×
10.04.2013
216.012.3464

Результат интеллектуальной деятельности: СПОСОБЫ И УСТРОЙСТВО ДЛЯ АНАЛИЗА ГРАДИЕНТОВ СОСТАВА НА ЗАБОЕ СКВАЖИНЫ И ИХ ПРИМЕНЕНИЕ

Вид РИД

Изобретение

№ охранного документа
0002478955
Дата охранного документа
10.04.2013
Аннотация: Изобретение относится к нефтяной промышленности и касается способа и системы для получения характеристик градиентов состава и свойств текучей среды коллектора, представляющего интерес, и анализа свойств коллектора на основе таких градиентов. 2 н. и 18 з.п. ф-лы, 3 ил.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Область техники изобретения

Настоящее изобретение относится к способам и устройству для получения характеристик нефтесодержащей жидкости, извлекаемой из содержащего углеводороды геологического пласта. Изобретение применимо в обработке коллекторов для интенсификации притока, хотя данным не ограничено.

Описание уровня техники

Нефть состоит из сложной смеси углеводородов различного молекулярного веса и других органических соединений. Точный молекулярный состав нефти изменяется в широких пределах от одного пласта к другому. Пропорция углеводородов в смеси сильно изменяется и находится в пределах от 97% по весу в легкой нефти до 50% в тяжелой нефти и битумах. Углеводороды в нефти в основном представлены алканами (линейными или разветвленными), циклоалканами, ароматическими углеводородами или более сложными химическими веществами, такими как асфальтены. Другие органические соединения в нефти обычно содержат двуокись углерода (CO2), азот, кислород, серу и незначительные количества металлов, таких как железо, никель, медь и ванадий.

Алканы, также известные как парафины, являются насыщенными углеводородами с прямыми или разветвленными цепями, содержащими только углерод и водород, и имеют общую формулу CnH2n+2. Алканы, в общем, имеют от 5 до 40 атомов углерода на молекулу, хотя незначительные количества более коротких или более длинных молекул могут присутствовать в смеси. Алканы включают в себя метан (СН4), этан (C2H6,), пропан (C3H8), изобутан (iC4H10), n-бутан (nC4H10), изопентан (iC5H12), n-пентан (nC5H12), гексан (C6H14), гептан (C7H16), октан (C8H18), нонан (C9H20), декан (C10H22), ундекан (C11H24), также именуемый эндеканом, додекан (C12H26), тридекан (C13H28), тетрадекан (C14H30), пентадекан (C15H32) и гексадекан (C16H34).

Циклоалканы, также известные как нафтеновые углеводороды, являются насыщенными углеводородами, имеющими одно или несколько углеродных колец, к которым прикреплены атомы водорода, согласно формуле CnH2n. Циклоалканы имеют свойства, аналогичные алканам, но имеют более высокие точки кипения. Циклоалканы включают в себя циклопропан (C3H6), циклобутан (C4H8), циклопентан (C5H10), циклогексан (C6H12), и циклогептан (C7H14).

Ароматические углеводороды являются насыщенными углеводородами, имеющими одно или несколько плоских шестиуглеродных колец, называемых бензольными кольцами, к которым прикреплены атомы водорода, с формулой CnHn. Они имеют тенденцию гореть с коптящим пламенем, многие имеют сладкий запах, и некоторые из них являются канцерогенными. Ароматические углеводороды включают в себя бензол (C6H6), производные бензола и полиароматические углеводороды.

Асфальтены состоят, в основном, из углерода, водорода, азота, кислорода и серы, а также, в незначительных количествах, ванадия и никеля. Соотношение С/H составляет приблизительно 1:1,2 в зависимости от источника асфальтена. Асфальтены имеют распределение молекулярных масс в диапазоне 400 г/моль-1500 г/моль с максимумом около 750 г/моль. Химическую структуру асфальтена сложно установить вследствие сложного характера, но она уже изучена современными способами. Нет сомнений, что асфальтен состоит в основном из полиароматического углерода, например, поликонденсатных блоков ароматического бензола с кислородом, азотом и серой, объединенных с незначительным количеством ряда тяжелых металлов, конкретно ванадия и никеля, возникающих в порфириновых структурах. Асфальтены, на сегодня, широко признаны растворимыми, химически замещаемыми фрагментами керогена, мигрировавшего из источника горной породы во время катагенеза нефти. Асфальтены диспергированы в нефтесодержащей жидкости коллектора, как наноинертные материалы. Тяжелая нефть и битуминозные песчаники содержат гораздо более высокие пропорции асфальтенов, чем средние нефти или легкие нефти по стандарту API. Конденсаты фактически лишены асфальтенов.

Разработаны способы компьютерного моделирования и имитации для оценки свойств и/или поведения нефтесодержащей жидкости в коллекторе, представляющем интерес. Обычно такие методики используют модель по уравнениям состояния, представляющую фазовое поведение нефтесодержащей жидкости в коллекторе. После создания модели по уравнениям состояния ее можно использовать для вычисления многочисленных свойств нефтесодержащей жидкости коллектора, таких как газовый фактор или конденсатно-газовый фактор, плотность каждой фазы, объемные коэффициенты и сжимаемость, заполняемость и давление насыщения (точка начала кипения или точка росы). Таким образом, можно рассчитать модель по уравнениям состояния для получения давления насыщения при данной температуре. Более того, газовый фактор, конденсатно-газовый фактор, фазовые плотности и объемные коэффициенты являются побочными продуктами модели по уравнениям состояния. Транспортные свойства, такие как заполняемость или вязкость, можно выводить из свойств, полученных в модели по уравнениям состояния, таких как состав текучей среды. Дополнительно к этому модель по уравнениям состояния можно расширить другой методикой оценки коллектора для моделирования состава потока и эксплуатационного поведения нефтесодержащей жидкости коллектора, как хорошо известно в технике. Например, моделирование состава может помогать в изучении истощения коллектора эфирного масла или газоконденсатного коллектора, где фазовые составы и свойства существенно изменяются с давлением ниже точки кипения или точки росы, закачки неравновесного газа (сухого или обогащенного) в коллектор мазута для мобилизации нефти испарением в более подвижную газовую фазу или конденсацией через прямую (одноконтактную) или динамическую (многоконтактную) смешиваемость и можно рассчитать закачки CO2 в нефтяной коллектор для мобилизации нефти вытеснением при смешивании и уменьшением вязкости нефти и набуханием нефти.

В течение нескольких последних десятилетий предполагалась гомогенность текучей среды в углеводородном коллекторе. Вместе с тем существует растущая озабоченность, что текучие среды часто являются гетерогенными или расчлененными в коллекторе. Расчлененный коллектор состоит из двух или более ячеек, которые могут иметь гидравлическую связь. Идентифицированы два типа расчлененности коллектора, а именно, вертикальная и поперечная расчлененность. Вертикальная расчлененность обычно возникает в результате тектонического нарушения или стратиграфических изменений в коллекторе, а боковая расчлененность возникает в результате горизонтальных барьеров. Удельный вес, химические силы, молекулярная и тепловая диффузия, естественная конвекция, биоразложение, поглощение и внешние притоки могут также приводить к неравновесному распределению углеводорода в коллекторе.

Расчлененность коллектора и неравновесное распределение углеводорода могут значительно ухудшать добычу и могут устанавливать разницу между месторождением с экономически оправданной и экономически не оправданной добычей. Методики, помогающие оператору точно описывать ячейки коллектора и их распределение, а также неравновесное распределение углеводорода, могут улучшать понимание таких коллекторов и, в конце концов, поднимать добычу.

Хотя важность расчлененности коллектора и неравновесного распределения углеводорода для добычи уже признана, обычно анализ зависимости давления от глубины и анализ градиента давления все еще выполняют по традиционным схемам линейной регрессии. Данный способ может вместе с тем являться дезориентирующим, поскольку составы текучей среды меняются, и расчлененность дает искажения градиентов давления, результатом чего является недостоверная интерпретация контактов текучей среды или изоляции давления.

Измерения скважинным анализатором текучей среды предоставляют ценный инструмент для определения градиентов состава в условиях забоя скважины в режиме реального времени. Примером каротажного инструмента, подходящего для отбора проб текучей среды и для анализа данных состава, является модульный динамический пластоиспытатель, поставляемый Schlumberger Technology Corporation, Sugar Land, Texas. USA. Модульный динамический пластоиспытатель создает управляемый канал гидравлической связи между текучей средой коллектора и стволом скважины и обеспечивает извлечение небольшого количества пластовой текучей среды через зонд, контактирующий с породой коллектора (пластом). Такой отбор проб текучей среды на забое скважины является предпочтительным, поскольку пробы, отобранные на забое, являются более точными. Конкретнее, в случае, если давление отбора проб выше давления насыщения, текучая среда должна быть однофазной, обеспечивающей анализ первоначального состава. Для давлений ниже давления насыщения, измерение свойств жидкой фазы в нефтяной зоне и попутного газа над ней должно давать отбор проб с большей точностью, чем для проб, рекомбинированных на поверхности. Действительно, может являться более сложным поддержание образца в состоянии, в котором он существовал на забое скважины, когда образец извлечен на поверхность. Традиционно образцы текучей среды, собранные каротажными инструментами, перемещаются на поверхность для анализа в лаборатории. Вместе с тем недавние разработки модульного динамического пластоиспытателя сделали возможным прямое измерение свойств текучей среды на забое скважины при создании притока или последовательности отбора проб, которые именуются в данном документе «скважинным анализом текучей среды». Детали устройства модульного динамического пластоиспытателя и его возможностей для скважинного анализа текучей среды раскрыты в общеизвестных патентах США 3,859,851; 4,994,671; 5,167,149; 5,201,220; 5,266,800; 5,331,156 и 7,081,615, все включены в данный документ в виде ссылки.

Скважинный анализ текучей среды является предпочтительным, поскольку информация дается в режиме реального времени, в отличие от лабораторного анализа, который может потребовать несколько дней, или анализа на поверхности на буровой площадке, в результате которого могут появляться нежелательные фазовые переходы, а также потеря ключевых составляющих. Вместе с тем градиенты состава и свойств (то есть, составов CO2, C1, C2, C3-C5, и C6+, и газового фактора), измеренных скважинными анализаторами текучей среды, могут не давать информацию, которую можно использовать для точного детектирования расчлененности и/или неравновесного распределения углеводорода в коллекторе, представляющем интерес.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Таким образом, целью настоящего изобретения является создание способов и устройства скважинного анализа текучей среды с возможностью точного детектирования расчлененности и/или неравновесного распределения углеводорода в коллекторе, представляющем интерес.

Другой целью настоящего изобретения является создание способов и устройства скважинного анализа текучей среды, прогнозирующих компоненты состава по глубине, и использование таких прогнозов для сравнения со скважинными измерениями, связанными с ним для точного детектирования расчлененности и/или неравновесного распределения углеводорода в коллекторе, представляющем интерес.

Еще одной целью настоящего изобретения является создание способов и устройства для интерпретации скважинного анализа текучей среды для расчета компонентов состава по глубине с использованием уравнений состояния и для определения расчлененности или неравновесности коллектора на основе данных расчетов.

Согласно целям изобретения создан инструмент со скважинным анализатором текучей среды для выполнения измерений состава на одном измерительном пункте (точке привязки) и, возможно, других измерительных пунктах в стволе скважины, пересекающем коллектор, представляющий интерес. Градиенты состава по глубине можно прогнозировать с помощью уравнений состояния, учитывающих динамические воздействия гравитационных сил, химических сил, тепловой диффузии и т.п. Прогнозные данные состава и данные состава, измеренные инструментом со скважинным анализатором текучей среды на соответствующей глубине, можно затем сравнивать друг с другом для определения свойств коллектора (таких как расчлененность или неравновесность и сообщаемость или равновесие).

Дополнительные цели и преимущества изобретения должны стать ясны специалисту в данной области техники после ознакомления с подробным описанием с прилагаемыми фигурами.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг.1 схематично показана система анализа нефтяного коллектора, в которой применено настоящее изобретение.

На фиг.2A и 2В показана последовательность операций способа анализа данных, включающего в себя скважинный анализ текучей среды, в котором измеряют компоненты состава отобранных образцов текучей среды коллектора, градиенты состава и свойства текучей среды по глубине прогнозируют по выходным данным такого анализа и сравнению прогнозируемых данных состава и данных состава, измеренных скважинным анализом текучей среды на соответствующей глубине, и используют для точного детектирования расчлененности и/или неравновесного распределения углеводорода в коллекторе, представляющем интерес.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

На фиг.1 показан вариант системы 1 анализа нефтяного коллектора, в которой осуществлено настоящее изобретение. Система 1 включают в себя скважинный инструмент 10, подвешенный в стволе 12 скважины на нижнем конце типичного многожильного кабеля 15, намотанного на подходящую лебедку (не показано) на поверхности над пластом. Кабель 15 подключен к электронному оборудованию и системе 18 обработки данных на поверхности над пластом. Скважинный инструмент 10 включает в себя удлиненный корпус 19, в котором размещена скважинная часть системы 16 управления инструментом. Удлиненный корпус 19 также несет избирательно выдвигающуюся компоновку 20 приема текучей среды и избирательно выдвигающийся элемент 21 крепления инструмента, соответственно, расположенные на противоположных сторонах корпуса инструмента. Компоновка 20 приема текучей среды оборудована избирательной изоляцией участков стенки ствола 12 скважины так, что устанавливает гидравлическую связь или связь с давлением примыкающего геологического пласта 14. Инструмент 10 также включает в себя средство определения скважинного давления и температуры (не показано) и модуль 25 анализа текучей среды, через который проходит полученная текучая среда. Текучая среда может затем выпускаться через выпускное отверстие (не показано) или может направляться в одну или несколько камер 22 и 23 сбора текучей среды, принимающих и удерживающих текучую среду, полученную из пласта. Управление компоновкой 20 приема текучей среды, модулем 25 анализа текучей среды и каналами подачи в сборные камеры осуществляет система 16 управления инструмента и система 18 обработки данных и электронного оборудования. Как должно быть ясно специалисту в данной области техники, размещенная на поверхности система 18 обработки данных и электронного оборудования включает в себя функциональную возможность обработки данных (то есть, один или несколько микропроцессоров, ассоциативную память и другое аппаратное и/или программное обеспечение) для реализации изобретения, описанного в данном документе. Система 18 обработки данных и электронного оборудования может также быть реализована в системе распределенной обработки данных, в которой данные, измеренные инструментом 10, передаются (предпочтительно в режиме реального времени) по линии связи (обычно спутниковой линии связи) на удаленные площадки для анализа данных, как описано в данном документе. Анализ данных можно выполнять на автоматизированном рабочем месте или в другой подходящей системе обработки данных (такой как кластер компьютеров или вычислительная сеть).

Инструмент со скважинным анализатором текучей среды на фиг.1 измеряет концентрации углеводородных компонентов (таких как метан (CH4) и этан (C2H6), а также алкановой группы С3-C5, и кусков гексана и более тяжелых алкановых компонентов (C6+). Такие измерения основаны на спектрофотометрических измерениях (например, спектров поглощения образца скважинной текучей среды). Согласно настоящему изобретению, устройство фиг.1 используют для выполнения измерений состава на одном измерительном пункте (точке привязки) и, возможно, других измерительных пунктах в стволе скважины, пересекающем коллектор, представляющий интерес. Градиенты состава по глубине можно прогнозировать посредством уравнений состояния, учитывающих динамические воздействия гравитационных сил, химических сил, тепловой диффузии и т.п. Прогнозируемые данные состава и данные состава, измеренные инструментом с забойным анализатором текучей среды на соответствующей глубине, можно затем сравнивать для определения расчлененности или неравновесности коллектора.

На фиг.2A и 2B показан пример способа определения расчлененности коллектора или неравновесности согласно настоящему изобретению. Способ начинается с этапа 101 с использованием инструмента со скважинным анализатором текучей среды фиг.1 для получения образца пластовой текучей среды при давлении и температуре коллектора на измерительной станции в стволе скважин (например, опорной станции). Образец обрабатывается модулем 25 анализа текучей среды. В предпочтительном варианте осуществления модуль 25 анализа текучей среды выполняет спектрофотометрические измерения с измерением спектров поглощения образцов и переводит такие спектрофотометрические измерения в концентрации нескольких алкановых компонентов и групп в текучих средах, представляющих интерес. В показанном варианте осуществления модуль 25 анализа текучей среды выполняет измерения концентрации (например, весовых процентов) двуокиси углерода (CO2), метана (CH4), этана (C2H6), алкановой группы С3-C5, включающей в себя пропан, бутан, пентан и куски гексана и более тяжелых алкановых компонентов (C6+). Инструмент 10 также предпочтительно обеспечивает средство измерения температуры образца текучей среды (и, таким образом, температуры коллектора на станции), давления образца текучей среды (и, таким образом давления коллектора на станции), реальной плотности образца текучей среды, газового фактора образца текучей среды, плотности образца текучей среды в градусах Американского нефтяного института (АНИ), объемного коэффициента пласта образца текучей среды и вязкости образца текучей среды.

На этапе 103 осуществляют процесс распределения для характеристики компонентов состава образца, анализировавшегося на этапе 101. Подробности операций распределения, выполняемых как часть этапа 103, описаны в патентной заявке США 12/209,050 зарегистрированной 11 сентября 2008 г. и полностью включенной в данный документ путем ссылки.

На этапе 105 результаты процесса распределения этапа 103 используют вместе с уравнениями состояния для прогнозирования градиентов состава по глубине, с учетом динамического воздействия гравитационных сил, химических сил, тепловой диффузии и т.п.

Уравнения состояния этапа 105 включают в себя группу уравнений, представляющих фазовое поведение компонентов состава текучей среды коллектора. Такие уравнения могут принимать много форм. Например, они могут представлять собой любые из многих кубических уравнений состояния, которые хорошо известны. Такие кубические уравнения состояния включают в себя уравнение состояния Ван-дер-Ваальса (1873), уравнение состояния Редлих-Куонг (1949), уравнение состояния Зуав-Редлих-Куонг (1972), уравнение состояния Пенг-Робинсон (1976), уравнение состояния Стрик-Вера-Пенг-Робинсон (1986) и уравнение состояния Пател-Теха (1982). Параметры объемного сдвига можно использовать как часть кубического уравнения состояния для совершенствования прогнозирования плотности жидкости, как хорошо известно. Правила смешанного использования (такое, как правило смешанного использования Ван-дер-Ваальса) можно также применять в части кубического уравнения состояния. Уравнения состояния статистической теории, связанной с текучей средой, типа SAFT можно также использовать, как хорошо известные в технике.

Уравнения состояния на этапе 105 обобщают для прогнозирования градиентов состава по глубине, с учетом динамических воздействий гравитационных сил, химических сил, тепловой диффузии и т.п. Для вычисления градиентов состава по глубине в углеводородном коллекторе, обычно считают, что отсутствуют явления поглощения или любой вид химических реакций в коллекторе. Массовый приток (J) компонента i, пересекающего границу единичного объема пористого вещества, выражается формулой:

где Lij, Lip и Liq являются феноменологическими коэффициентами,

ρi обозначает парциальную плотность компонента i,

ρ, g, Р, Т - плотность, ускорение свободного падения, давление и температура, соответственно, и

gj1 - вклад компонента j в потенциал энергии массы текучей среды в пористом веществе, которую можно разделить на часть µi химического потенциала и гравитационную часть gz (где z вертикальная глубина).

Среднюю скорость (u) текучей среды рассчитывают по формуле:

Согласно закону Дарси, феноменологические коэффициенты бародиффузии должны соответствовать следующему ограничению:

где k и η обозначают проницаемость и вязкость, соответственно.

Если размер пор значительно больше свободного пробега молекул, мобильность компонентов под воздействием внешнего поля давления является очень близкой к суммарной подвижности. Массовый химический потенциал является функцией молярной доли (х), давления и температуры. При постоянной температуре производная массового химического потенциала (µj) имеет два вклада:

где частные производные можно выразить в форме уравнения состояния (коэффициентов фугативности):

где Mj, fj, φj и vj - молекулярный вес, фугативность, коэффициент фугативности и парциальный молярный объем компонента j, соответственно,

Xk - молярная доля компонента k,

R означает универсальную газовую постоянную; и

δ - дельта-функция Кронекера.

В идеальном случае феноменологические коэффициенты (L) можно соотносить с действующими практически осуществимыми коэффициентами (Dieff) диффузии:

Сохранение массы для компонента i в компоненте n текучей среды коллектора, управляющее распределением компонентов в пористом веществе, выражается следующей формулой:

Уравнение можно использовать для решения проблем в широком диапазоне. Это динамическая модель, изменяющаяся во времени t.

Считается механическое равновесие столба текучей среды достигнутым:

Вертикальное распределение компонентов можно рассчитать решением следующей системы уравнений:

где Jiz, - вертикальный компонент внешнего массового притока.

Данное выражение обеспечивает вычисление стационарного состояния столба текучей среды и не требует моделирования динамического процесса, ведущего к наблюдавшемуся распределению состава.

Если горизонтальные компоненты внешних притоков являются существенными, необходимо также решить уравнения по другим осям. По горизонтальной оси «х» уравнения становятся следующими:

Механическое равновесие столба текучей среды является частной ситуацией, которая должна возникать только в высокопроницаемых коллекторах. В общем случае вертикальный градиент давления рассчитывают следующим образом:

где Rµ рассчитывают по следующей формуле:

Вклад в градиент давления от тепловой диффузии (так называемый вклад Сорэ) дает следующая формула:

И вклад градиента давления от внешних притоков выражает формула:

Приняв коллектор изотермическим и пренебрегая внешним притоком, получаем в результате следующее уравнение:

Уравнение (17) можно переписать для неизотермического случая следующей формулой:

где ai вычисляют по следующей формуле:

На этапе 107 инструмент со скважинным анализатором текучей среды фиг.1 используют для получения образца пластовой текучей среды под давлением и при температуре коллектора на другой измерительной станции в стволе скважины, и анализируют текучую среду в скважине, выполняя работу с образцом, как описано выше для этапа 101. В предпочтительном варианте осуществления модуль 25 анализа текучей среды выполняет спектрофотометрические измерения спектров поглощения образца и переводит такие спектрофотометрические измерения в концентрации нескольких алкановых компонентов и групп в текучих средах, представляющих интерес. Инструмент также предпочтительно оборудован средством измерения температуры образца текучей среды (и, соответственно, температуры коллектора на пункте), давления в образце текучей среды (и, соответственно, давления в коллекторе на пункте), реальной плотности образца текучей среды, газового фактора образца текучей среды, плотности в градусах АНИ образца текучей среды, объемного коэффициента пласта по образцу текучей среды и вязкости образца текучей среды.

Если необходимо, на этапе 109 уравнения состояния этапа 105 редактируют на основе сравнения анализа состава инструментом с забойным анализатором текучей среды на этапе 107 и прогнозов градиента состава по глубине, выведенных из уравнений состояния этапа 105. В случае, если уравнения состояния редактируют, градиент состава и прогнозы свойств текучей среды этапа 105 можно пересчитать по отредактированным уравнениям состояния. Редактирование уравнений состояния этапа 105 обычно включает в себя редактирование параметров объемного перевода, параметров двоякого взаимодействия и/или критических свойств компонентов уравнений состояния. Пример редактирования уравнений состояния описан в материале Reyadh A. Almehaideb et al. "EOS tuning to model full Held crude oil properties using multiple well fluid PVT analysis/" Journal of Petroleum Science and Engineering, Volume 26. Issues 1-4, pages 291-300, 2000, полностью включенном в данный документ в виде ссылки.

На этапе 111 прогнозные измерения скважинного анализатора текучей среды выводят из уравнений состояния и уравнений градиента, выработанных на этапе 105 или этапе 109. Прогнозные измерения скважинного анализатора текучей среды могут включать в себя прогнозные данные состава углеводородных компонентов или групп углеводородных компонентов, измеренные инструментом со скважинным анализатором текучей среды, прогнозное давление и/или прогнозную температуру коллектора и прогнозные свойства давления/объема/температуры коллектора, такие как газовый фактор, плотность в градусах АНИ, объемный коэффициент пласта, плотность и вязкость. Прогнозные данные состава, давления и температуры на каждой глубине получают решением уравнений 18 и 19. Свойства давления/объема/температуры затем рассчитывают по уравнениям состояния и моделям вязкости.

На этапе 113 прогнозные измерения скважинного анализатора текучей среды, выведенные на этапе 111, сравнивают с соответствующими измерениями, выполненными инструментом со скважинным анализатором текучей среды на этапе 107.

На этапе 119 проверяют, превосходит ли разница в результатах сравнения на этапе 113 заданный порог (пороги) Tc. Порог (пороги) Tc выбирают для идентификации расчлененности слоев или неравновесности коллектора по значительной разнице между прогнозными измерениями скважинного анализатора текучей среды и соответствующими измерениями скважинного анализатора текучей среды, выполненными инструментом со скважинным анализатором текучей среды на этапе 107. В таком случае операции продолжают на этапе 121 для сообщения оператору, где может иметь место расчлененность слоев между двумя измерительными станциями. Также возможно сообщение пользователю, что коллектор может являться неравновесным.

Если на этапе 119 разница в результатах сравнения на этапе 113 не превосходит заданный порог(пороги) Tc, операции продолжаются на этапе 123 для проверки, не является ли результат сравнения на этапе 113 меньше заданного порога (порогов) Tc. Порог (пороги) Tc выбирают для идентификации сообщаемости слоев и/или равновесия коллектора по малой разности между прогнозными измерениями скважинного анализатора текучей среды и соответствующими измерениями скважинного анализатора текучей среды, выполненными инструментом со скважинным анализатором текучей среды на этапе 107. Если так, операции продолжаются на этапе 125 для сообщения оператору, что слои между двумя измерительными пунктами являются сообщающимися. Также возможно сообщение пользователю, что коллектор может находиться в равновесии. Если нет, операции продолжаются на этапе 127 для сообщения оператору, что результат является неопределенным и требуются дополнительные данные для уточнения.

Операции этапов 101-127 можно повторять, если требуется, для нескольких пар пунктов измерения в стволе скважины для создания анализа расчлененности коллектора для нескольких слоев коллектора.

Способ, описанный выше, применен к одиночной скважине. Вместе с тем способ можно распространить на несколько скважин. Для выполнения указанного, способ для одиночной скважины сначала используют для создания модели с уравнениями состояния. Модель с уравнениями состояния можно затем применять для выполнения прогнозов каротажа для других скважин в данном коллекторе. Методологию, описанную выше для одиночной скважины, можно использовать для сравнения измерений скважинного анализатора текучей среды с прогнозами каротажа по уравнениям состояния и для определения расчлененности коллектора и/или неравновесного распределения углеводородных текучих сред.

В данном документе описаны и показаны предпочтительные варианты осуществления способов и устройства для анализа градиентов состава и их применения. Хотя описаны конкретные варианты осуществления изобретения, они не направлены на ограничение изобретения и предлагают такой широкий объем изобретения, какой обеспечен уровнем техники, и описание следует читать именно так. Таким образом, хотя описаны конкретные способы обработки данных и системы, должно быть понятно, что другие подходящие способы обработки данных и системы можно аналогично использовать. Также, хотя описаны конкретные уравнения состояния и применение таких уравнений состояния для прогнозирования свойств текучих сред коллектора, должно быть ясно, что другие уравнения состояния и их варианты применения также можно использовать. Поэтому специалисту в данной области техники должно быть ясно, что можно выполнять другие модификации созданного изобретения без отхода от его объема, заданного формулой изобретения.


СПОСОБЫ И УСТРОЙСТВО ДЛЯ АНАЛИЗА ГРАДИЕНТОВ СОСТАВА НА ЗАБОЕ СКВАЖИНЫ И ИХ ПРИМЕНЕНИЕ
СПОСОБЫ И УСТРОЙСТВО ДЛЯ АНАЛИЗА ГРАДИЕНТОВ СОСТАВА НА ЗАБОЕ СКВАЖИНЫ И ИХ ПРИМЕНЕНИЕ
СПОСОБЫ И УСТРОЙСТВО ДЛЯ АНАЛИЗА ГРАДИЕНТОВ СОСТАВА НА ЗАБОЕ СКВАЖИНЫ И ИХ ПРИМЕНЕНИЕ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 324.
20.04.2014
№216.012.bb02

Долото для управляемого направленного бурения, система бурения и способ бурения криволинейных стволов скважин

Изобретение относится к буровому инструменту и может быть использовано при наклонно-направленном бурении скважин. Предложен корпус долота, содержащий задний конец, направляющую секцию и разбуривающую секцию. При этом задний конец выполнен с возможностью разъемного скрепления с бурильной...
Тип: Изобретение
Номер охранного документа: 0002513602
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb85

Компоновка тандемного трактора с гидравлическим приводом

Компоновка тракторов для применения на забое нефтегазоносных скважин с использованием нескольких тракторов одновременно содержит гидравлический привод и может создавать существенное увеличение общей грузоподъемности при выполнении работы забойными тракторами. Таким образом, работы на гибкой...
Тип: Изобретение
Номер охранного документа: 0002513733
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bbd4

Система, способ и считываемый компьютером носитель для вычисления расходов скважин, создаваемых электропогружными насосами

Группа изобретений относится к мониторингу показателей скважин с забойным и устьевым оборудованием. Более конкретно, настоящие изобретения раскрывают систему и способ по определению и вычислению расходов в скважинах, которые создают электропогружные насосы. Обеспечивается повышение...
Тип: Изобретение
Номер охранного документа: 0002513812
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bbd6

Кабельная сборка увеличенной длины для применения в углеводородных скважинах

Изобретение относится к рабочим кабелям для размещения в углеводородных скважинах. Техническим результатом является обеспечение возможности использования кабеля в сверхглубоких скважинах. Предложена кабельная сборка для использования в углеводородной скважине увеличенной глубины, содержащая, по...
Тип: Изобретение
Номер охранного документа: 0002513814
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bbd7

Барьерное уплотнение и узел с данным барьерным уплотнением

Изобретение относится к барьерному уплотнению и оборудованию устья скважины, включающему данное барьерное уплотнение. Оборудование устья скважины содержит выпускную трубу, оснащенную контрольно-измерительным оборудованием колонны, содержащую первый патрубок, образующий уплотняющий профиль,...
Тип: Изобретение
Номер охранного документа: 0002513815
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c0d2

Нейтронный скважинный прибор для измерения пористости с увеличенной точностью и уменьшенными литологическими влияниями

Использование: для измерения пористости. Сущность изобретения заключается в том, что нейтронный скважинный прибор для определения пористости включает источник нейтронов, устройство контроля нейтронов, детектор нейтронов и схему обработки данных. Источник нейтронов может излучать нейтроны в...
Тип: Изобретение
Номер охранного документа: 0002515111
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.ce54

Система и способ коррекции влияния диаметра скважины и ее гидродинамического совершенства при измерениях пористости методом нейтронного каротажа

Использование: для измерения пористости методом нейтронного каротажа. Сущность изобретения заключается в том, что представлены система, способ и прибор для определения значений пористости подземного пласта, скорректированных с учетом влияния скважины. Скважинный прибор, опускаемый в скважину...
Тип: Изобретение
Номер охранного документа: 0002518591
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf62

Способы, установки и изделия промышленного производства для обработки измерений струн, вибрирующих в флюидах

Изобретение относится к области разведочной геологии и может быть использовано для определения различных свойств углеводородных пластовых флюидов. В заявленном изобретении раскрыты примеры способов, установок и изделий промышленного производства для обработки измерений струн, вибрирующих во...
Тип: Изобретение
Номер охранного документа: 0002518861
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf71

Способ определения плотности подземных пластов, используя измерения нейтронного гамма-каротажа

Использование: для определения плотности подземных пластов. Сущность изобретения заключается в том, что определение плотности подземного пласта, окружающего буровую скважину, производят на основании измерения гамма-излучения, возникающего в результате облучения пласта ядерным источником в...
Тип: Изобретение
Номер охранного документа: 0002518876
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d0de

Платформа клапана-регулятора расхода

Группа изобретений относится к горному делу и может быть применена в скважинных клапанных системах. Скважинная система включает в себя насосно-компрессорную трубу, проходящую в изолированную зону скважины, и множество модулей штуцеров, расположенных в изолированной зоне, для управления...
Тип: Изобретение
Номер охранного документа: 0002519241
Дата охранного документа: 10.06.2014
Показаны записи 61-70 из 236.
10.03.2014
№216.012.a9e4

Сшивание галактоманнана в отсутствие металла

128 Изобретение относится к способам и композициям полимеров для модифицирования вязкости нефтепромысловых сервисных текучих сред. Способ обработки подземного пласта флюидом включает получение флюида, содержащего сшивающий агент приведенной структурной формулы, который образуется в результате...
Тип: Изобретение
Номер охранного документа: 0002509207
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ac71

Самостабилизирующиеся и сбалансированные от вибраций буровые долота и компоновки низа бурильных колонн и системы для их использования

Группа изобретений относится к буровым долотам и компоновкам низа бурильной колонны. Обеспечивает предотвращение вибраций и других отклонений бурового долота и/или компоновки низа бурильной колонны. Буровое долото содержит внутреннюю полость, сообщенную текучей средой с бурильной колонной, и...
Тип: Изобретение
Номер охранного документа: 0002509860
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac73

Сбалансированные от вибраций долота скважинные системы и способы их использования

Группа изобретений относится к буровым долотам, буровым установкам и способам их использования. Обеспечивает достижение стабильности и уменьшение вибраций бурового долота. Буровое долото содержит внутреннюю полость, сообщенную текучей средой с бурильной колонной, множество резцов и первую...
Тип: Изобретение
Номер охранного документа: 0002509862
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac84

Замедленное разрушение структуры текучих сред для обработки скважин

Изобретение относится к способам обработки подземной формации с использованием сшитых полимеров. Способ обработки подземной формации, пронизанной буровой скважиной, включает введение обрабатывающей текучей среды в буровую скважину, сшивание гидратируемого полимера для повышения вязкости...
Тип: Изобретение
Номер охранного документа: 0002509879
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad2f

Способ и устройство для улучшенной регистрации сейсмических данных

Изобретение относится к области геофизики и может быть использовано для определения различных скважинных параметров во время бурения. Способ содержит перемещение прибора через подземный пласт от первой глубины на последующие глубины. Прибор принимает сейсмический сигнал в продолжении заданных...
Тип: Изобретение
Номер охранного документа: 0002510050
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b0ff

Способ передачи данных изображения буровой скважины и система для его осуществления

Настоящее изобретение в целом относится к формированию изображения буровой скважины. Более конкретно, настоящее изобретение относится к передаче в режиме реального времени видеоданных о буровой скважине из некоторого места внутри скважины в некоторое место на поверхности. Заявленная группа...
Тип: Изобретение
Номер охранного документа: 0002511026
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.bae0

Способ консолидации жидкостных стадий в жидкостной системе для закачивания в скважину

Изобретение относится к консолидации жидкостных стадий и применимо в жидкостной системе, используемой для закачивания в скважину. Способ поддержания консолидации жидкостных стадий в жидкостной системе, используемой для закачивания в скважину, содержащей контактирующую жидкость иного...
Тип: Изобретение
Номер охранного документа: 0002513568
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bae2

Автономный скважинный регулятор притока и способы его использования

Представлен клапанный узел для регулирования потока текучей среды в горизонтальной скважине. Корпус может быть соединен насосно-компрессорной колонной. Камера образована внутри корпуса и может быть гидравлически сообщена проточным каналом с внутренним кольцевым зазором, образованным вблизи...
Тип: Изобретение
Номер охранного документа: 0002513570
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb00

Интегрированная система непрерывного наблюдения

Изобретение относится к исследованию скважин и может быть использовано для непрерывного контроля параметров в скважине. Техническим результатом является упрощение конструкции системы наблюдения за параметрами в скважине. Предложена система наблюдения в скважине, включающая датчики, в частности,...
Тип: Изобретение
Номер охранного документа: 0002513600
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb02

Долото для управляемого направленного бурения, система бурения и способ бурения криволинейных стволов скважин

Изобретение относится к буровому инструменту и может быть использовано при наклонно-направленном бурении скважин. Предложен корпус долота, содержащий задний конец, направляющую секцию и разбуривающую секцию. При этом задний конец выполнен с возможностью разъемного скрепления с бурильной...
Тип: Изобретение
Номер охранного документа: 0002513602
Дата охранного документа: 20.04.2014
+ добавить свой РИД