согласно изобретению исходное вещество, представляющее собой смесь водорастворимой фенолформальдегидной смолы, углевода и графеновых нанопластинок, подвергают термообработке при температуре до...
Тип: Изобретение
Номер охранного документа: 0002620404
Дата охранного документа: 25.05.2017
26.08.2017
№217.015.e4ed

Строительная композиция и комплексная добавка для строительной композиции

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении строительных, преимущественно бетонных или растворных, смесей в производстве бетонных и железобетонных изделий и конструкций сборного и монолитного строительства и в других производствах....
Тип: Изобретение
Номер охранного документа: 0002626493
Дата охранного документа: 28.07.2017
Показаны записи 11-16 из 16.
27.09.2014
№216.012.f794

Способ функционализации углеродных наноматериалов

Изобретение направлено на получение функционализированных углеродных нанотрубок, обладающих хорошей совместимостью с полимерными матрицами. Углеродные нанотрубки подвергают обработке в парах перекиси водорода при температуре от 80°С до 160°С в течение 1-100 ч. Обработку можно проводить в...
Тип: Изобретение
Номер охранного документа: 0002529217
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.ff23

Дисперсия углеродных нанотрубок

Изобретение может быть использовано при изготовлении композитов, содержащих органические полимеры. Дисперсия углеродных нанотрубок содержит 1 мас.ч. окисленных углеродных нанотрубок и 0,25-10 мас.ч. продукта взаимодействия органического амина, содержащего в молекуле по крайней мере одну...
Тип: Изобретение
Номер охранного документа: 0002531171
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.ff24

Способ получения дисперсий углеродных нанотрубок

Изобретение может быть использовано при изготовлении композитов на основе полимеров. Углеродные нанотрубки функционализируют карбоксильными и/или гидроксильными группами и обрабатывают ультразвуком в органическом растворителе в присутствии продуктов реакции тетрабутилтитаната со стеариновой...
Тип: Изобретение
Номер охранного документа: 0002531172
Дата охранного документа: 20.10.2014
10.04.2015
№216.013.40d3

Способ модифицирования углеродных наноматериалов

Изобретение относится к химической промышленности и может быть использовано при получении стабильных дисперсий в органических растворителях и изготовлении полимерных композитов. Углеродные наноматериалы - нанотрубки или графен, частицы которых содержат на поверхности гидроксильные и/или...
Тип: Изобретение
Номер охранного документа: 0002548083
Дата охранного документа: 10.04.2015
20.11.2015
№216.013.9268

Способ озонирования углеродных наноматериалов

Изобретение может быть использовано для получения функционализированных углеродных наноматериалов. Углеродные нанотрубки озонируют в проточном сосуде в присутствии трёхокиси серы или азотной кислоты, ускоряющих воздействие озона на их поверхность. Трёхокись серы или азотную кислоту подают в...
Тип: Изобретение
Номер охранного документа: 0002569096
Дата охранного документа: 20.11.2015
25.08.2017
№217.015.cbe2

Способ получения мезопористого углерода

Изобретение направлено на получение углеродных материалов с развитой поверхностью и пористостью. Согласно изобретению исходное вещество, представляющее собой смесь водорастворимой фенолформальдегидной смолы, углевода и графеновых нанопластинок, подвергают термообработке при температуре до...
Тип: Изобретение
Номер охранного документа: 0002620404
Дата охранного документа: 25.05.2017
+ добавить свой РИД