×
10.04.2013
216.012.348c

Результат интеллектуальной деятельности: СПЕКТРОРАДИОМЕТРИЧЕСКИЙ СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ОБЛАКОВ ТОКСИЧНЫХ ГАЗООБРАЗНЫХ ВЕЩЕСТВ В АТМОСФЕРЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к дистанционному зондированию атмосферы, в частности к способам исследования ее газового состава. Способ основан на идентификации облака газообразных веществ по спектру излучения в оптическом диапазоне и определении направления на это облако. Круговое сканирование приземного слоя атмосферы над площадью контролируемого объекта проводят по наклонным трассам сопряженными Фурье-спектрорадиометрами. В момент географической привязки с помощью средств спутниковой навигации предварительно определяют географические координаты, а также углы между направлением на север и направлением оптических осей приемных систем спектрорадиометров. Обнаружение и идентификацию облаков газообразных веществ проводят по спектрам их собственного излучения, регистрируемым Фурье-спектрорадиометрами. С использованием полученных данных строят проекции осей полей зрения спектрорадиометров по направлениям, в которых произошло срабатывание приборов на горизонтальную плоскость и определяют границы местоположения облака газообразного токсичного вещества. Изобретение обеспечивает непрерывное автоматическое определение местоположения облаков токсичных газообразных веществ без предварительной фиксации координат потенциальных источников выброса и без предварительного определения возможного состава выбросов, величины и направления ветрового сноса. 1 ил.
Основные результаты: Спектрорадиометрический способ дистанционного определения местоположения облаков токсичных газообразных веществ в атмосфере, основанный на идентификации облака газообразных веществ по спектру излучения в оптическом диапазоне и определении направления на это облако, отличающийся тем, что круговое сканирование приземного слоя атмосферы над площадью контролируемого объекта проводят по наклонным трассам сопряженными Фурье-спектрорадиометрами, географические координаты, а также углы между направлением на север и направлением оптических осей приемных систем которых предварительно определяют в момент географической привязки с помощью средств спутниковой навигации, обнаружение и идентификацию облаков газообразных веществ проводят по спектрам их собственного излучения, регистрируемым Фурье-спектрорадиометрами, в моменты срабатываний Фурье-спектрорадиометров по данным их сканирующих систем и проведенной предварительной географической привязки измеряют азимуты направлений на обнаруженное облако, после чего с использованием полученных данных строят проекции осей полей зрения спектрорадиометров по направлениям, в которых произошло срабатывание приборов на горизонтальную плоскость, затем по точкам пересечения проекций осей полей зрения приборов, спроецированным на топографическую карту, определяют границы местоположения облака газообразного токсичного вещества.

Изобретение относится к дистанционному зондированию атмосферы, в частности к способам исследования ее газового состава.

Известен способ обнаружения местоположения источника выброса, основанный на комплексном использовании способов дифференциального и комбинационного рассеяния, принятый в качестве прототипа [патент №2028007, авторы: Гусев Л.И.; Козырев А.В.; Шаргородский В.Д.]. Для обнаружения местоположения источника выброса предварительно фиксируют на цифровой карте координаты потенциальных источников выброса, при зондировании стационарный лидар вращают вокруг его вертикальной оси за время, не превышающее времени жизни выброса, при превышении распределенными значениями концентрации примесного газа или коэффициентом аэрозольного рассеяния в исследуемом объеме предельно допустимых значений дополнительно определяют направление на облако токсичного вещества (азимут и угол места), производят дополнительное зондирование облака передвижным лидаром многокомпонентного детального анализа, а расположение источника выброса определяют, сравнивая найденные параметры направления на облако токсичного вещества с координатами цифровой карты потенциальных источников выброса.

Недостатками данного способа являются:

во-первых, способ не позволяет определять местоположение источника выброса без предварительной фиксации на цифровой карте зондируемого района координат потенциальных источников выброса;

во-вторых, идентификация токсичного вещества производится передвижным лидаром комбинационного рассеяния для целеуказания которого со стационарного лидара кругового обзора должна поступать следующая информация: оцифрованная карта района выброса, координаты потенциальных источников загрязнений, возможный состав выбросов, основные ориентиры, азимут и угол места наведения антенны, величина и направление ветрового сноса, что способствует существенному увеличению времени определения местоположения источника выброса.

В основу изобретения положена задача разработать способ, обеспечивающий получение следующего технического результата: обеспечение непрерывного автоматического определения местоположения облаков токсичных газообразных веществ без предварительной фиксации на цифровой карте зондируемого района координат потенциальных источников выброса, без предварительного определения возможного состава выбросов, величины и направления ветрового сноса.

Для решения поставленной задачи в спектрорадиометрическом способе дистанционного определения местоположения облаков токсичных газообразных веществ в атмосфере, основанного на идентификации облака газообразных веществ по спектру излучения в оптическом диапазоне и определении направления на это облако, круговое сканирование приземного слоя атмосферы над площадью контролируемого объекта проводят по наклонным трассам сопряженными Фурье-спектрорадиометрами, географические координаты, а также углы между направлением на север и направлением оптических осей приемных систем которых предварительно определяют в момент географической привязки с помощью средств спутниковой навигации, обнаружение и идентификацию облаков газообразных веществ проводят по спектрам их собственного излучения, регистрируемым Фурье-спектрорадиометрами, в моменты срабатываний Фурье-спектрорадиометров по данным их сканирующих систем и проведенной предварительной географической привязки измеряют азимуты направлений на обнаруженное облако, после чего, с использованием полученных данных, строят проекции осей полей зрения спектрорадиометров на горизонтальную плоскость по направлениям, в которых произошло срабатывание приборов, затем по точкам пересечения проекций осей полей зрения приборов, спроецированным на топографическую карту, определяют границы местоположения облака газообразного токсичного вещества.

Существующие в настоящее время инфракрасные Фурье-спектрорадиометры позволяют определять при регистрации облаков загрязняющих веществ следующие параметры: наименование индицируемого вещества, его интегральную массу в области поля зрения, азимуты и углы возвышения направления на обнаруженное облако, время регистрации. Однако применение двух и более сопряженных спектрорадиометров позволяет строить проекции на плоскость осей полей зрения спектрорадиометров в моменты их срабатывания и определять координаты точек их пересечения.

Местоположение облака токсичного газообразного вещества определяется в результате проецирования на цифровую топографическую карту точек пересечения проекций на плоскость осей полей зрения спектрорадиометров в моменты их срабатывания по результатам одного кругового сканирования.

Принимая во внимание относительно небольшие, в планетарном масштабе, размеры участков пространства, на которых, исходя из дальности действия спектрорадиометров, возможен мониторинг зараженности атмосферы (максимальная дальность обнаружения у современных Фурье-спектрорадиометров составляет 5-6 км при минимально обнаружимой концентрации - единицы ppm·м-1), было сделано допущение, что в пределах этих участков условные меридианы секунд географической долготы параллельны друг другу, то есть сетка географических координат соответствует прямоугольной декартовой системе.

Таким образом, определение географических координат точек пересечения проекций на плоскость осей полей зрения спектрорадиометров сводится к решению геометрической задачи определения местоположения точки в декартовых координатах.

Определение координат точек пересечения проекций на плоскость осей полей зрения спектрорадиометров проводится согласно схеме на фигуре по формулам 1 и 2:

где xобл, yобл - координаты точек пересечения проекций на плоскость осей полей зрения спектрорадиометров, м;

x1, y1 - географические координаты 1-го спектрорадиометра, м;

x2, y2 - географические координаты 2-го спектрорадиометра, м;

α1, α2 - углы между направлением на север и оптическими осями приемной системы 1 и 2-го спектрорадиометров соответственно, град;

β1, β2 - углы между оптическими осями приемной системы и направлением на регистрируемое облако 3 1-го и 2-го спектрорадиометров соответственно, град.

Эти уравнения будут справедливы при соблюдении условия, что углы α1 и α2 меньше 180°, если же углы будут являться развернутыми, то в соотношения (1) и (2) вместо них необходимо подставлять значения 360-α1 или 360-α2.

Географические координаты спектрорадиометров (x1, y1, x2, y2), а также углы между направлением на север и направлением оптических осей приемных систем спектрорадиометров (α1, α2) определяют в момент географической привязки с помощью средств спутниковой навигации. Углы между оптическими осями приемной системы и направлением на регистрируемое облако каждого из спектрорадиометров (β1, β2) являются показаниями приборов в моменты обнаружения облаков токсичных газообразных веществ в атмосфере.

В ходе зондирования приземного слоя атмосферы двумя сопряженными спектрорадиометрами, существенному снижению достоверности определения положения облака токсичного газообразного вещества будет способствовать возникновение неопределенностей, связанных с тем, что в момент регистрации вещества оптические оси спектрорадиометров будут направлены параллельно либо навстречу друг другу. В этой связи сканирование целесообразно проводить тремя спектрорадиометрами, расположенными в вершинах равностороннего треугольника со сторонами, длины которых равны 2/3 дальности действия спектрорадиометра. Такое расположение спектрорадиометров в ходе зондирования способствует перекрытию третьим спектрорадиометром тех зон, в которых возникает неопределенность при получении пространственных характеристик облака двумя другими спектрорадиометрами и, кроме того, позволяет определять местоположение облаков токсичных газообразных веществ на максимальной площади.

Спектрорадиометрический способ дистанционного определения местоположения облаков токсичных газообразных веществ в атмосфере, основанный на идентификации облака газообразных веществ по спектру излучения в оптическом диапазоне и определении направления на это облако, отличающийся тем, что круговое сканирование приземного слоя атмосферы над площадью контролируемого объекта проводят по наклонным трассам сопряженными Фурье-спектрорадиометрами, географические координаты, а также углы между направлением на север и направлением оптических осей приемных систем которых предварительно определяют в момент географической привязки с помощью средств спутниковой навигации, обнаружение и идентификацию облаков газообразных веществ проводят по спектрам их собственного излучения, регистрируемым Фурье-спектрорадиометрами, в моменты срабатываний Фурье-спектрорадиометров по данным их сканирующих систем и проведенной предварительной географической привязки измеряют азимуты направлений на обнаруженное облако, после чего с использованием полученных данных строят проекции осей полей зрения спектрорадиометров по направлениям, в которых произошло срабатывание приборов на горизонтальную плоскость, затем по точкам пересечения проекций осей полей зрения приборов, спроецированным на топографическую карту, определяют границы местоположения облака газообразного токсичного вещества.
СПЕКТРОРАДИОМЕТРИЧЕСКИЙ СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ОБЛАКОВ ТОКСИЧНЫХ ГАЗООБРАЗНЫХ ВЕЩЕСТВ В АТМОСФЕРЕ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 27.
10.04.2013
№216.012.3485

Способ выявления радиационной обстановки после выброса радиоактивных веществ в атмосферу

Изобретение относится к области организации и проведения выявления радиационной обстановки после аварийного выброса в атмосферу радиоактивных веществ. Технический результат - уменьшение времени выявления фактической обстановки имеющимся количеством технических средств. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002478988
Дата охранного документа: 10.04.2013
10.05.2013
№216.012.3e9e

Способ определения положения точечного источника гамма-излучения

Изобретение относится к области выявления радиационной обстановки, а именно к способам поиска и обнаружения точечных источников гамма-излучения. Сущность изобретения заключается в том, что предварительно осуществляют измерения мощности дозы гамма-излучения в точках по периметру участка, внутри...
Тип: Изобретение
Номер охранного документа: 0002481597
Дата охранного документа: 10.05.2013
27.07.2013
№216.012.5a96

Способ определения летучести и теплоты испарения смеси жидких веществ

Изобретение относится к области исследования или анализа небиологических материалов путем определения их химических или физических свойств, конкретно, исследования фазовых изменений путем удаления какого-либо компонента, например, испарением, и взвешивания остатка. Способ определения летучести...
Тип: Изобретение
Номер охранного документа: 0002488811
Дата охранного документа: 27.07.2013
27.08.2013
№216.012.6382

Состав рецептуры для дегазации летучих токсичных фосфорорганических веществ на поверхностях и в воздухе внутри помещений

Изобретение относится к области безопасной эксплуатации химически опасных объектов (ХОО), а именно к разработке состава рецептуры, обеспечивающей дегазацию летучих токсичных фосфорорганических веществ внутри технологических помещений не только на поверхностях, но и в воздухе в виде паровой...
Тип: Изобретение
Номер охранного документа: 0002491111
Дата охранного документа: 27.08.2013
27.12.2013
№216.012.919a

Способ формирования базы спектральных данных для фурье-спектрорадиометров

Изобретение относится к области дистанционного беспробоотборного газоанализа, а именно к способам формирования баз спектральных данных для дистанционных газоанализаторов на основе Фурье-спектрорадиометров. Способ заключается в беспробоотборном определении мгновенных значений концентрации...
Тип: Изобретение
Номер охранного документа: 0002502967
Дата охранного документа: 27.12.2013
10.04.2014
№216.012.b1b6

Способ определения энергетической зависимости чувствительности измерителя мощности дозы (дозы) гамма-излучения

Изобретение относится к области проведения испытаний дозиметрических приборов по определению энергетической зависимости чувствительности при измерениях мощности дозы (дозы) гамма-излучения. Для получения гамма-излучения с энергиями в актуальном диапазоне величин предложено использовать...
Тип: Изобретение
Номер охранного документа: 0002511210
Дата охранного документа: 10.04.2014
27.10.2014
№216.013.0201

Способ утилизации литиевых источников тока с истекшими сроками эксплуатации

Изобретение относится к электрохимии, а именно к утилизации литийсодержащих отходов, в частности отработанных литиевых химических источников тока. Данный способ предназначен для применения в специализированных производствах по утилизации литиевых источников тока (ЛИТ). Сущность способа...
Тип: Изобретение
Номер охранного документа: 0002531911
Дата охранного документа: 27.10.2014
10.01.2015
№216.013.1914

Способ получения 2-хлор-5-гидроксиметилпиридина

Изобретение относится к улучшенному способу получения 2-хлор-5-гидроксиметилпиридина, который включает активацию карбоксильной группы 6-хлорникотиновой кислоты и восстановление 6-хлорникотиноилхлорида. Способ характеризуется тем, что реакцию активации карбоксильной группы проводят...
Тип: Изобретение
Номер охранного документа: 0002537848
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3c9a

Способ обнаружения радиоактивного загрязнения приземного слоя атмосферы

Изобретение относится к области мониторинга радиационной обстановки и установления факта появления в атмосфере облака радиоактивных веществ. С помощью спектрорадиометра инфракрасного излучения определение присутствия в воздухе радиоактивных газов и аэрозолей осуществляется путем установления...
Тип: Изобретение
Номер охранного документа: 0002547002
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46ba

Способ обнаружения опасного радиоактивного загрязнения местности

Изобретение относится к области воздушного радиационного мониторинга. Сущность: получают изображения участков в диапазоне видимых длин волн, а также в диапазоне длин волн флуоресценции атмосферного азота под воздействием ионизирующих излучений с помощью матричных фоточувствительных...
Тип: Изобретение
Номер охранного документа: 0002549610
Дата охранного документа: 27.04.2015
+ добавить свой РИД