×
10.04.2013
216.012.32ed

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ОБЕЗЗАРАЖИВАНИЯ СТОКОВ ЭЛЕКТРИЧЕСКИМИ РАЗРЯДАМИ

Вид РИД

Изобретение

№ охранного документа
0002478580
Дата охранного документа
10.04.2013
Аннотация: Изобретение относится к системам водоочистки и водоподготовки для бытовых и промышленных нужд, а именно к устройствам для очистки стоков с высоким содержанием органических веществ электрическими разрядами, и может быть использовано в промышленности для обработки и обеззараживания питьевой воды, сточных вод производственных и хозяйственных предприятий, медицинских организаций; сточных вод небольших населенных пунктов. Устройство для обеззараживания стоков электрическими разрядами содержит снабженный отверстиями ввода очищаемого стока 2 и вывода обеззараженной воды 3 корпус, выполненный в виде камеры-реактора 1 со средствами подачи обогащенной озоном омагниченной воздушной смеси 4 и с парой коаксиально расположенных в центре камеры высоковольтных электродов 5 и 5 с воздуховодом 6 в виде калиброванного продольного отверстия внутри одного из них, на которые поступает импульс через программатор 9 энергии и частоты и коммутатор 8 от высоковольтного источника питания 7. Технический результат состоит в снижении энергетических затрат при работе устройства без ухудшения качества очистки стока с повышенным содержанием органических веществ. 7 з.п. ф-лы, 1 ил., 3 табл., 2 пр.

Изобретение относится к системам водоочистки и водоподготовки для бытовых и промышленных нужд и может быть использовано, например, в различных промышленных областях для обработки и обеззараживания питьевой воды, сточных вод производственных и хозяйственных предприятий, медицинских организаций; сточных вод небольших населенных пунктов. Конкретно, изобретение относится к устройствам для очистки стоков с высоким содержанием органических веществ электрическими разрядами.

Известно устройство доочистки воды (RU 2301776), содержащее катод и анод, расположенные на диэлектрической трубке, присоединенные к блоку управления. В углублениях катода и анода установлены магнитные таблетки. На патрубке у катода имеется колпак для сбора водорода и клапан для его отвода. Такое устройство не отличается эффективностью очистки воды из-за малой величины напряженности магнитного поля, воздействию которого подвергается вода. Увеличение модуля напряженности в этом изобретении не предусмотрено. Здесь степень очистки воды зависит от величины напряженности магнитного поля, а когда напряженность мала, то и очистка слаба, неэффективна.

Известно устройство электрохимической обработки воды и водных растворов (RU 2374182), которое содержит коаксиально расположенные положительный и отрицательный электроды, ионообменную диафрагму, коаксиально размещенную между электродами, которая разделяет межэлектродное пространство на камеры. В рассматриваемом устройстве ионообменная диафрагма между электродами выполнена таким способом, из-за которой прохождение воды задерживается и процесс очистки получается медленным и неэффективным.

Известен способ очистки жидких сред (US 5130032), в котором очищаемый материал должен быть сначала накоплен и сконцентрирован в емкости, из которой он перемещается и проходит электростатическую обработку, проходит ультразвуковой озоновый дозатор, камеру ультразвуковой обработки и охлаждающий узел. Процесс может быть повторен несколько раз до тех пор, пока не будут достигнуты необходимая степень оксидации, а значит, и чистота жидкости. К недостаткам этого метода можно отнести многокамерность процесса очистки, необходимость дополнительной подачи озона, необходимость снижения температуры на последнем этапе и, соответственно, низкую эффективность (большой расход электроэнергии) очистки жидкостей таким способом.

Известен способ очистки воды (заявка RU 2005124905) путем воздействия электрического барьерного разряда на смесь воды и кислородсодержащего газа, где кислородсодержащий газ подвергается очистке, охлаждению и вводится в воду непосредственно в разрядном промежутке путем диспергирования через пористый электрод при давлении кислородсодержащего газа, выбранными из условия образования около пористого электрода тонкого газового слоя, в котором преимущественно развивается электрический барьерный разряд. В этом способе для очистки воды вода должна быть смешана с кислородсодержащим газом до процесса-очистки, а также кислородсодержащий газ подается дополнительно в разрядный промежуток путем диспергирования. Это достаточно сложная и дорогостоящая технология очистки, так как дополнительно вводить в воду кислородсодержащий газ нецелесообразно.

Известны, например, способ и устройство электроплазменной очистки сточных вод по заявке PCT/RU92/00006 (WO 92/12933, C02F 1/48). Согласно этому способу перед подачей водного потока в емкость реактора поток насыщают озоносодержащим воздухом, и после заполнения емкости реактора по поверхности обрабатываемого потока производят элекгроплазменные разряды с энергией не менее 3 кДж на разряд и частотой 5 Гц. Образующуюся при разряде элекгроплазменную дугу перемещают по поверхности водного потока вращающимся электромагнитным полем. Известный способ осуществляют в устройстве, содержащем цилиндрическую емкость с патрубками подачи и вывода потока воды и подключенными к разным полюсам источника питания центральным электродом и внешним кольцевым электродом, смонтированным на верхней кромке емкости. Центральный электрод известного устройства оборудован головкой, которая соприкасается с поверхностным слоем обрабатываемого потока.

Известны способ и устройство для обеззараживания воды и насыщения ее кислородом (LT5029), в котором устройство состоит из цилиндрического «статора», снабженного воздуховодами, и высоковольтной электродной пары («ротор»), соединенной с генератором высоковольтных импульсов тока. Устройство может применяться в емкостях накопителях, однако оно малопригодно для проточных систем, что является существенным минусом в сравнении с описываемым изобретением. К тому же в области электродов из-за нестабильности поля происходит больше энергетических потерь, оно менее экономично и конструкция его сложнее по сравнению с устройством в описываемом изобретении.

Известно, принятое за прототип, устройство для обеззараживания воды электрическими разрядами (SU 1263643), содержащее корпус, выполненный в виде камеры с воздуховодом, и размещенные в нем генератор высоковольтных импульсов, высоковольтную электродную пару, отрицательный электрод которой выполнен из немагнитного материала и снабжен отверстиями для подачи озона в область электрического разряда, компрессор.

К главным недостаткам устройства относятся:

- рассредоточение озоновоздушной смеси в зоне электрического взрыва, что приводит к резкому снижению давления и рассеиванию энергия сброса в зону разряда;

- необходимость включения в процесс работы генератора высоковольтных импульсов и генератора напряжений в качестве дополнительного источника энергии;

- затраты большого количества энергии на нагрев потока для возникновения разряда;

- низкий ресурс работы высоковольтных изоляторов устройства и воздушного разрядника, которые быстро изнашиваются из-за образования разрушительно действующих каверн при больших токах и одновременной оксидации металла как материала упомянутых составляющих.

Задача, на решение которой направлено заявленное изобретение, заключается в решении проблемы водоочистки на фоне ухудшающейся экологической обстановки в результате загрязнения водной среды от деятельности промышленных, сельскохозяйственных предприятий и предприятий ЖКХ.

Технический результат, получаемый при осуществлении изобретения, состоит в снижении энергетических затрат при работе устройства без ухудшения качества очистки стока с повышенным содержанием органических веществ.

Указанный технический результат достигается за счет того, что устройство для обеззараживания стоков электрическими разрядами содержит снабженный отверстиями ввода очищаемого стока и вывода обеззараженной воды корпус, выполненный в виде камеры-реактора со средствами подачи обогащенной озоном омагниченной воздушной смеси и с парой коаксиально расположенных в центре камеры высоковольтных электродов с воздуховодом в виде калиброванного продольного отверстия внутри одного из них, на которые поступает импульс через программатор энергии и частоты и коммутатор от высоковольтного источника питания.

Применение предлагаемого устройства позволяет снизить энергозатраты в 10 раз в результате действия резонанса от электровзрыва, который происходит при инициировании короткого импульса омагниченной воздушной смеси, проходящей через калиброванное отверстие высоковольтного электрода. Разряд происходит на границе раздела двух сред вода - воздух, поэтому функционирование устройства уже не требует включения в процесс работы генератора импульса напряжений и генератора импульса тока. Инициирующий воздуховод выполняют в стержне отрицательного электрода.

Поступление в зону разряда энергии в количестве, не превышающем 50% энергии, накопленной в конденсаторах генератора высоковольтных импульсов (высоковольтный источник питания), гарантирует избежание смены полярности в накопителях энергии (конденсаторах генератора), благодаря чему срок службы конденсаторов генератора высоковольтных импульсов увеличивается в 10 раз по сравнению с рассмотренными аналогами (дополнительный технический результат - повышение долговечности устройства).

Энергия, накопленная высоковольтным источником питания через коммутатор и программатор, сбрасывается в межэлектродное пространство (зона разряда), что гарантирует избежание смены полярности на накопителях энергии (конденсаторах), благодаря чему срок службы энергонакопителя (конденсаторов генератора) продляется в 10 раз и более по сравнению с рассмотренными аналогами.

Частные случаи исполнения устройства и его конструктивных элементов:

- выполнение отверстия ввода очищаемого стока в виде трубы Вентури, проходящей извне внутрь камеры-реактора и заканчивающейся над воздуховодом, позволяет быть потоку во взвешенном состоянии и закручиваться;

- выполнение средства для подачи воздушной смеси в виде расположенного внутри на дне камеры-реактора воздуховода в форме спирали Архимеда;

- выполнение над воздуховодом, расположенным на дне камеры-реактора, демпфирующего пространства;

- наличие снабженного расходомером или ограничителем подачи воздушной смеси компрессора;

- выполнение электродов с оболочкой из диэлектрического материала в виде заостренных стержней обеспечивает условия для лучшего стекания энергии (увеличивает КПД).

Омагничивание поступающей в корпус устройства воздушной смеси может производиться в электромагнитных устройствах-активаторах. При соединении отверстие ввода очищаемого стока с электромагнитным устройством-активатором, происходит омагничивание водного потока (очищаемого стока).

Надежность устройства повышается (дополнительный технический результат) в том числе при снижении высоковольтного напряжения на электродах с 50 кВ (в прототипе) до 10-25 кВ.

Расположенные внутри камеры-реактора высоковольтные электроды должны быть выполнены из немагнитного материала (бериллиевая бронза, нержавеющая сталь и т.п.) для того, чтобы не произошло искажение электромагнитного поля, не возросла индуктивность цепи, не возросла длительность импульса, а мощность разряда была бы достаточно большой. Изоляционное покрытие применяемых высоковольтных электродов выполняют из диэлектрика, например полиэтилена.

Для пояснения сущности заявленного изобретения предлагается фиг.1, на которой представлена структурная схема заявленного устройства.

В качестве сведений, подтверждающих возможность осуществления изобретения с получением вышеуказанного технического результата, приводится описание конструкции устройства для обеззараживания стоков в соответствии с заявленной формулой и способ его работы.

Устройство содержит (фиг.1) корпус, выполненный в виде технологической камеры-реактора 1 с входным отверстием (отверстие ввода очищаемого стока) 2 в виде трубы Вентури и выходным отверстием (отверстие вывода обеззараженной воды) 3, с расположенным внутри, на дне камеры воздуховодом 4 в виде пористой трубки в форме спирали Архимеда, с парой высоковольтных электродов 5, 5' в центре, причем отрицательный 5 электрод выполнен с инициирующим воздуховодом 6, представляющим собой калиброванное отверстие внутри него; высоковольтный источник питания 7, которым является накопитель энергии, генератор высоковольтных импульсов; высоковольтный управляемый коммутатор 8, программатор 9 энергии и частоты, компрессор (не показан), расходомер (не показан) и электромагнитные устройства-активаторы 10 для омагничивания водного потока и воздушной смеси.

Выполненное в виде трубы Вентури для исключения осаждения взвешенных веществ стока входное отверстие 2 камеры-реактора 1 заканчивается над воздуховодом 4, у основания диэлектрика (изоляционное покрытие высоковольтного электрода 5).

Над воздуховодом 4 предусмотрено демпфирующее пространство (не показано), которое обеспечивает минимальное давление на стенки камеры-реактора 1 и защиту корпуса камеры-реактора 1 от деформации при разряде.

Камера-реактор 1 через входное отверстие заполняется очищаемым стоком, прошедшим через электромагнитные устройства-активаторы 10, в которых очищаемому стоку сообщено центробежное ускорение. Вместе со стоком в реактор проникает воздух, хотя поступление воздуха в камеру со стороны входного отверстия 1 (поступлению воздуха вместе с очищаемым стоком через входное отверстие 2 не препятствуют). Одновременно с поступлением в технологическую камеру-реактор 1 очищаемого стока в нее по воздуховоду 4, а также в зону разряда (межэлектродное пространство) через инициирующий (высоковольтный разряд) воздуховод 6 высоковольтного электрода 5 подается под заданным давлением (~5-7 атм) содержащая озон воздушная смесь, прошедшая магнитную обработку в электромагнитном устройстве-активаторе 10. От высоковольтного источника питания 7, через программатор 9 энергии и частоты (задается энергия и частота разрядов на высоковольтных электродах 5, 5') и коммутатор 8 подается импульс на высоковольтные электроды 5, 5'. Программатор 9 энергии и частоты, а также высоковольтный управляемый коммутатор 8 в любой момент могут прекратить доступ энергии, накопленной в конденсаторах генератора высоковольтного источника питания 7.

Примеси из очищаемого стока под действием центростремительной силы постоянно располагаются в зоне электродов. Распространение воздушной смеси из воздуховодов 3 и 4 в камере-реакторе 1 происходит под давлением (~1 атм) и регулируется при помощи расходомера и компрессора.

Объем камеры-реактора для поддержания параметра давления и функционирования реактора рассчитывается таким образом, чтобы время пребывания в реакторе обогащенного воздушной смесью очищаемого стока было не менее 5 минут: за это время с заданной программатором 9 частотой происходит разряд в межэлектродном пространстве и электровзрыв в водно-воздушном содержимом очищаемого стока, длина волны колеблющихся частиц которого соизмерима с геометрией бактерий. В результате такого электровзрыва происходит обеззараживание и очистка воды.

Воздушная смесь в электромагнитном устройстве - активаторе 10, проходит знакопеременное поле, ее магнитная обработка способствует созданию диэлектрической неоднородности, которая нужна для локализации разряда в нужном направлении по определенной траектории, а также для защиты изоляционного покрытия электродов. В зависимости от состава очищаемого стока, поступающего в технологическую камеру-реактор 1, состав воздушной смеси варьируют таким образом, чтобы его диэлектрические характеристики (диэлектрическая проницаемость ε2 электропроводность δ2) существенно отличались бы от соответственно диэлектрической проницаемости ε1, электропроводности δ1 очищаемого стока.

При этом:

- для слабопроводящей жидкости (когда δ<0,02 Ом-1 м-1) при подаче в межэлектродное пространство импульсов, время t между которыми t<10-5 с, определяющее значение имеет диэлектрическая проницаемость;

- для сильнопроводящей жидкости при большом времени t между импульсами определяющее значение имеет электропроводность.

Состав воздушной смеси можно варьировать таким образом, что длина разряда в межэлектродном пространстве увеличивается от 45 мм до 90 мм, при этом давление в технологической камере-реакторе 1 может достигать 10000 МПа.

На представленных ниже примерах показано, что предлагаемое устройство подходит для очистки вод с различными физическими и химическими характеристиками (электропроводностью, плотностью, вязкостью), так как в электроплазме развивается высокая температура и давление, под действием которых происходит разложение молекулярного строения любой водной среды.

Пример 1

Очистка стока из свиного навоза, влажность которого 100%, содержащего кишечную палочку (Escherihia coli) и яйца гельминтов (Ascaris suum).

Энергия разряда 15 Дж, температура среды t=15°С, промежуток т=5 µS, расход воздуха - 30% от объема обрабатываемой среды очищаемого стока.

Показатели Частота импульсов
1 5 10 15 25
Степень обеззараживания микроорганизмов в % 72 95 100 100 100
Степень дегельминтизации в % 49 89 100 100 100
БПК (при исходном БПК 49000 мг/л) 20000 6000 2400 1500 300
БПК (при исходном БПК 49000 мг/л в зону разряда подается озоновоздушная смесь 10% озона на 1 л воздуха) 10000 2000 800 300 240

Пример 2

Очистка стока отходов мясокомбината, рН неочищенного стока 6-8, сухой остаток 200-2000 мг/л, окисляемость перманганатная 84-540 мг О/л, ХПК 240-900 мг/л, жиры 240-5000 мг/л, нефтепродукты 2-200 мг/л, фенол 0,01 мг/л, азот аммонийный 10-70 мг/л.

Показатели Показатели стока отходов мясокомбината после обработки в устройстве
Энергия разряда 10 Дж, частота импульсов 10 Гц Энергия разряда 15 Дж, частота импульсов 10 Гц
pH 7,5 8,0
Сухой остаток, мг/л 75 75
Окисляемость перманганатная, мг/л 80 80
ХПК, мг/л 140 80
Жиры, мг/л 44 10
Нефтепродукты, мг/л 0,5 0,02
Фенол, мг/л 0,01 -
Азот амонийный, мг/л 3,0 3,0

Пример 3

Очистка гальванических стоков. Дебет Q=5 м3/час, энергия разряда 15 Дж, частота 10 Гц, время пребывания потока в реакторе 10 минут.

Показате
ли
Данные проб (1 - исходный очищаемый сток, 2 - данные на выходе)
1 2 1 2 1 2 1 2
Хром 0,043 Не обн. 0,028 0,001 1,2 0,4 1,8 1,2
Цинк 0,94 0,099 0,94 0,058 6,1 0,99 7,8 1,2
Молибден 0,4 Не обн. 2,7 0,64 5,2 2,56 8,0 4,4
Никель 0,08 0,032 1,3 0,2 4,4 0,87 7,5 1,0
Железо 0,96 0,42 1,6 0,42 10,5 7,8 13,4 5,3
Медь 0,8 0,44 0,8 0,1 Нет дан. Нет дан. Нет дан. Нет дан.
pH 1,5 5,5 1,5 6 1,5 2,5 1,5 2,0


УСТРОЙСТВО ДЛЯ ОБЕЗЗАРАЖИВАНИЯ СТОКОВ ЭЛЕКТРИЧЕСКИМИ РАЗРЯДАМИ
Источник поступления информации: Роспатент

Показаны записи 1-6 из 6.
20.10.2014
№216.012.fe51

Ротор осевой газовой турбины

Изобретение относится к газотурбинным двигателям авиационного и наземного применения и может быть использовано преимущественно в турбомашинах, на роторе которых закрепляются лопатки и средства для охлаждения и устранения деформаций и вибраций. Ротор осевой газовой турбины содержит диск ротора,...
Тип: Изобретение
Номер охранного документа: 0002530961
Дата охранного документа: 20.10.2014
10.09.2015
№216.013.7614

Уплотнение поперечного разъема узла конструкции

Изобретение относится к уплотнительным устройствам для фланцевых торцевых соединений и, в частности, к турбинам авиационных двигателей и газотурбинным установкам, работающим как в нормальных условиях, так и в условиях высоких температур, где поверхности узлов конструкции прогреваются до...
Тип: Изобретение
Номер охранного документа: 0002561817
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7662

Устройство соединения деталей газотурбинной установки

Изобретение относится к общему машиностроению, в частности к газотурбинным установкам, двигателям внутреннего сгорания, где детали и их соединения работают при высокой температуре длительное время. Устройство соединения деталей газотурбинной установки, содержащее торцевые опорные поверхности -...
Тип: Изобретение
Номер охранного документа: 0002561895
Дата охранного документа: 10.09.2015
25.08.2017
№217.015.b62d

Способ диагностики форм резонансных колебаний лопаток рабочего колеса турбомашины

Изобретение предназначено для использования в энергомашиностроении и может найти широкое применение при создании систем диагностики осевых турбомашин в авиации и энергомашиностроении. Техническим результатом заявленного способа является повышение надежности турбомашин. Регистрируют пульсации...
Тип: Изобретение
Номер охранного документа: 0002614458
Дата охранного документа: 28.03.2017
19.01.2018
№218.016.0182

Способ вибрационных испытаний крупногабаритных деталей турбомашины

Изобретение относится к области турбомашиностроения, а именно к способам воздействия вибрацией на элементы турбомашин, в частности для определения предела усталостной выносливости лопаток моноколеса компрессора турбомашины. Способ включает подготовку детали и установку ее на вибростенд,...
Тип: Изобретение
Номер охранного документа: 0002629919
Дата охранного документа: 04.09.2017
20.01.2018
№218.016.1341

Способ определения динамических напряжений в лопатках рабочего колеса турбомашины

Изобретение предназначено для использования в энергомашиностроении и может найти широкое применение при создании систем определения динамических напряжений в лопатках рабочих колес осевых турбомашин в авиации и энергомашиностроении. Устанавливают датчики на корпус турбомашины над лопатками...
Тип: Изобретение
Номер охранного документа: 0002634511
Дата охранного документа: 31.10.2017
Показаны записи 1-8 из 8.
20.10.2014
№216.012.fe51

Ротор осевой газовой турбины

Изобретение относится к газотурбинным двигателям авиационного и наземного применения и может быть использовано преимущественно в турбомашинах, на роторе которых закрепляются лопатки и средства для охлаждения и устранения деформаций и вибраций. Ротор осевой газовой турбины содержит диск ротора,...
Тип: Изобретение
Номер охранного документа: 0002530961
Дата охранного документа: 20.10.2014
10.09.2015
№216.013.7614

Уплотнение поперечного разъема узла конструкции

Изобретение относится к уплотнительным устройствам для фланцевых торцевых соединений и, в частности, к турбинам авиационных двигателей и газотурбинным установкам, работающим как в нормальных условиях, так и в условиях высоких температур, где поверхности узлов конструкции прогреваются до...
Тип: Изобретение
Номер охранного документа: 0002561817
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7662

Устройство соединения деталей газотурбинной установки

Изобретение относится к общему машиностроению, в частности к газотурбинным установкам, двигателям внутреннего сгорания, где детали и их соединения работают при высокой температуре длительное время. Устройство соединения деталей газотурбинной установки, содержащее торцевые опорные поверхности -...
Тип: Изобретение
Номер охранного документа: 0002561895
Дата охранного документа: 10.09.2015
25.08.2017
№217.015.b62d

Способ диагностики форм резонансных колебаний лопаток рабочего колеса турбомашины

Изобретение предназначено для использования в энергомашиностроении и может найти широкое применение при создании систем диагностики осевых турбомашин в авиации и энергомашиностроении. Техническим результатом заявленного способа является повышение надежности турбомашин. Регистрируют пульсации...
Тип: Изобретение
Номер охранного документа: 0002614458
Дата охранного документа: 28.03.2017
19.01.2018
№218.016.0182

Способ вибрационных испытаний крупногабаритных деталей турбомашины

Изобретение относится к области турбомашиностроения, а именно к способам воздействия вибрацией на элементы турбомашин, в частности для определения предела усталостной выносливости лопаток моноколеса компрессора турбомашины. Способ включает подготовку детали и установку ее на вибростенд,...
Тип: Изобретение
Номер охранного документа: 0002629919
Дата охранного документа: 04.09.2017
20.01.2018
№218.016.1341

Способ определения динамических напряжений в лопатках рабочего колеса турбомашины

Изобретение предназначено для использования в энергомашиностроении и может найти широкое применение при создании систем определения динамических напряжений в лопатках рабочих колес осевых турбомашин в авиации и энергомашиностроении. Устанавливают датчики на корпус турбомашины над лопатками...
Тип: Изобретение
Номер охранного документа: 0002634511
Дата охранного документа: 31.10.2017
03.06.2023
№223.018.769a

Ротор турбины низкого давления газотурбинного двигателя

Изобретение относится к авиадвигателестроению, а именно к конструкциям роторов турбины низкого давления (ТНД) газотурбинного двигателя (ГТД). Ротор турбины низкого давления газотурбинного двигателя, содержащий промежуточный вал, носок с размещенным на нем подшипником, при этом в носке выполнены...
Тип: Изобретение
Номер охранного документа: 0002796564
Дата охранного документа: 25.05.2023
16.06.2023
№223.018.7d15

Гидродинамический демпфер подшипниковой опоры ротора турбомашины

Изобретение относится к области машиностроения. Демпфер содержит внутренний корпус, образующий с корпусом радиальный зазор. На внутренней поверхности корпуса и наружной поверхности внутреннего корпуса выполнены проточки. В полости, образованной несквозными цилиндрическими проточками,...
Тип: Изобретение
Номер охранного документа: 0002741824
Дата охранного документа: 28.01.2021
+ добавить свой РИД