×
10.05.2013
216.012.3e7d

Результат интеллектуальной деятельности: ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ, СПОСОБ ИСПЫТАНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ, СПОСОБ ПРОИЗВОДСТВА ПАРТИИ ТУРБОРЕАКТИВНЫХ ДВИГАТЕЛЕЙ (ВАРИАНТЫ), СПОСОБ ЭКСПЛУАТАЦИИ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения, а именно к авиационным двигателям типа турбореактивных, способам их испытания, опытного и промышленного производства и эксплуатации. В группе изобретений изложены способы испытаний ТРД. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых но программе определяют повреждаемость наиболее загруженных деталей. Определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5-6 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в разработке способов испытаний авиационных турбореактивных двигателей с повышенной достоверностью результатов испытаний на любом из этапов от опытно-промышленного образца до промышленного производства и летной эксплуатации авиационных двигателей. 5 н. и 3 з.п. ф-лы.

Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения, а именно к авиационным двигателям типа турбореактивных, способам их испытания, опытного и промышленного производства и эксплуатации.

Известен способ испытания турбореактивного двигателя по определению ресурса и надежности работы, заключающийся в чередовании режимов при выполнении этапов длительностью, превышающей время полета. Двигатель испытывают поэтапно. Длительность безостановочной работы на стенде и чередование режимов устанавливают в зависимости от назначения двигателя (Л.С.Скубачевский. Испытание воздушно-реактивных двигателей. Москва, Машиностроение, 1972, с.13-15).

Известный способ характеризуется наибольшей длительностью и энергоемкостью испытаний с доведением до полного разрушения отдельных двигателей.

Известен турбореактивный двигатель, который выполнен двухконтурным, содержит корпус, опертые на него компрессоры и турбины, охлаждаемую камеру сгорания, топливно-насосную группу, реактивные сопла и систему управления с командными и исполнительными органами (Шульгин В.А., Гайсинский С.Я. Двухконтурные турбореактивные двигатели малошумных самолетов. М.: изд. Машиностроение, 1984, с.с.17-120).

Известен способ разработки и испытаний авиационных турбореактивных двигателей, заключающийся в измерении параметров по режимам работы двигателя и приведении их к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий (Ю.А.Литвинов, В.О.Боровик. Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей. М.: Машиностроение, 1979, 288 с, стр.136-137).

Известен способ разработки и испытаний авиационных двигателей типа турбореактивных, включающий отработку заданных режимов, контроль параметров и оценку по ним ресурса и надежности работы двигателя. С целью сокращения времени испытаний при доводке двигателей 10-20% испытания проводят с температурой газа перед турбиной, превышающей максимальную рабочую температуру на 45-65°С (SU 1151075 А1, опубл. 10.08.2004).

Известен способ промышленного производства авиационных двигателей типа турбореактивных, включающий изготовление и заводскую сборку силовых, контролирующих, командных и исполнительных агрегатов, блоков и систем двигателя, включая компрессоры, турбины, камеры сгорания, воздушную, топливную и масляную системы и систему управления двигателем. (Богуслаев В.А., Качан А.Я., Долматов А.И., Мозговой В.Ф., Кореневский Н.Я. Технология производства авиационных двигателей Запорожье. Изд. Мотор Сич, 2009 [учеб.]; ч.4. Сборка авиационных двигателей. Раздел 3, с.26-61.

Известен способ эксплуатации авиационных двигателей типа ТРД, включающий операции обслуживания, предполетной подготовки, запуска, прогрева, вывода на предусмотренные регламентом полетные режимы и останов двигателя, а также профилактику, текущие и капитальный ремонты. (Ю.А.Литвинов, В.О.Боровик. Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей. М.: Машиностроение, 1979, с.288).

Общими недостатками указанных известных технических решений являются повышенная трудо- и энергоемкость испытаний и недостаточно высокая оценка ресурса и надежности работы двигателя в широком диапазоне полетных режимов и условий эксплуатации, вследствие неотработанности программы приведения конкретных результатов испытаний к результатам, отнесенным к стандартным условиям эксплуатации двигателя известными способами, которые не учитывают с достаточной корректностью изменение параметров и режимов работы двигателя. Это осложняет возможность приведения экспериментальных параметров испытаний к параметрам, максимально приближенным к реальной структуре и удельному соотношению режимов работы двигателя в процессе эксплуатации, на каждой из стадий разработки, доводки, опытно-промышленного, серийного производства и эксплуатации авиационных двигателей.

Задача изобретения состоит в разработке авиационных двигателей типа турбореактивных, способов их испытаний, доводки, опытного и промышленного производства и эксплуатации с повышенной достоверностью результатов испытаний на любом из этапов от опытно-промышленного образца до промышленного производства и летной эксплуатации авиационных двигателей, в том числе с включением разработки типовых полетных циклов, определения ресурса и надежности двигателя в условиях, максимально приближенных к реальной структуре и удельному соотношению режимов работы двигателя в процессе эксплуатации.

Поставленная задача в части способа испытания турбореактивного двигателя (ТРД) решается тем, что согласно изобретению включает чередование режимов при выполнении этапов испытания длительностью работы турбореактивного двигателя, превышающей программное время полета, для чего сначала формируют типовые полетные циклы и определяют повреждаемость наиболее нагруженных деталей, исходя из этого определяют необходимое количество циклов нагружения при испытании, а затем формируют и производят полный объем испытаний, включающий выполнение последовательности испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим «малого газа», останов и цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов работы турбореактивного двигателя, в совокупности превышающем время полета в 5÷6 раз; при этом различный размах диапазона изменения режимов работы двигателя реализуют, изменяя уровень перепада газа в конкретных режимах испытания от начального до наибольшего - максимального или полного форсированного режима работы двигателя путем переноса начальной точки отсчета при выполнении соответствующего режима, принимая последнюю в одном из режимов в положении, соответствующем уровню «малый газ», а в других режимах - в промежуточных или конечном положениях, соответствующих различным процентным долям или полному значению уровня газа максимального или полного форсированного режима, причем быстрый выход на максимальный или форсированный режимы на части испытательного цикла осуществляют в темпе приемистости с последующим сбросом.

При этом часть испытательных циклов могут осуществлять без прогрева на режиме «малый газ» после запуска.

Испытательный цикл могут формировать на основе полетных циклов для боевого и учебного применения турбореактивного двигателя.

Поставленная задача в части способа производства партии турбореактивных двигателей, в котором выполняют опытную партию ТРД, при этом производят, по меньшей мере, сборку каждого опытного двигателя, в том числе монтируют корпус, опертые на него турбины с роторами, компрессоры, топливно-насосную группу, реактивное сопло, преимущественно, с изменяющимися критическим сечением и вектором тяги, охлаждаемую камеру сгорания и систему управления с командным и исполнительными органами и подвергают испытанию смонтированные опытные ТРД на определение ресурса и надежности в условиях многорежимных полетов, решается тем, что согласно изобретению испытания производят приведенным выше способом испытания ТРД, по завершению программы испытаний анализируют полученные результаты, устраняют выявленные недостатки, при необходимости вносят изменения в конструкцию или в отдельные узлы ТРД и считают опытный образец выполненным и соответствующим заданной программе.

Поставленная задача в части турбореактивного двигателя решается тем, что согласно изобретению двигатель выполнен двухконтурным, содержит корпус, опертые на него турбины с роторами, компрессоры, топливно-насосную группу, реактивное сопло с изменяющимися критическим сечением и вектором тяги, охлаждаемую камеру сгорания и систему управления с командным и исполнительными органами, при этом двигатель, по меньшей мере, на одной из стадий - доводки, опытно-промышленного, серийного производства и/или эксплуатации, подвергнут испытаниям приведенным выше способом испытания ТРД на определение ресурса и надежности по программе воспроизведения условий, максимально приближенных к реальной структуре и удельному соотношению заданных режимов работы двигателя.

Поставленная задача в части способа производства партии турбореактивных двигателей, в котором осуществляют, по меньшей мере, серийную промышленную заводскую сборку двигателей, при этом в каждом двигателе монтируют корпус и силовые агрегаты, включая компрессоры, турбины, не менее чем одну камеру сгорания, реактивное сопло, воздушную, топливную и масляную гидравлические системы, мониторинговые, командные и исполнительные элементы, блоки и системы, и производят стендовые испытания серийных турбореактивных двигателей из партии идентично произведенных ТРД, решается тем, что согласно изобретению испытанию подвергают группу двигателей из промышленной партии ТРД и производят испытания приведенным выше способом испытания ТРД на определение ресурса и надежности работы и производят проверку соответствия указанных ресурсов заданным значениям, при необходимости с последующим переводом результатов испытаний, полученных в конкретных атмосферно-климатических условиях, к значениям, соответствующим стандартным атмосферным условиям, с возможностью последующего пересчета конечных результатов, при необходимости, к любым требуемым атмосферно-климатическим условиям, для работы в которых предназначен тот или иной серийный двигатель или партия одновременно промышленно произведенных идентичных турбореактивных двигателей.

Поставленная задача в части способа эксплуатации турбореактивного двигателя, в котором перед каждым запуском выполняют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на предусмотренные регламентом рабочие режимы, периодически производят профилактические осмотры, текущие ремонты, а также, по меньшей мере, один капитальный ремонт, решается тем, что согласно изобретению после капитального ремонта двигатель подвергают стендовым испытаниям приведенным выше способом испытания ТРД на определение ресурса и надежности работы двигателя, по результатам которых, при необходимости, производят послеремонтную доводку и, если необходимо, вариантно выполняют дополнительные испытания, скоррелированные с тематическим содержанием послеремонтной доводки и регламентом последующего этапа эксплуатации турбореактивного двигателя.

При этом после капитального ремонта и/или послеремонтной доводки турбореактивный двигатель могут подвергать испытанию на помпаж и определение границ газодинамической устойчивости работы.

Технический результат, обеспечиваемый приведенной совокупностью признаков, состоит в разработке способов испытаний на этапах выполнения опытных образцов, доводки, а также на стадии серийных промышленно произведенных и прошедших капитальный ремонт турбореактивных двигателей, повышающих достоверность результатов испытаний, что достигается за счет вариантно разработанного в изобретении чередования режимов при выполнении этапов испытания, которые по длительности превышают программное время полета, при этом предварительно формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей и исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5 раз, причем быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Это позволяет упростить последующие испытания, повысить корректность и расширить репрезентативность оценки ресурса и надежности работы двигателя на всех этапах доводки, серийного промышленного производства и летной эксплуатации турбореактивных двигателей с корректным распространением репрезентативных оценок на широкий диапазон региональных и сезонных условий последующей летной эксплуатации двигателей, выполняемой в соответствии с изобретением.

В предлагаемом способе испытания турбореактивного двигателя испытания проводят с чередованием режимов и длительностью работы двигателя, превышающей программное время полета. Сначала формируют типовые полетные циклы и определяют повреждаемость наиболее нагруженных деталей. Определяют необходимое количество циклов нагружения при испытании. Формируют и производят полный объем испытаний, включающий выполнение последовательности испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим «малого газа», останов. Выполняют цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов работы турбореактивного двигателя, превышающем время полета в 5÷6 раз. Различный размах диапазона изменения режимов работы двигателя реализуют, изменяя уровень перепада газа в конкретных режимах испытания от начального до наибольшего - максимального или полного форсированного режима работы двигателя, путем переноса начальной точки отсчета при выполнении соответствующего режима, принимая последнюю в одном из режимов в положении, соответствующем уровню «малый газ», а в других режимах - в промежуточных или конечном положениях, соответствующих различным процентным долям или полному значению уровня газа максимального или полного форсированного режима. Быстрый выход на максимальный или форсированный режимы на части испытательного цикла осуществляют в темпе приемистости с последующим сбросом.

Часть испытательных циклов осуществляют без прогрева на режиме «малый газ» после запуска.

Испытательный цикл формируют на основе полетных циклов для боевого и учебного применения турбореактивного двигателя.

В способе производства партии турбореактивных двигателей, в котором выполняют опытную партию ТРД, производят, по меньшей мере, сборку каждого опытного двигателя. Монтируют корпус, опертые на него турбины с роторами, компрессоры, топливно-насосную группу, реактивное сопло, преимущественно, с изменяющимися критическим сечением и вектором тяги, охлаждаемую камеру сгорания и систему управления с командным и исполнительными органами. Далее подвергают испытанию смонтированные опытные ТРД на определение ресурса и надежности в условиях многорежимных полетов. Испытания производят приведенным выше способом испытания ТРД. По завершении программы испытаний анализируют полученные результаты, устраняют выявленные недостатки. При необходимости вносят изменения в конструкцию или в отдельные узлы ТРД и считают опытный образец выполненным и соответствующим заданной программе.

Турбореактивный двигатель выполнен двухконтурным, содержит корпус, опертые на него турбины с роторами, компрессоры, топливно-насосную группу, реактивное сопло с изменяющимися критическим сечением и вектором тяги, охлаждаемую камеру сгорания и систему управления с командным и исполнительными органами. Двигатель, по меньшей мере, на одной из стадий - доводки, опытно-промышленного, серийного производства и/или эксплуатации подвергнут испытаниям приведенным выше способом испытания ТРД на определение ресурса и надежности по программе воспроизведения условий, максимально приближенных к реальной структуре и удельному соотношению заданных режимов работы двигателя.

В способе производства партии турбореактивных двигателей осуществляют, по меньшей мере, серийную промышленную заводскую сборку двигателей. В каждом двигателе монтируют корпус и силовые агрегаты, включая компрессоры, турбины, не менее чем одну камеру сгорания, реактивное сопло, воздушную, топливную и масляную гидравлические системы, мониторинговые, командные и исполнительные элементы, блоки и системы. Производят стендовые испытания серийных турбореактивных двигателей из партии идентично произведенных ТРД. Испытанию подвергают группу двигателей из промышленной партии ТРД и производят испытания приведенным выше способом испытания ТРД на определение ресурса и надежности работы. Производят проверку соответствия указанных ресурсов заданным значениям. При необходимости переводят результаты испытаний, полученные в конкретных атмосферно-климатических условиях, к значениям, соответствующим стандартным атмосферным условиям, с возможностью последующего пересчета конечных результатов, при необходимости, к любым требуемым атмосферно-климатическим условиям, для работы в которых предназначен тот или иной серийный двигатель или партия одновременно промышленно произведенных идентичных турбореактивных двигателей.

В способе эксплуатации турбореактивного двигателя перед каждым запуском выполняют проверку готовности двигателя к работе. Производят запуск, прогрев и вывод двигателя на предусмотренные регламентом рабочие режимы. Периодически производят профилактические осмотры, текущие ремонты, а также, по меньшей мере, один капитальный ремонт. После капитального ремонта двигатель подвергают стендовым испытаниям указанным выше способом испытания турбореактивного двигателя после капитального ремонта в процессе эксплуатации ТРД на определение ресурса и надежности работы двигателя. По результатам испытаний, при необходимости, производят послеремонтную доводку и, если необходимо, вариантно выполняют дополнительные испытания, скоррелированные с тематическим содержанием послеремонтной доводки и регламентом последующего этапа эксплуатации турбореактивного двигателя.

После капитального ремонта и/или послеремонтной доводки турбореактивный двигатель подвергают испытанию на помпаж и определение границ газодинамической устойчивости работы.

Пример реализации способа испытания турбореактивного двигателя (ТРД)

Испытанию подвергают ТРД с проектным ресурсом 500 часов общей наработки до первого капитального ремонта. В указанном ресурсе задана наработка 20 ч на максимальном режиме, из них 5 ч на полном форсированном режиме. Формируют типовые полетные циклы (ТПЦ) и устанавливают заданное время работы двигателя 1 ч, эквивалентное полетному времени летательного аппарата (ЛА) по принятому ТПЦ. На основании ТПЦ расчетным путем определяют повреждаемость наиболее нагруженных деталей. Исходя из этого определяют необходимое эквивалентное по повреждаемости количество циклов при испытаниях. В данном варианте принимают следующий состав нагрузочных испытательных циклов - выполнение 700 (400+300) запусков с выходом соответственно на максимальный и форсированные режимы, а также 400 приемистостей от режима «малый газ» (МГ) до максимального (Макс.) и 300 с режима 0,8 Макс. до форсированного (Фор) режима.

Устанавливают коэффициент запаса на требуемое количество испытательных нагрузочных циклов и времени наработки К=1, 2.

Формируют полный объем ресурсных испытаний и разрабатывают программу проведения испытаний.

1. Общую наработку при проведении ресурсных испытаний принимают 500*1,2=600 ч, из них наработку на максимальном режиме принимают (20-5)* 1,2=18 ч, а на форсированном режиме 5*1,2=6 ч.

2. Принимают продолжительность этапа испытаний 5 ч, и определяют количество пятичасовых этапов 600:5=120.

3. Устанавливают количество запусков с учетом коэффициента запаса 700*1,2=840, а также от МГ до Макс 400*1,2=480 и от 0,8 Макс до Фор 300*1,2=360.

4. Каждый пятичасовой этап включает 840:120=7, приемистостей от режима МГ до Макс 480:120=4 и приемистостей с режима 0,8 Макс до Фор 360:120=3, а также наработку на максимальном и форсированном режимах 18*60:120=9 мин, 360:120=3 мин.

5. Устанавливают последовательность испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим МГ и останов. Затем предусматривают цикл длительной работы с многократным чередованием нагрузочных циклов с размахом диапазонов изменения режимов от МГ до Макс и 0,8 Макс до Фор в пределах установленного выше объема испытательных этапов.

Выполняют испытания ТРД по указанной программе. Затем проводят дефектацию двигателя и анализ результатов испытаний, по которым принимают решение о признании двигателя выдержавшим испытания.

Изложенную выше последовательность испытания турбореактивных двигателей применяют на всех этапах от доводки опытных образцов до промышленного производства, эксплуатации и капитального ремонта двигателей.

Источник поступления информации: Роспатент

Показаны записи 341-350 из 377.
09.05.2019
№219.017.4b93

Двухсекционный центробежно-шестеренный насос

Изобретение относится к авиадвигателестроению и касается устройства центробежно-шестеренных насосов маслосистем авиационных газотурбинных двигателей. Двухсекционный центробежно-шестеренный насос содержит корпус с двумя парами разделителей полостей всасывания и нагнетания и шестерни с...
Тип: Изобретение
Номер охранного документа: 0002250394
Дата охранного документа: 20.04.2005
29.05.2019
№219.017.66a8

Плоское сопло турбореактивного двигателя

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей. Плоское сопло турбореактивного двигателя содержит две неподвижные боковые стенки и установленные между ними верхнюю и нижнюю подвижные створки. В каждую подвижную створку...
Тип: Изобретение
Номер охранного документа: 0002374477
Дата охранного документа: 27.11.2009
29.05.2019
№219.017.688b

Магнитожидкостное уплотнение вала

Изобретение относится к конструкциям уплотнений между подвижными относительно одна другой поверхностями. Магнитожидкостное уплотнение вала содержит корпус из немагнитного материала с кольцевой магнитной системой внутри него, включающей постоянный магнит с полюсными приставками и жестко...
Тип: Изобретение
Номер охранного документа: 0002451225
Дата охранного документа: 20.05.2012
29.05.2019
№219.017.6a11

Способ управления газотурбинным двигателем с форсажной камерой сгорания и система для его осуществления

Группа изобретений относится к области авиационного двигателестроения. Управление газотурбинным двигателем (ГТД) с форсажной камерой сгорания (ФКС) осуществляется по одному из трех контуров управления, на каждом из контуров задается индивидуальная программа управления, которая корректируется по...
Тип: Изобретение
Номер охранного документа: 0002466287
Дата охранного документа: 10.11.2012
09.06.2019
№219.017.769d

Масляная система авиационного газотурбинного двигателя

Масляная система авиационного газотурбинного двигателя относится к области авиадвигателестроения, преимущественно к маслосистеме авиационного газотурбинного двигателя для маневренных самолетов, и позволяет замедлить снижение уровня масла в маслобаке авиационного газотурбинного двигателя...
Тип: Изобретение
Номер охранного документа: 0002273746
Дата охранного документа: 10.04.2006
09.06.2019
№219.017.7721

Технологическая линия для изготовления протяженных строительных конструкций и ригель, балка, колонна, изготовленные на этой технологической линии

Изобретение относится к области строительства, а именно к установкам для изготовления протяженных строительных конструкций с ненапрягаемой и напрягаемой арматурой, в том числе ригелей и балок, колонн, и конструкциям колонн, ригелей и балок, и может быть использовано при возведении жилых,...
Тип: Изобретение
Номер охранного документа: 0002288840
Дата охранного документа: 10.12.2006
09.06.2019
№219.017.7727

Способ изготовления протяженных строительных конструкций, протяженная строительная конструкция и колонна, изготовленные этим способом

Изобретение относится к области строительства, а именно к установкам для изготовления протяженных строительных конструкций с ненапрягаемой и напрягаемой арматурой, в том числе ригелей, полуригелей - технологических полуфабрикатов ригелей для возведения зданий с последующим омоноличиванием...
Тип: Изобретение
Номер охранного документа: 0002288839
Дата охранного документа: 10.12.2006
09.06.2019
№219.017.77a7

Здание и способ возведения зданий

Изобретение относится к области строительства и может быть использовано при возведении жилых, общественных и административных зданий и сооружений, а также при их восстановлении или реконструкции. Технический результат изобретения состоит в сокращении трудо- и материалозатрат и обеспечении...
Тип: Изобретение
Номер охранного документа: 0002293822
Дата охранного документа: 20.02.2007
09.06.2019
№219.017.77a9

Бетоноукладчик

Изобретение относится к области строительной техники и в частности к оборудованию для производства железобетонных изделий и конструкциям бетоноукладчиков. Бетоноукладчик, согласно изобретению, содержит систему электроснабжения, смонтированный на установленной с возможностью перемещения...
Тип: Изобретение
Номер охранного документа: 0002293653
Дата охранного документа: 20.02.2007
09.06.2019
№219.017.77bc

Способ изготовления строительных конструкций и строительные конструкции, изготовленные этим способом

Изобретение относится к области строительства, а именно к способам изготовления строительных конструкций с ненапрягаемой и напрягаемой арматурой, и может быть использовано при возведении жилых, общественных и административных зданий и сооружений, а также при их восстановлении или реконструкции....
Тип: Изобретение
Номер охранного документа: 0002292261
Дата охранного документа: 27.01.2007
Показаны записи 341-350 из 416.
10.04.2019
№219.017.02f1

Устройство для поворота реактивного сопла турбореактивного двигателя

Устройство для поворота реактивного сопла турбореактивного двигателя содержит неподвижный корпус с двумя дополнительными опорами Г-образной формы со стороны его наружной поверхности и подвижный корпус. Подвижный корпус шарнирно соединен с неподвижным корпусом в двух диаметрально противоположных...
Тип: Изобретение
Номер охранного документа: 0002310767
Дата охранного документа: 20.11.2007
19.04.2019
№219.017.30e5

Система топливоподачи газотурбинного двигателя

Изобретение направлено на снижение подогрева топлива в системе топливоподачи газотурбинного двигателя, позволяющее повысить ресурс конструктивных элементов этой системы и надежность ее работы, а также уменьшить тепловую заметность летательного аппарата. Технический результат достигается тем,...
Тип: Изобретение
Номер охранного документа: 0002413856
Дата охранного документа: 10.03.2011
19.04.2019
№219.017.31fd

Способ регулирования авиационного турбореактивного двигателя

Способ регулирования авиационного турбореактивного двигателя относится к способам регулирования, чувствительным к параметрам двигателя и внешней среды, в частности к температуре окружающего воздуха, и позволяет кратковременно на время, не меньшее чем время пробега самолета по палубе авианосца,...
Тип: Изобретение
Номер охранного документа: 0002456464
Дата охранного документа: 20.07.2012
19.04.2019
№219.017.3230

Двухконтурный газотурбинный двигатель

Двухконтурный газотурбинный двигатель содержит компрессор с думисной полостью, камеру сгорания, турбину высокого и низкого давления, теплообменник. Теплообменник размещен в наружном контуре, вход которого сообщен со вторичной зоной камеры сгорания, а выход через управляющие клапаны с воздушным...
Тип: Изобретение
Номер охранного документа: 0002459967
Дата охранного документа: 27.08.2012
19.04.2019
№219.017.3474

Ротор турбины

Изобретение относится к элементам турбины с охлаждаемыми рабочими лопатками и с противовибрационными средствами на роторе. Ротор турбины содержит установленные своей замковой частью в пазах диска охлаждаемые рабочие лопатки, выполненные с полками на ножках замковой части. На поверхности полок...
Тип: Изобретение
Номер охранного документа: 0002460886
Дата охранного документа: 10.09.2012
29.04.2019
№219.017.3e44

Тракт воздушного охлаждения лопатки соплового аппарата турбины высокого давления газотурбинного двигателя (варианты)

Тракт воздушного охлаждения сопловой лопатки выполнен трехканальным. Сопловая лопатка выполнена полой, с аэродинамическим профилем и наделена радиальной перегородкой, разделяющей внутренний объем пера на переднюю и заднюю полости, снабженные дефлекторами. Входной участок первого канала тракта...
Тип: Изобретение
Номер охранного документа: 0002686430
Дата охранного документа: 25.04.2019
29.04.2019
№219.017.411b

Система смазки газотурбинного двигателя

Изобретение относится системам смазки механических устройств, например двигателей, в частности к устройствам для сигнализации о наличии металлических частиц в системе смазки газотурбинных двигателей (ГТД), и позволяет диагностировать начало разрушения двигателя при появлении стружки в масле....
Тип: Изобретение
Номер охранного документа: 0002312240
Дата охранного документа: 10.12.2007
29.04.2019
№219.017.413c

Сигнализатор наличия металлических частиц в системе смазки

Сигнализатор предназначен для сигнализации о наличии металлических частиц в системе смазки газотурбинных двигателей и позволяет диагностировать начало разрушения двигателя при появлении стружки в масле. Сигнализатор содержит пакет кольцевых электропроводящих пластин, разделенных...
Тип: Изобретение
Номер охранного документа: 0002315900
Дата охранного документа: 27.01.2008
29.04.2019
№219.017.469f

Технологический комплекс системы разделения суспензий руд

Изобретение относится к технике фракционного разделения суспензий руд. Технологический комплекс содержит блок гидроциклонов с распределителем суспензий в виде пульпы, электронасосный агрегат, всасывающий и напорный пульпопроводы, транспортер подачи грубоизмельченной руды, мельницу тонкого...
Тип: Изобретение
Номер охранного документа: 0002464330
Дата охранного документа: 20.10.2012
29.04.2019
№219.017.46a7

Блок гидроциклонов системы фракционного разделения суспензий руд тонкого помола

Изобретение относится к технике разделения суспензий руд. Система фракционного разделения суспензий полиметаллических руд тонкого помола содержит блок гидроциклонов, распределитель суспензии в виде пульпы и от одного до шести гидроциклонов общей производительностью от 12 до 70 м/ч. Гидроциклоны...
Тип: Изобретение
Номер охранного документа: 0002464103
Дата охранного документа: 20.10.2012
+ добавить свой РИД