×
27.03.2013
216.012.3137

Результат интеллектуальной деятельности: СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ

Вид РИД

Изобретение

№ охранного документа
0002478137
Дата охранного документа
27.03.2013
Аннотация: Изобретение относится к металлургии, а именно к химико-термической обработке, и может быть использовано в условиях серийного и массового производства для поверхностного упрочнения стальных изделий, работающих в парах трения. Проводят предварительный нагрев стальных изделий в воздушной атмосфере и их выдержку при температуре от 350°С до 400°С, азотирование в атмосфере аммиака и экзогаза, оксидирование и охлаждение. Насыщение проводят в атмосфере аммиака и экзогаза при объемном соотношении от 1:1 до 1:4 при температуре от 570 до 630°С с последующим охлаждением в экзогазе или в масле. Далее выполняют операцию полирования до получения окончательного размера изделия и операцию оксидирования в воздушной среде при температуре в диапазоне от 300 до 400°С в течение 1-6 часов, а последующее охлаждение проводят в воздушной среде. Повышается коррозионная стойкость изделий, снижается деформация деталей, повышается их размерная точность. 6 табл., 6 ил.
Основные результаты: Способ химико-термической обработки стальных изделий, включающий предварительный нагрев в воздушной атмосфере и их выдержку при температуре от 350°С до 400°С, азотирование в атмосфере аммиака и экзогаза, оксидирование и охлаждение, отличающийся тем, что насыщение в атмосфере аммиака и экзогаза при объемном соотношении от 1:1 до 1:4 проводят при температуре от 570°С до 630°С с последующим охлаждением в экзогазе или в масле, далее выполняют операцию полирования до получения окончательного размера изделия и операцию оксидирования в воздушной среде при температуре в диапазоне от 300°С до 400°С в течение 1-6 ч, а последующее охлаждение проводят в воздушной среде.

Изобретение относится к металлургии, а именно к химико-термической обработке, и может быть использовано в условиях серийного и массового производства для поверхностного упрочнения стальных изделий, работающих в парах трения.

Известен разработанный фирмой "Айхелин" процесс кратковременного газового азотирования под названием "Нитрок", при котором азотирование осуществляют при 570-575°С в смеси аммиака и неочищенного экзогаза при их соотношении 1:1 или 1:2. Экзогаз является дешевым и взрывобезопасным газом. Содержащийся в экзогазе углекислый газ является окислителем и способствует ускорению процесса азотирования. Кроме того, углекислый газ в смеси с аммиаком является науглераживающим компонентом. На поверхности деталей, обработанных по способу "Нитрок", за 2-4 часа образуется гомогенный малопористый оксикарбонитридный слой толщиной 10-15 мкм. Способ позволяет значительно повысить взрывобезопасность за счет более низкого (14-18%) содержания водорода в печной атмосфере.

Недостатком способа является тот факт, что полученные карбонитридные слои не обладают достаточным уровнем пластичности и износостойкости для отдельных пар трения, например, кулачок распредвала - рычаг привода клапана.

В последнее время исследователями различных стран установлено положительное влияние поверхностных окисных слоев на износостойкость и коррозионную стойкость азотированных (карбонитрированных) деталей.

Сложные упрочненные слои, состоящие из зоны внутреннего азотирования, нитридного (карбонитридного) слоя и поверхностного слоя оксида железа, получают обычно диффузионным насыщением в нитрирующей (карбонитрирующей) среде с последующей выдержкой изделий в окислительной среде. Недостатками способов являются либо чрезмерная длительность процесса насыщения - до 70 ч, либо необходимость использования сложного дорогостоящего оборудования для последовательного ионного нитрирования, ионного оксинитрирования, ионного оксидирования, либо сложность процесса насыщения, необходимость периодически изменять давление от 1,3-0,018 Па до 5 кПа, а также возможность быстрого выхода из строя внутренних элементов ионного оборудования при подаче в камеру насыщения для последующего оксидирования водяного пара.

Известен способ химико-термической обработки, включающий нагрев деталей в воздушной атмосфере до 360-400°С с выдержкой 10-30 мин, выдержку в азотсодержащей среде при 570-680°С, затем оксидирование в газовой смеси, состоящей из кислорода и азота с соотношением 1 (3-1,5) в течение 5-10 сек, охлаждение в воде и отпуск в масле с добавлением 0,5-10% серы при 120-140°С в течение 30-40 мин (а.с. СССР №1356523). Способ позволяет повысить коррозионную стойкость деталей в 1,2-1,3 раза.

Недостатками способа являются его сложность, необходимость поддержания определенного состава окисляющей смеси, возможность повышенных деформаций изделий при охлаждении в воде, необходимость проведения дополнительной операции отпуска.

В качестве прототипа изобретения определен способ химико-термической обработки стальных деталей по а.с. СССР №1780340 от 16.07.1990 г., по которому производят нагрев и выдержку деталей при 350-400°С в течение 10-30 мин в воздушной атмосфере, далее азотирование в атмосфере аммиака и экзогаза при их соотношении 1:4 при 570-590°С, оксидирование в экзогазе в том же рабочем пространстве и при той же температуре без подачи аммиака в течение 1-2 часов и охлаждение в масле.

Способ позволяет увеличить износостойкость и коррозионную стойкость деталей автомобиля, использовать для его реализации стандартное оборудование для химико-термической обработки в условиях индивидуального и мелкосерийного производства.

Недостатками данного способа являются: недостаточная коррозионная стойкость полученных изделий, возникновение деформации для отдельных деталей при охлаждении в масло, ограничение возможности использования технологии в крупносерийном производстве на проходном оборудовании без изменения его конструкции (строительства дополнительной камеры охлаждения в экзогазе). Существующее ограничение в соотношении аммиака и экзогаза не всегда может быть обеспечено имеющейся производительностью используемых экзогенераторов, а также при данном способе низкая оксидирующая способность используемого экзогаза и окончательное оксидирование выполняются при высокой температуре (570-590°С).

Задачами изобретения являются повышение коррозионной стойкости изделий, снижение деформаций деталей, повышение их размерной точности, возможность использования предлагаемой технологии вместо твердого хромирования, снижение трудоемкости, улучшение условий труда.

Решить поставленные задачи позволяет способ химико-термической обработки стальных изделий, включающий предварительный нагрев в воздушной атмосфере и их выдержку при температуре от 350°С до 400°С, азотирование в атмосфере аммиака и экзогаза, оксидирование и охлаждение, отличающийся тем, что насыщение в атмосфере аммиака и экзогаза при объемном соотношении от 1:1 до 1:4 проводят при температуре 570-630°С с последующим охлаждением в экзогазе или в масле, далее выполняют операцию полирования для получения окончательного размера изделия и операцию оксидирования в воздушной среде при температуре в диапазоне от 300°С до 400°С в течение 1-6 часов, а последующее охлаждение проводят в воздушной среде.

Изобретение иллюстрируется на примере химико-термической обработки - кратковременного карбонитрирования в проходных печах фирмы «Айхелин» садок поршней тормозного цилиндра автомобилей ВАЗ из Стали 10 с предварительным подогревом в воздушной среде до 350°С и переносом в нагретую от 570°С до 630°С печь с атмосферой из аммиака и экзогаза с соотношением 1:1…1:4, далее с охлаждением в экзогазе.

В качестве базового режима выбран режим твердого хромирования, используемый на ОАО «АВТОВАЗ» для обработки поршней колесного цилиндра.

Окончательное шлифование цилиндрической поверхности хромированных деталей проводили по действующей технологии на бесцентровом шлифовальном станке «Джустина» до размера наружного диаметра d=48,07-0,01 мм. В качестве СОЖ использовали 2-3% водный раствор «Олинола».

Полирование цилиндрической поверхности хромированных (после шлифования) и азотированных (после азотирования) до размера наружного диаметра d=48+0,074+0,036 проводили по действующей технологии на полировальном станке «Каннинг».

После полирования опытные детали подвергали оксидированию в воздушной среде в камерной печи при температуре от 350°С до 580°С в течение от 1 до 6 часов.

Контроль расхода технологических газов при азотировании проводили с помощью ротаметров. Для исследования и испытания поршни тормозных цилиндров отбирали из центральной части садки.

Измерения наружного диаметра поршней до азотирования, после азотирования и после оксидирования проводили в метрозале с помощью скобы рычажной повышенной точности с ценой деления 0,001 мм.

Испытания на коррозионную стойкость хромированных и оксикарбонитрированных поршней проводили в камере соляного тумана по ГОСТ 9.3.08-85.

Испытания на долговечность вышеуказанных деталей проводили на стенде с нагружением крутящим моментом «Качалка» по инструкции 1972.37.101-86 «Лабораторно-стендовые испытания дисковых тормозных механизмов».

Результаты метрологических и коррозионных испытаний поршней, обработанных по опытным режимам ХТО с различной температурой оксидирования в сравнении с базовым режимом (хромирование), приведены в таблице 1, из которой видно, что:

1. При низкотемпературном оксидировании (350°С) величина диаметра практически не изменяется. С повышением температуры оксидирования увеличивается прирост диаметра. Оксидирование при 580°С увеличивает диаметр на 5,4 мкм в среднем, оксидирование при 580°С - на 6,3 мкм.

2. Коррозионная стойкость опытных поршней после газового азотирования и оксидирования значительно превышает стойкость серийных хромированных.

3. С повышением температуры оксидирования от 350 до 550-580°С коррозионная стойкость поршней снижается в среднем от 187,5 до 103,5 часов, то есть на 45%.

Таким образом, оптимальной температурой оксидирования является 350°С. Результаты коррозионных испытаний поршней, обработанных по опытным режимам с различным временем оксидирования в сравнении с деталями, подвергшимися хромированию, приведены в таблице 2 (Время появления первых очагов коррозии на опытных (после газового азотирования и оксидирования в воздушной среде при 350°С в течение 1, 2, 3 и 6 часов) и серийных (хромированных) поршнях тормозного цилиндра при коррозионных испытаниях в камере соляного тумана) и таблице 3 (Динамика поражения коррозией боковой и донной поверхностей опытных (после газового азотирования и оксидирования в воздушной среде при 350°С в течение 6 часов) и серийных (хромированных) поршней тормозного цилиндра при коррозионных в камере соляного тумана), а также на фиг.1-3.

Анализ приведенных данных (таблица 2 и 3) показывает, что с увеличением времени оксидирования азотированных поршней тормозного цилиндра происходит увеличение их коррозионной стойкости. Так, при оксидировании в течение 1-3 часов первые очаги коррозии на боковой и донной поверхностях поршней появляются через 8-49 часов. При оксидировании в течение 6 часов первые очаги коррозии появляются через 108-168 часов.

Хромированные детали показали меньшую стойкость по сравнению с азотированными и оксидированными - на их поверхности коррозия начинается через 4-24 часа.

Скорость распространения коррозии на поверхности хромированных деталей значительно выше, чем на поверхности азотированных и оксидированных (в течение 6 часов). После 120 часов испытания вся поверхность хромированных поршней была поражена коррозией, а на опытных поршнях за это же время было поражено не более 10% всей поверхности. Даже после 1128 часов испытаний лишь один из 4 опытных поршней был полностью поражен коррозией, на остальных трех деталях площадь, занятая коррозией, составила 30-80%.

Высокая скорость распространения коррозии на хромированных деталях может быть объяснена тем, что слой хрома является катодным покрытием по отношению к стали, способствует быстрому развитию коррозии после появления первых точек коррозии в атмосферных условиях. Хромовое покрытие обладает низкими защитными свойствами по отношению к атмосферной коррозии и используется преимущественно для повышения износостойкости рабочих поверхностей поршней.

Таким образом, режим химико-термической обработки, состоящий из газового азотирования и оксидирования, при 350°С +/- 50°С в течение 6 часов обеспечивает более высокую коррозионную стойкость поршней тормозного цилиндра в сравнении с серийными, хромированными деталями.

Однако, учитывая экономические требования к технологии и тот факт, что даже при оксидировании в течение 1 часа опытные детали имеют более высокую коррозионную стойкость, чем хромированные, для предлагаемой технологии целесообразно оставить время оксидирования от 1 до 6 часов.

На изображениях 1-3 показаны поверхности поршней колесного цилиндра переднего тормоза после 48 часов испытаний в камере соляного тумана с различной предшествующей термообработкой: изображ. 1 - твердое хромирование; изображ. 2 - оксикарбонитрирование, охлаждение после азотирования в масле; изображ. 3 - оксикарбонитрирование, охлаждение после азотирования в экзогазе.

Результаты коррозионных испытаний опытных и серийных (хромирование) поршней, прошедших стендовые испытания, приведены в таблице 4 и на изображениях 4-6.

Из таблицы 4 и изображений 4-6 видно, что после испытания на коррозионную стойкость поршней, прошедших стендовые испытания на долговечность, хромированные поршни закорродировали полностью через 120 часов с нарушением сплошности хромового покрытия и проникновением коррозии в металл, опытные поршни после газового азотирования и оксидирования закорродировали полностью через 1128 часов, при этом нарушения сплошности карбонитридного слоя и проникновения коррозии в металл не выявлено. Для всех опытных деталей характерна низкая скорость распространения коррозии в условиях испытаний.

Так как из таблицы 4 не видно, что произошло нарушение сплошности, приведены изображения 4-6, на которых показана микроструктура поверхностного слоя поршней после стендовых испытаний на долговечность и испытаний коррозионной стойкости. На изображении 4 показана структура поверхностного слоя стандартного поршня (хромирование) после 120 часов коррозионных испытаний. На изображении 5 - структура поверхностного слоя опытного поршня (газовое азотирование + оксидирование) после 1128 часов коррозионных испытаний. На изображении 6 показана зона максимального поражения коррозией опытного поршня после 1128 часов коррозионных испытаний

В таблице 5 приведены технологические особенности предлагаемого, базовых режимов и прототипа, где базовый №1 - это используемый в настоящее время режим ХТО для упрочнения рычагов привода клапана, а базовый №2 - это используемый в настоящее время режим твердого хромирования для упрочнения и обеспечения коррозионной стойкости поршней колесного цилиндра.

В таблице 6 приведены требования и характеристики деталей, обрабатываемых по предлагаемому, базовым режимам и прототипу.

В результате использования способа химико-термической обработки стальных изделий при расширении диапазона используемых соотношений аммиака и экзогаза при азотировании, увеличении оксидирующего эффекта при предварительном оксидировании, и оксидирующего эффекта при одновременном снижении температуры окончательного оксидирования, получают изделия с повышением их коррозионной стойкости при снижении деформаций, повышении размерной точности, а также способ позволяет расширить технологические возможности использования технологии, в частности, вместо твердого хромирования для повышения износостойкости и коррозионной стойкости поршней колесного цилиндра автомобилей.

Способ химико-термической обработки стальных изделий
Табл.1
Вид обработки Размер наружного диаметра, мм Изменения при оксидировании, мкм Время до появления первых очагов коррозии, час
До азотирования После азотирования После оксидирования дно Боковая часть канавка Среднее
Хромиро-
вание
4 24 н/опр 14
ГА+О (350°С) 48,034 48,071 48,07 0 165 217 180 187
ГА+О (550°С) 48,033 48,07 48,075 5,4 52 165 93 103
ГА+О (580°С) 48,034 48,071 48,077 6,3 34 105 171 103

Табл.2
Вид обработки Время оксидирования, час Время до появления первых очагов коррозии, час
На донышке На боковой поверхности Среднее
ГА+О (350°С) 1 16,7 34,7 25,7
ГА+О (350°С) 2 26,3 8 17,2
ГА+О (350°С) 3 49 18,7 33,8
ГА+О (350°С) 6 168 108 138
Хромирование 4 24 14

Табл.3
№ образ-
ца
Обработка Площадь поражения коррозией в %, через, час
120 480 1128
Дно Бок Дно Бок Дно Бок
8 0 0 следы 40 5 100
13 ГА+О (350°С, 6 час) 0 0 20 10 30 50
14 5 5 15 30 30 80
15 10 следы 20 10 20 30
2 Хромирование 100 100 100 100 100 100

Способ химико-термической обработки стальных изделий, включающий предварительный нагрев в воздушной атмосфере и их выдержку при температуре от 350°С до 400°С, азотирование в атмосфере аммиака и экзогаза, оксидирование и охлаждение, отличающийся тем, что насыщение в атмосфере аммиака и экзогаза при объемном соотношении от 1:1 до 1:4 проводят при температуре от 570°С до 630°С с последующим охлаждением в экзогазе или в масле, далее выполняют операцию полирования до получения окончательного размера изделия и операцию оксидирования в воздушной среде при температуре в диапазоне от 300°С до 400°С в течение 1-6 ч, а последующее охлаждение проводят в воздушной среде.
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 201.
01.03.2019
№219.016.c9a3

Устройство для фильтрации воздуха отопительно-вентиляционной системы транспортного средства

Изобретение относится к области транспортного машиностроения, а именно к вентиляции и кондиционированию воздуха в салонах транспортных средств. Устройство содержит воздушный фильтр, установленный в корпусе воздухозаборника, и воздухопровод. Воздухопровод соединяет выходное отверстие...
Тип: Изобретение
Номер охранного документа: 0002245799
Дата охранного документа: 10.02.2005
01.03.2019
№219.016.cc2a

Способ работы скребкового очистителя

Изобретение может быть использовано в скребковых стеклоочистителях, содержащих совершающую колебательные движения щетку с эластичным триплетом. Триплет включает в себя перо, располагаемое скребковой частью на очищаемой поверхности, отстоящий от очищаемой поверхности базис и рессору,...
Тип: Изобретение
Номер охранного документа: 0002351490
Дата охранного документа: 10.04.2009
01.03.2019
№219.016.d0e4

Система безопасности

Изобретение относится к электрооборудованию транспортных средств. Система включает в себя аккумуляторную батарею, один из полюсов которой соединен с кузовом транспортного средства, и устройство подвески. Контакты дверного выключателя включены в цепь, соединяющую устройство подвески с кузовом....
Тип: Изобретение
Номер охранного документа: 02170185
Дата охранного документа: 10.07.2001
01.03.2019
№219.016.d0f0

Телескопический амортизатор

Изобретение относится к защитным кожухам амортизаторов. На штоке 2 телескопического амортизатора закреплена крышка 3. Полимерный кожух установлен с натягом на конусных поверхностях 4, 5 крышки 3. Конусная поверхность 4 образована отогнутой периферийной частью 7 крышки 3, а конусная поверхность...
Тип: Изобретение
Номер охранного документа: 0002173419
Дата охранного документа: 10.09.2001
11.03.2019
№219.016.d664

Способ вытяжки кузовных деталей сложной формы

Изобретение относится к холодной листовой штамповке. Способ вытяжки включает формовку элементов торможения порогом матрицы и выемкой прижима под порог, прижим периферийной части заготовки к матрице с порогом, воздействие усилием деформирования на центральную часть заготовки с одновременным...
Тип: Изобретение
Номер охранного документа: 0002264880
Дата охранного документа: 27.11.2005
11.03.2019
№219.016.d6c6

Датчик крутящего момента вала

Изобретение может использоваться в качестве датчика для бесконтактного измерения крутящего момента рулевого вала в системе управления электромеханическим усилителем руля. Датчик крутящего момента вала содержит торсионный вал, корпус, внутри которого размещен каркас катушек индуктивности с...
Тип: Изобретение
Номер охранного документа: 0002244274
Дата охранного документа: 10.01.2005
11.03.2019
№219.016.d6cc

Задний бампер с установленными на нем световозвращателями

Изобретение относится к автомобилестроению, а именно к размещению оптических сигнальных устройств, и может быть использовано в конструкции узла установки световозвращателей на заднем бампере автомобиля. Задний бампер выполнен в виде выпуклой удлиненной детали сложного профиля с краевыми...
Тип: Изобретение
Номер охранного документа: 02243112
Дата охранного документа: 27.12.2004
11.03.2019
№219.016.d6d1

Устройство для гибки труб

Изобретение относится к области обработки металлов давлением, в частности к гибке труб оправкой с использованием наполнителя, и может быть использовано для гибки труб в мелкосерийном производстве. Устройство для гибки труб включает наполнители, уплотнители и тягу с крепежными элементами....
Тип: Изобретение
Номер охранного документа: 02242313
Дата охранного документа: 20.12.2004
11.03.2019
№219.016.d6d5

Способ гибки труб

Изобретение относится к обработке металлов давлением и может быть использовано при гибке труб в мелкосерийном производстве. В зону гибки трубы вводят наполнитель и уплотнитель. В качестве уплотнителя используют две цанговые пробки, каждая из которых имеет полость в форме усеченного конуса,...
Тип: Изобретение
Номер охранного документа: 02242314
Дата охранного документа: 20.12.2004
11.03.2019
№219.016.d742

Головка центровально-подрезная

Изобретение относится к области обработки металлов резанием, устройствам для сверления и расточки. Головка содержит корпус, имеющий базовый торец для установки в шпинделе станка, центровочное сверло и одну или несколько резцовых вставок с неперетачиваемыми режущими пластинами, установленных в...
Тип: Изобретение
Номер охранного документа: 0002253546
Дата охранного документа: 10.06.2005
Показаны записи 71-78 из 78.
26.08.2017
№217.015.d8e5

Способ предварительной гибки заготовки с последующей вытяжкой полуфабриката

Изобретение относится к листовой штамповке для вытяжки полуфабрикатов изогнутых средне- и крупногабаритных кузовных деталей на листоштамповочных прессах простого действия или на многопозиционных прессах-автоматах. После размещения заготовки на матрице штампа и при ходе ползуна пресса вниз...
Тип: Изобретение
Номер охранного документа: 0002623521
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.d953

Низкоуглеродистая автоматная сталь

Изобретение относится к области металлургии, а именно к конструкционной низкоуглеродистой стали, используемой для изготовления деталей машиностроения. Сталь содержит, мас.%: углерод 0,09-0,14, марганец 1,20-1,43, кремний не более 0,05, свинец 0,15-0,30, алюминий не более 0,007, сера 0,20-0,35,...
Тип: Изобретение
Номер охранного документа: 0002623530
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.e2f6

Двигатель внутреннего сгорания

Изобретение может быть использовано в двигателях внутреннего сгорания. Двигатель внутреннего сгорания содержит газораспределительный механизм с гидравлическим приводом. Газораспределительный механизм включает в себя масляную магистраль головки цилиндров, впускной и выпускной распределительные...
Тип: Изобретение
Номер охранного документа: 0002626044
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e79a

Способ изготовления сложной крупногабаритной цельноштампованной детали из сварной заготовки

Изобретение относится к штамповочному производству для изготовления сложных крупногабаритных цельноштампованных деталей с напряженными участками. Получают сварную заготовку из листов, осуществляют зачистку сварного шва, вырубку, гибку, вытяжку, обрезку, правку, пробивку и отбортовку. При этом...
Тип: Изобретение
Номер охранного документа: 0002627082
Дата охранного документа: 03.08.2017
19.01.2018
№218.016.061f

Штамп для вытяжки крупногабаритных деталей сложной формы

Изобретение относится к области обработки металлов давлением и может быть использовано для штамповки крупногабаритных деталей сложной формы. В штампе, содержащем пуансон, матрицу с перетяжными ребрами и прижим с выемками под перетяжные ребра, перетяжные ребра, расположены по периметру...
Тип: Изобретение
Номер охранного документа: 0002631065
Дата охранного документа: 18.09.2017
19.01.2018
№218.016.0652

Штамп для вытяжки крупногабаритных деталей

Изобретение относится к области обработки металлов давлением и может быть использовано при вытяжке крупногабаритных деталей сложной формы. В штампе, содержащем пуансон, матрицу с перетяжными ребрами, прижим с выемками под перетяжные ребра, механизм для удаления отштампованных вытянутых...
Тип: Изобретение
Номер охранного документа: 0002631070
Дата охранного документа: 18.09.2017
19.01.2018
№218.016.0711

Устройство для испытания листовых материалов

Изобретение относится к листовой штамповке, а в частности к исследованию механических свойств листовых материалов для оценки их штампуемости, а также для использования в CAD/CAE-системах при компьютерном моделировании и проектировании формоизменяющих операций листовой штамповки. Устройство...
Тип: Изобретение
Номер охранного документа: 0002631230
Дата охранного документа: 19.09.2017
20.01.2018
№218.016.10de

Способ вытяжки крупногабаритных деталей сложной формы

Изобретение относится к области обработки металлов давлением, а именно к листовой штамповке крупногабаритных деталей сложной формы. Загружают листовую заготовку в штамп, осуществляют прижим фланца заготовки, втягивание центральной части заготовки пуансоном в рабочую полость матрицы с...
Тип: Изобретение
Номер охранного документа: 0002633865
Дата охранного документа: 18.10.2017
+ добавить свой РИД