×
10.05.2013
216.012.3d47

Результат интеллектуальной деятельности: ТЕПЛОФИЗИЧЕСКАЯ МОДЕЛЬ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к созданию и отработке систем терморегулирования космических аппаратов (КА), преимущественно телекоммуникационных спутников. У таких КА данные системы выполнены по комбинированной схеме: тепловые трубы в сочетании с дублированными жидкостными контурами. Модель КА включает в себя тепловые (и массовые) имитаторы приборов ретранслятора, установленные на внутренних обшивках северной и южной панелей КА. В панели встроены горизонтально расположенные тепловые трубы, а жидкостные коллекторы указанных контуров расположены на внутренних обшивках между данными имитаторами. Имитаторы приборов платформы установлены на обшивках сотовых панелей с встроенными жидкостными коллекторами. Полная площадь внешних поверхностей северных и южных панелей выполнена для случая КА с максимально возможным энергопотреблением (например, 16 кВт). Электронасосные агрегаты и гидроаккумуляторы контуров также изготовлены применительно к этому случаю. Для конкретных теплофизических моделей КА с меньшим энергопотреблением (например, 10 кВт) симметричные одинаковые части площадей северной и южной панелей, свободные от тепловых имитаторов, покрыты экранно-вакуумной теплоизоляцией. При этом расходы теплоносителя в жидкостных контурах регулируются дросселями. В результате холодопроизводительности радиаторных (внешних) поверхностей северной и южной панелей таковы, что обеспечивается требуемый температурный режим имитаторов приборов ретранслятора и платформы. Техническим результатом изобретения является упрощение конструкции и технологии изготовления теплофизических моделей различных КА с любым энергопотреблением, например, из диапазона от 3 кВт до 16 кВт. 2 ил.
Основные результаты: Теплофизическая модель космического аппарата, включающая в себя вертикально расположенные северную и южную сотовые панели, наружные поверхности внешних обшивок которых покрыты солнечным оптическим отражателем, с встроенными в панели горизонтально расположенными тепловыми трубами и с преимущественно вертикально расположенными между имитаторами приборов полезной нагрузки на внутренней обшивке жидкостными коллекторами двух дублированных независимых гидравлических жидкостных контуров, в каждом из которых установлен электронасосный агрегат, вход которого соединен с жидкостной полостью гидроаккумулятора, газовая полость которого, отделенная сильфоном от жидкостной полости, частично заполнена рабочей жидкостью, а также расположенные между северной и южной панелями сотовые панели с встроенными жидкостными коллекторами, на обшивках которых установлены имитаторы приборов платформы, отличающаяся тем, что для теплофизической модели конкретного космического аппарата свободная от имитаторов приборов часть площади каждой панели - северной и южной - симметрично с обеих сторон покрыта экранно-вакуумной теплоизоляцией согласно условию: где F - суммарная площадь каждой панели, одинаковая с обеих сторон, покрытая экранно-вакуумной теплоизоляцией, м;Q - максимально возможное избыточное тепловыделение работающих имитаторов приборов полезной нагрузки и платформы в случае установки их на всей площади панелей, максимально возможные площади которых выполнены исходя из возможности размещения аппарата во всей зоне полезного груза под обтекателем для существующей самой мощной ракеты-носителя, Вт;Q - максимально возможное избыточное тепловыделение работающих имитаторов приборов полезной нагрузки и платформы для разрабатываемого конкретного космического аппарата, Вт;g - средняя удельная холодопроизводительность каждого квадратного метра наружной поверхности с оптическим солнечным отражателем внешней обшивки вышеуказанных сотовых панелей, Вт/м, а в каждом жидкостном контуре в последовательной линии установлен регулируемый дроссель.

Изобретение относится к космической технике, в частности к теплофизическим моделям (тепловым макетам) телекоммуникационных спутников.

В настоящее время приборы ретранслятора вышеуказанных спутников устанавливаются на внутренних обшивках сотовых панелей, размещенных на космическом аппарате (см. патент Российской Федерации RU 2346861 С2 [1]) на северной и южной сторонах (северная (+Z) и южная (-Z) панели), а наружные поверхности внешних обшивок их покрыты оптическим солнечным отражателем и являются радиаторами - излучателями избыточного тепла, выделяемыми приборами спутника.

Энергопотребление вновь разрабатываемых спутников колеблется в широком диапазоне (например, от ~ 3 кВт до 15 кВт, до 95% из которых приходится на ретранслятор; при этом максимально возможное энергопотребление спутника ограничивается возможностью размещения спутника в зоне полезного груза под обтекателем существующей мощной ракеты-носителя).

Для подтверждения работоспособности вновь разрабатываемого космического аппарата (КА) в условиях орбитального функционирования предварительно изготавливают для испытаний в термобарокамере теплофизическую модель, в составе которой применяется штатная система терморегулирования (СТР), обеспечивающая штатную холодопроизводительность радиаторов, т.е. величины площадей радиаторов северной и южной панелей (штатной конструкции) соответствуют штатным при обеспечении расходов циркулирующего по жидкостным контурам теплоносителя, соответствующих штатным величинам. При этом на всех сотовых панелях штатной конструкции (с встроенными тепловыми трубами и жидкостными коллекторами) вместо штатных приборов платформы и полезной нагрузки (ретранслятора) устанавливают их тепловые (и массовые) имитаторы, обеспечивающие избыточные тепловыделения, соответствующие штатным величинам.

Из анализа вышеизложенных известных технических решений видно, что в процессе реализации каждой конкретной теплофизической модели КА необходимо осуществлять сложные технологические процессы по изготовлению различных сложных по конструкции штатных сотовых панелей и штатной СТР, что является существенным недостатком известных технических решений.

Анализ источников информации по патентной и научно-технической литературе показал, что наиболее близким по технической сути прототипом предлагаемого технического решения является теплофизическая модель КЛ на основе [1].

Теплофизическая модель КА, выполненная на основе известного технического решения [1], включает в себя следующие основные элементы (см. фиг.1): 1 - теплофизическая модель КА; 2 и 3 - северная и южная сотовые панели с установленными на внутренних обшивках тепловыми имитаторами ретранслятора, которые на теплофизической модели КА (и на КЛ) расположены вертикально (для обеспечения испытаний в вертикальной термобарокамере); 4 - горизонтально расположенные тепловые трубы, встроенные и сотовые панели 2 и 3; 5 - жидкостные коллекторы (выполняют, в частности, роль вертикальных тепловых труб в случае испытаний в вертикальной термобарокамере), расположенные на внутренних обшивках сотовых панелей 2 и 3 преимущественно вертикально; 6 и 7 - первый и второй жидкостные контуры, гидравлически независимые друг от друга; 8 и 9 - сотовые панели с встроенными жидкостными коллекторами, расположенные между северной и южной панелями 2 и 3, на внутренней и наружной обшивках которых установлены имитаторы приборов платформы; 10 и 11 - ЭНА первого и второго жидкостных контуров 6 и 7; 12 и 13 - гидроаккумуляторы первого и второго жидкостных контуров 6 и 7, жидкостные полости которых соединены с остальными жидкостными трактами на входах в ЭНА 10 и 11, а газовые полости, частично заполненные двухфазной рабочей жидкостью, разъединены от жидкостных полостей сильфонами.

Как указано выше, известное техническое решение о теплофизической модели КА обладает существенными недостатками: в связи с применением в составе конкретной теплофизической модели различных сложных по конструкции штатных сотовых панелей и штатной СТР при изготовлении теплофизической модели необходимо осуществлять сложные технологические процессы, что обуславливает также повышенные экономические затраты.

Целью предлагаемого авторами нового технического решения является устранение вышеуказанных существенных недостатков.

Поставленная цель достигается тем, что в теплофизической модели космического аппарата, включающей в себя вертикально расположенные северную и южную сотовые панели, наружные поверхности внешних обшивок которых покрыты солнечным оптическим отражателем, с встроенными в панели горизонтально расположенными тепловыми трубами и с преимущественно вертикально расположенными между имитаторами приборов полезной нагрузки на внутренней обшивке жидкостными коллекторами двух дублированных независимых гидравлических жидкостных контуров, в каждом из которых установлен электронасосный агрегат, вход которого соединен с жидкостной полостью гидроаккумулятора, газовая полость которого, разделенная сильфоном от жидкостной полости, частично заполнена рабочей жидкостью, расположенные между северной и южной панелями сотовые панели с встроенными жидкостными коллекторами, на обшивках которых установлены имитаторы приборов платформы, для теплофизической модели конкретного космического аппарата часть площади каждой напели - северной и южной - симметрично с обеих сторон, свободная от имитаторов приборов, покрыта экранно-вакуумной теплоизоляцией, удовлетворяющая условию:

где FЭВТИ - суммарная площадь каждой напели, одинаковая с обеих сторон, покрытая экранно-вакуумной теплоизоляцией, м2;

Qмакс - максимально возможное избыточное тепловыделение работающих имитаторов приборов полезной нагрузки и платформы в случае установки их на всей площади панелей, максимально возможные площади которых выполнены исходя из возможности размещения аппарата во всей зоне полезного груза под обтекателем для существующей самой мощной ракеты-носителя, Вт;

QКА - максимально возможное избыточное тепловыделение работающих имитаторов приборов полезной нагрузки и платформы для разрабатываемого конкретного космического аппарата, Вт;

gуд - средняя удельная холодопроизводительность каждого квадратного метра наружной поверхности с оптическим солнечным отражателем внешней обшивки вышеуказанных сотовых панелей, Вт/м2, а в каждом жидкостном контуре в последовательной линии установлен регулируемый дроссель,

что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.

В результате анализа, проведенного авторами известной патентной и научно-технической литературы, предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемой теплофизической модели КА.

На фиг.2 изображена принципиальная схема предложенной теплофизической модели КА, где: 1 - теплофизическая модель КА; 2 и 3 - северная и южная сотовые панели (с тепловыми имитаторами ретранслятора), которые на теплофизической модели КА (и на КА) расположены вертикально (для обеспечения испытаний в вертикальной термобарокамере); 4 - горизонтально расположенные тепловые трубы, встроенные в сотовые панели 2 и 3; 5 - жидкостные коллекторы, расположенные на внутренней обшивке сотовых панелей 2 и 3; 6 и 7 - первый и второй жидкостные контуры, гидравлически независимые друг от друга; 8 и 9 - сотовые панели с встроенными жидкостными коллекторами, на внутренней и наружной обшивках которых установлены имитаторы приборов платформы; 10 и 11 - ЭНА первого и второго жидкостных контуров 6 и 7; 12 и 13 - гидроаккумуляторы первого и второго жидкостных контуров 6 и 7, жидкостные полости которых соединены с остальными жидкостными трактами на входах в ЭНА 10 и 11, а газовые полости, частично заполненные двухфазной рабочей жидкостью, разъединены от жидкостных полостей сильфонами; 14 - тепловые имитаторы приборов ретранслятора, установленные на внутренних обшивках сотовых панелей 2 и 3 (на поз.2 и 3 поз.14 условно не показаны); 2.1 и 3.1 - наружные поверхности внешних обшивок сотовых панелей 2 и 3, покрытые оптическим солнечным отражателем; 15 - экранно-вакуумная теплоизоляция - для теплофизической модели конкретного космического аппарата часть площади каждой панели - северной и южной - симметрично с обеих сторон, свободная от имитаторов приборов, покрыта экранно-вакуумной теплоизоляцией, удовлетворяющая условию:

где FЭВТИ - суммарная площадь каждой панели, одинаковая с обеих сторон, покрытая экранно-вакуумной теплоизоляцией, м2;

Qмакс - максимально возможное избыточное тепловыделение работающих имитаторов приборов полезной нагрузки и платформы в случае установки их на всей площади панелей, максимально возможные площади которых выполнены исходя из возможности размещения аппарата во всей зоне полезного груза под обтекателем для существующей самой мощной ракеты-носителя, Вт;

QКА - максимально возможное избыточное тепловыделение работающих имитаторов приборов полезной нагрузки и платформы для разрабатываемого конкретного космического аппарата, Вт;

gуд - средняя удельная холодопроизводительность каждого квадратного метра наружной поверхности с оптическим солнечным отражателем внешней обшивки вышеуказанных сотовых панелей, Вт/м2; 16 и 17 - регулируемые дроссели, установленные в последовательной линии жидкостного тракта каждого из жидкостных контуров 6 и 7.

Изготавливают предложенную теплофизическую модель КА следующим образом.

При ближайшей (очередной) разработке конкретного КА (например, с энергопотреблением ≈ 10 кВт, из них 9 кВт приходится на ретранслятор, a≈1 кВт - на платформу (избыточное тепловыделение ≈ 7 кВт), предусматривают и изготавливают теплофизическую модель КА со следующими особенностями:

- конструкции северной и южной панелей с встроенными горизонтально расположенными тепловыми трубами и с расположенными жидкостными коллекторами двух жидкостных контуров на внутренних обшивках указанных панелей выполняют величиной площади, обеспечивающей их холодопроизводительность на орбите, достаточную для обеспечения требуемого комфортного температурного режима приборов для максимально возможного мощного КА, например, с энергопотреблением ≈ 16 кВт (избыточное тепловыделение ≈ 11 кВт) в настоящее время;

- ЭНА, обеспечивающие расходы теплоносителя в каждом контуре при полностью открытых регулируемых дросселях при энергопотреблении КА, равном ≈ 16 кВт;

- гидроаккумуляторы, работоспособные в части обеспечения рабочего давления и компенсации объемов теплоносителя при температурном его расширении в двух жидкостных контурах;

- регулируемые дроссели, способные изменять гидравлические сопротивления в жидкостных контурах на такие величины, что расходы теплоносителя в них будут соответствовать требуемым для КА с энергопотреблением, например, от 3 кВт до 16 кВт;

- после этого изготавливают экранно-вакуумную тепловую изоляцию и ей покрывают с обеих сторон симметрично соответствующие одинаковые площади (см. лист 6) северной и южной панелей;

- изготавливают сотовые напели платформы (энергопотребление приборов платформы от одного телекоммуникационного спутника к другому практически мало отличается и примерно равно ≈ 1 кВт);

- изготавливают тепловые имитаторы приборов;

- осуществляют сборку теплофизической модели КА с установкой:

- на свободных от теплоизоляции поверхностях внутренних обшивок северной и южной панелей тепловых имитаторов ретранслятора;

- тепловых имитаторов приборов платформы на обеих обшивках ее сотовых панелей.

После полной сборки теплофизической модели осуществляют необходимые испытания ее сначала в условиях окружающего воздуха, а затем в термобарокамере.

При разработке следующего КА, например, с энергопотреблением 12 кВт предусматривают изготовление вновь только:

- требуемого количества имитаторов приборов ретранслятора, соответствующего разрабатываемому КА, и, при необходимости, недостающего количества имитаторов приборов платформы;

- экранно-вакуумной теплоизоляции требуемой площади (см. лист 6), соответствующей разрабатываемому КА.

После этого дооснащают (дорабатывают) ранее изготовленную теплофизическую модель КА с энергопотреблением (например, ≈ 16 кВт) и проводят соответствующие требуемые отработочные испытания ее.

Таким образом, как видно из вышеизложенного, в результате выполнения конструкции теплофизической модели согласно предложенному техническому решению упрощаются конструкция и технология изготовления всех последующих теплофизических моделей вновь разрабатываемых КА и, следовательно, при этом также снижаются экономические затраты при разработке последующих КА, т.е. тем самым достигаются цели изобретения.

Теплофизическая модель космического аппарата, включающая в себя вертикально расположенные северную и южную сотовые панели, наружные поверхности внешних обшивок которых покрыты солнечным оптическим отражателем, с встроенными в панели горизонтально расположенными тепловыми трубами и с преимущественно вертикально расположенными между имитаторами приборов полезной нагрузки на внутренней обшивке жидкостными коллекторами двух дублированных независимых гидравлических жидкостных контуров, в каждом из которых установлен электронасосный агрегат, вход которого соединен с жидкостной полостью гидроаккумулятора, газовая полость которого, отделенная сильфоном от жидкостной полости, частично заполнена рабочей жидкостью, а также расположенные между северной и южной панелями сотовые панели с встроенными жидкостными коллекторами, на обшивках которых установлены имитаторы приборов платформы, отличающаяся тем, что для теплофизической модели конкретного космического аппарата свободная от имитаторов приборов часть площади каждой панели - северной и южной - симметрично с обеих сторон покрыта экранно-вакуумной теплоизоляцией согласно условию: где F - суммарная площадь каждой панели, одинаковая с обеих сторон, покрытая экранно-вакуумной теплоизоляцией, м;Q - максимально возможное избыточное тепловыделение работающих имитаторов приборов полезной нагрузки и платформы в случае установки их на всей площади панелей, максимально возможные площади которых выполнены исходя из возможности размещения аппарата во всей зоне полезного груза под обтекателем для существующей самой мощной ракеты-носителя, Вт;Q - максимально возможное избыточное тепловыделение работающих имитаторов приборов полезной нагрузки и платформы для разрабатываемого конкретного космического аппарата, Вт;g - средняя удельная холодопроизводительность каждого квадратного метра наружной поверхности с оптическим солнечным отражателем внешней обшивки вышеуказанных сотовых панелей, Вт/м, а в каждом жидкостном контуре в последовательной линии установлен регулируемый дроссель.
ТЕПЛОФИЗИЧЕСКАЯ МОДЕЛЬ КОСМИЧЕСКОГО АППАРАТА
ТЕПЛОФИЗИЧЕСКАЯ МОДЕЛЬ КОСМИЧЕСКОГО АППАРАТА
ТЕПЛОФИЗИЧЕСКАЯ МОДЕЛЬ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 101-110 из 112.
20.01.2018
№218.016.101f

Способ изготовления системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА). Способ изготовления СТР КА включает проверки суммарных негерметичностей жидкостного тракта и двухфазного контура (ДФК) перед заправкой их соответствующими теплоносителями. В процессе изготовления ДФК...
Тип: Изобретение
Номер охранного документа: 0002633666
Дата охранного документа: 16.10.2017
20.02.2019
№219.016.c157

Способ автоматического построения трехмерных геометрических моделей электрорадиоизделий в системе геометрического моделирования

Изобретение относится к области информационных технологий и может быть использовано при проектировании на компьютере сложных электротехнических изделий. Техническим результатом является сокращение временных и вычислительных ресурсов, затрачиваемых на проектирование электротехнических изделий....
Тип: Изобретение
Номер охранного документа: 0002413305
Дата охранного документа: 27.02.2011
20.02.2019
№219.016.c452

Способ изготовления развертываемой крупногабаритной двухзеркальной антенны космического аппарата

Изобретение относится к космической технике, в частности к системе изготовления развертываемых (раскрываемых) крупногабаритных двухзеркальных антенн (диаметром раскрыва рефлектора порядка 12 м и более) с высокоточными отражающими поверхностями главного зеркала и контррефлектора. Способ...
Тип: Изобретение
Номер охранного документа: 0002468479
Дата охранного документа: 27.11.2012
23.02.2019
№219.016.c6ae

Способ работы электропривода с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе. Способ реализован для примера в электроприводе с трехступенчатым планетарным редуктором, в котором передачу крутящего момента от быстроходного...
Тип: Изобретение
Номер охранного документа: 0002465496
Дата охранного документа: 27.10.2012
08.03.2019
№219.016.d5af

Высокоточный космический акселерометр

Изобретение относится к области космической техники и может быть использовано для определения ускорения поступательного движения космического аппарата. Акселерометр содержит инерционную массу, корпус и электрическую схему переключателя и фиксации времени, внутреннюю полую сферу, имеющую...
Тип: Изобретение
Номер охранного документа: 0002468374
Дата охранного документа: 27.11.2012
11.03.2019
№219.016.d891

Способ и устройство осушения воздуха для дегидрации волновода антенны

Предлагаемое изобретение относится к радиотехнике и предназначено для защиты волновода антенны от воздействия факторов окружающей среды, в частности от влаги и пыли, путем подачи в защищаемые полости осушенного воздуха под избыточным давлением. Согласно изобретению устройство содержит воздушную...
Тип: Изобретение
Номер охранного документа: 0002395138
Дата охранного документа: 20.07.2010
29.03.2019
№219.016.f14d

Устройство для измерения угловых перемещений

Изобретение относится к измерительной технике. Технический результат: повышение точности измерения за счет уменьшения погрешности, вызванной смещением оси вращения преобразования устройства для измерения угловых перемещений, снижение требований к точности исполнения и жесткости механических...
Тип: Изобретение
Номер охранного документа: 0002397440
Дата охранного документа: 20.08.2010
19.04.2019
№219.017.33d9

Силовой ключ на мдп-транзисторе

Изобретение относится к импульсной технике и может быть применено в различных коммутационных устройствах. Технический результат заключается в повышении надежности работы силового ключа. Для этого предложен силовой ключ на МДП-транзисторе, содержащий трансформатор, конец вторичной обмотки...
Тип: Изобретение
Номер охранного документа: 0002469474
Дата охранного документа: 10.12.2012
09.06.2019
№219.017.7f65

Способ формирования испытательных тестов электронных устройств

Изобретение относится к способам испытаний электронных устройств различного назначения путем использования испытательных тестов (наборы испытательных воздействий и соответствующих им допустимых отклонений контролируемых параметров устройств), сформированных по результатам математического...
Тип: Изобретение
Номер охранного документа: 0002469372
Дата охранного документа: 10.12.2012
19.06.2019
№219.017.85ef

Способ изготовления жидкостного тракта системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования космических аппаратов, в жидкостном тракте которых применяется гидроаккумулятор с герметизированной газовой полостью, заправленной двухфазным рабочим телом. Способ включает сборку жидкостного тракта и контроль степени его герметичности. После...
Тип: Изобретение
Номер охранного документа: 0002398718
Дата охранного документа: 10.09.2010
Показаны записи 101-110 из 130.
20.01.2018
№218.016.101f

Способ изготовления системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА). Способ изготовления СТР КА включает проверки суммарных негерметичностей жидкостного тракта и двухфазного контура (ДФК) перед заправкой их соответствующими теплоносителями. В процессе изготовления ДФК...
Тип: Изобретение
Номер охранного документа: 0002633666
Дата охранного документа: 16.10.2017
10.05.2018
№218.016.3e63

Способ контроля качества системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА). Способ контроля качества СТР КА включает слив требуемой дозы теплоносителя в процессе заправки СТР теплоносителем и в дальнейшем периодический контроль наличия требуемой массы теплоносителя в жидкостном...
Тип: Изобретение
Номер охранного документа: 0002648519
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.3ea4

Космическая платформа

Изобретение относится к конструкции и компоновке космических аппаратов (КА), преимущественно космических платформ (КП), объединяющих служебные подсистемы и обеспечивающих работу модуля полезной нагрузки (МПН). КП содержит приборный отсек (ПО) в форме прямоугольного параллелепипеда с приборами и...
Тип: Изобретение
Номер охранного документа: 0002648520
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.4b00

Блок подачи рабочего тела в реактивный двигатель космического аппарата

Изобретение относится к космической технике, а точнее к блоку подачи рабочего тела (РТ), например ксенона, в реактивный двигатель космического аппарата (КА). Блок подачи рабочего тела в реактивный двигатель космического аппарата, содержащий баллон высокого давления, заполненный РТ, например...
Тип: Изобретение
Номер охранного документа: 0002651703
Дата охранного документа: 23.04.2018
05.07.2018
№218.016.6c68

Зонтичная антенна космического аппарата

Изобретение относится к космической технике, в частности к зеркальным антеннам со складным рефлектором зонтичного типа, применяемым в составе космических аппаратов (КА) с длительным сроком эксплуатации на орбите (не менее 15 лет). Заявленная зонтичная антенна космического аппарата содержит...
Тип: Изобретение
Номер охранного документа: 0002659761
Дата охранного документа: 03.07.2018
12.07.2018
№218.016.7059

Способ изготовления изделий из композиционных материалов с отражающим покрытием

Изобретение относится к области производства радиотехнических устройств космической и авиационной техники и касается способа изготовления изделий из композиционных материалов с отражающим покрытием. Способ включает сборку пакета путем укладки слоев, содержащих термореактивное связующее,...
Тип: Изобретение
Номер охранного документа: 0002660863
Дата охранного документа: 10.07.2018
30.11.2018
№218.016.a1e0

Устройство для формования изделий сложной формы из полимерных композиционных материалов

Изобретение относится к устройствам для изготовления изделий сложной формы из полимерных композиционных материалов, например рефлекторов зеркальных антенн телекоммуникационных спутников с контурной диаграммой направленности, и может быть использовано в ракетно-космической технике. Устройство...
Тип: Изобретение
Номер охранного документа: 0002673535
Дата охранного документа: 27.11.2018
20.02.2019
№219.016.c452

Способ изготовления развертываемой крупногабаритной двухзеркальной антенны космического аппарата

Изобретение относится к космической технике, в частности к системе изготовления развертываемых (раскрываемых) крупногабаритных двухзеркальных антенн (диаметром раскрыва рефлектора порядка 12 м и более) с высокоточными отражающими поверхностями главного зеркала и контррефлектора. Способ...
Тип: Изобретение
Номер охранного документа: 0002468479
Дата охранного документа: 27.11.2012
23.02.2019
№219.016.c6ae

Способ работы электропривода с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе. Способ реализован для примера в электроприводе с трехступенчатым планетарным редуктором, в котором передачу крутящего момента от быстроходного...
Тип: Изобретение
Номер охранного документа: 0002465496
Дата охранного документа: 27.10.2012
11.03.2019
№219.016.d80d

Сотовая панель

Изобретение относится к конструкции систем терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников с длительным сроком эксплуатации. Панель содержит два независимых встроенных параллельных тракта теплоносителя, приклеенных своими полками к параллельно...
Тип: Изобретение
Номер охранного документа: 0002346860
Дата охранного документа: 20.02.2009
+ добавить свой РИД