×
27.03.2013
216.012.30fc

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МЕТАНОВОДОРОДНОЙ СМЕСИ

Вид РИД

Изобретение

№ охранного документа
0002478078
Дата охранного документа
27.03.2013
Аннотация: Изобретение относится к области химии. Способ получения метановодородной смеси осуществляют путем подачи природного газа по трубопроводу 1 в сатуратор 2, заполняемый циркулирующим конденсатом водяного пара 3, для получения смешанного газового потока 4, в который на выходе из сатуратора 2 вводится перегретый водяной пар 5. Теплообменник 6 служит для нагревания потока 4 до 350-530° и соединен с первым адиабатическим реактором 7. Второй теплообменник 8, используемый для нагрева потока до 620-680°С, соединен со вторым адиабатическим реактором 9, в котором осуществляется конверсия углеводородов. В третьем теплообменнике 10 смешанный поток 4 разогревается до температуры 600-680°С и проходит через третий адиабатический реактор 11, в котором происходит более глубокая конверсия метана. Пароперегреватель 12 используют для перегрева потока водяного пара, производимого в парогенераторе 13 из питательной воды 14. В подогревателе 15 циркулирующего конденсата производится нагрев охлажденного потока 4, а в узле 16 охлаждения и сепарации воды - постепенное охлаждение потока 4 с последующим выведением его по трубопроводу 17 после отделения в узле 16 водного конденсата 18. Изобретение позволяет повысить степень конверсии метана, снизить тепловые затраты, продлить срок использования катализатора адиабатического реактора. 7 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к способу получения метановодородной смеси, содержащей в основном N2 и СН4, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки углеводородных газов, а также в качестве топлива в газотурбинных приводах компрессорных станций, на транспорте, для производства электроэнергии и в метан-метанольных термохимических циклах разложения воды.

Известен способ получения синтез-газа, содержащего в качестве основных компонентов H2 и СО в диапазоне изменения соотношения от 1:1 до 2:1, используемого для производства метанола, диметилового эфира или для синтезов Фишера-Тропша (патент RU №2228901, МПК С01В 3/38, опубл. 20.05.2004 г.). Способ включает две стадии: стадию А) парциального окисления и стадию Б) конверсии остаточного метана с продуктами стадии А) на катализаторе. Стадию А) парциального окисления проводят в две ступени: а) некаталитического парциального окисления природного газа кислородом с получением в продуктах реакции неравновесного содержания H2O и СН4 при мольном соотношении кислорода и метана, примерно равном 0,76-0,84; б) конверсии продуктов реакции ступени (а) с корректирующими добавками CO2 и Н2О или H2O и СН4 с получением газовой смеси, которая проходит конверсию остаточного метана водяным паром на катализаторе. Способ позволяет производить синтез-газ с составом, который отвечает заданному соотношению CO/H2. Способ может быть использован при получении исходного сырья для дальнейших процессов синтеза спиртов, диметилового эфира, аммиака или других крупнотоннажных химических продуктов.

Однако описанный способ обладает рядом недостатков, к которым можно отнести функциональные и экономические ограничения применения способа, связанные с большим расходом кислорода (превышающего по массе расход конвертируемого природного газа), производство которого требует больших энергетических (до 1000 кВт·час/т) и капитальных затрат (до 1500 дол. США/кг. ч-1). Серьезной проблемой также является сажеобразование, резко снижающее активность используемых катализаторов.

Известен также способ многостадийного получения синтетического газа, содержащего преимущественно H2 и СО (патент RU №2274600, МПК С01В 3/38, опубл. 20.04.2006 г.). Способ включает как минимум две последовательные стадии, в каждой из которых поток, содержащий низшие алканы, имеющие ориентировочно от одного до четырех атомов углерода, пропускают через нагревающий теплообменник, а затем через адиабатический реактор, заполненный насадкой катализатора. Перед первой стадией и между стадиями поток смешивают с водяным паром и/или диоксидом углерода и в конце каждой стадии проводят охлаждение. После последней стадии из потока удаляют водяной пар.

К недостаткам данного способа следует отнести большие тепловые затраты на многостадийный нагрев потока, сложность аппаратурного оформления и возможность снижения работоспособности катализатора адиабатического реактора в связи с относительно высокой вероятностью образования сажи.

Наиболее близким к заявляемому является способ получения метановодородной смеси, в котором газовый поток, содержащий низшие алканы, имеющие от одного до четырех атомов углерода, смешивают с водяным паром и/или диоксидом углерода, пропускают через теплообменник с нагреванием до температуры 650-700°С, а затем для конверсии низших алканов пропускают через заполненный насадкой катализатора адиабатический реактор, где осуществляют конверсию алканов до содержания метана в потоке не более 33% (патент RU №2381175, МПК С01В 3/38, опубл. 10.02.2010).

Недостатки указанного способа заключаются в относительно низкой степени конверсии метана и в возможности снижения эффективности катализатора адиабатического реактора, в связи с относительно высокой вероятностью образования сажи внутри реактора.

Техническая задача, решаемая при разработке заявляемого способа, заключается в повышении эффективности получения метановодородной смеси.

В результате решения этой задачи возрастает степень конверсии метана, снижаются тепловые затраты на проведение процесса в целом, а также продлевается срок использования катализатора адиабатического реактора.

Решение указанной задачи достигается при использовании способа получения метановодородной смеси, в котором поток природного газа смешивают с водяным паром, нагревают в теплообменнике и для конверсии метана пропускают через адиабатический реактор, заполненный насадкой катализатора. Согласно предлагаемому способу нагревание смешанного газового потока ведут до температуры 350-530°С, а после прохождения потока через адиабатический реактор повторно нагревают до температуры 620-680°С и пропускают, по меньшей мере, через второй адиабатический реактор с поддержанием в потоке на выходе из реактора объемного содержания метана 33-48%, водорода - 35-44% в расчете на сухой газ.

Способ отличается также тем, что после прохождения смешанного газового потока через второй адиабатический реактор поток нагревают до температуры 600-680°С и пропускают через третий адиабатический реактор.

Другое отличие способа состоит в том, что после прохождения смешанного газового потока через второй и/или третий адиабатические реакторы из потока выводят и конденсируют водяной пар, по меньшей мере, часть которого расходуют на получение дополнительных объемов указанного смешанного газа.

Отличие способа состоит также в том, что перед нагреванием исходного смешанного газового потока в теплообменнике его предварительно очищают от соединений серы.

Способ отличается также тем, что величина давления в смесевом газовом потоке составляет 2.0-9.0 МПа.

Другое отличие способа состоит в том, что объемное содержание водяного пара в исходном смешанном газовом потоке в 2-8 раз превышает объемное содержание метана.

Отличие способа выражается также в том, что после прохождения смешанного газового потока через второй и/или третий адиабатические реакторы поток охлаждают атмосферным воздухом.

Еще одно отличие способа заключается в том, что тепло, выделяемое

смешанным газовым потоком на выходе из адиабатических реакторов, расходуют при получении и/или перегреве водяного пара.

В качестве природного газа используют метан с примесями высших гомологов, что позволяет охарактеризовать особенности реализации способа применительно к процессам переработки природного и попутного газов.

Конверсия нагретого в температурном диапазоне 350-530°С смешанного газового потока позволяет вначале произвести частичную конверсию высших гомологов метана (этан, пропан, бутан и др.) до объемной их доли не более 0.00001-0.00002% (по сухому газу).

Температурный диапазон нагревания смешанного газового потока 620-680°С является подготовительным этапом к последующей его конверсии, протекающей впоследствии без образования сажи в адиабатическом реакторе, что предопределяет предпочтительный верхний уровень возможной температуры нагревания этого потока до 680°С. С другой стороны, равновесная степень превращения метана ниже температуры 620°С даже при относительно высоких соотношениях водяной пар/газ становится практически неприемлемой. При этих условиях конверсии содержание метана в смешанном газовом потоке составляет около 30% (по сухому газу).

Неоднократное пропускание через адиабатические реакторы нагретого в пределах указанного температурного диапазона смешанного газового потока производится для более глубокой конверсии метана с достижением в выходящем газовом потоке объемного содержания метана 33-48%, водорода - 35-44% в расчете на сухой газ.

На фигуре приведена схема осуществления способа получения метановодородной смеси.

На схеме изображены: подающий трубопровод 1, по которому природный газ поступает в сатуратор 2, заполняемый циркулирующим конденсатом водяного пара 3 для получения смешанного газового потока 4, в который на выходе из сатуратора 2 вводится перегретый водяной пар 5. Теплообменник 6 служит для нагревания смешанного газового потока 4 до температуры 350-530°С и соединен с первым адиабатическим реактором 7, в котором производится частичная конверсия высших гомологов метана. Второй теплообменник 8, используемый для нагревания смешанного газового потока до температуры 620-680°С, соединен со вторым адиабатическим реактором 9, в котором осуществляется конверсия углеводородов, при которой содержание метана в смесевом газовом потоке 4 составляет около 30% (по сухому газу). В третьем теплообменнике 10 смешанный газовый поток 4 разогревается до температуры 600-680°С и проходит через третий адиабатический реактор 11, в котором производится более глубокая конверсия метана. Пароперегреватель 12 используется для перегрева потока водяного пара, производимого в парогенераторе 13 из питательной воды 14. В подогревателе циркулирующего конденсата 15 производится нагрев охлажденного потока 4, а в узле охлаждения и сепарации воды 16 - постепенное охлаждение потока 4 с последующим выведением его по выводящему трубопроводу 17 после отделения в узле 16 водного конденсата 18.

Способ осуществляется следующим образом.

Очищенный от соединений серы природный газ по трубопроводу 1 под давлением 2.0-9.0 МПа подают в сатуратор 2, в котором его насыщают циркулирующим водным конденсатом 3. Получаемый на выходе из сатуратора 2 смешанный газовый поток 4 вначале обрабатывают перегретым водяным паром 5 с поддержанием в потоке 4 объемного содержания водяного пара в 2-8 раз выше объемного содержания метана, затем поток 4 направляют в теплообменник 6, где его нагревают до температуры 350-530°С. После этого проводят частичную конверсию высших гомологов метана (этан, пропан, бутан и др.) до их объемной доли не более 0.00001-0.00002% (по сухому газу) путем пропускания нагретого потока 4 через первый адиабатический реактор 7, заполненный насадкой катализатора. Затем поток 4 с температурой около 400°С направляют в теплообменник 8, где его нагревают до температуры 600-680°С и после этого направляют во второй адиабатический реактор 9, на выходе из которого поток 4 содержит около 30% метана (в пересчете на сухой газ). После выхода из второго адиабатического реактора 9 поток 4 охлаждают атмосферным воздухом, а выделяемое при этом тепло может быть израсходовано на получение и/или перегрев водяного пара 3, 5.

Для дальнейшей более глубокой конверсии метана поток 4 предварительно нагревают в теплообменнике 10 до температуры 600-680°С, после чего пропускают через третий адиабатический реактор 11, на выходе из которого поток 4 может быть охлажден атмосферным воздухом. При этом тепло, выделяемое потоком, расходуют также на получение и/или перегрев водяного пара 3, 5.

После прохождения потока 4 через второй 9 и/или третий 11 адиабатические реакторы из него выводят и конденсируют водяной пар, по меньшей мере, часть которого расходуют на получение дополнительных объемов исходного смешанного газового потока 4.

После выхода потока 4 из третьего адиабатического реактора 11 его направляют в пароперегреватель 12, где перегревается водяной пар, производимый в парогенераторе 13 из питательной воды 14. Далее охлажденный смешанный газовый поток 4 направляют в подогреватель циркулирующего водного конденсата 15, а затем в узел охлаждения и сепарации воды 16, содержащий, например, теплообменник теплофикационной воды или аппарат воздушного охлаждения и сепаратор влаги (на фигуре не показаны). В узле 16 поток 4 постепенно охлаждают вначале до 170-220°С, а затем окончательно до 40°С. Из охлажденного потока 4 выводят водный конденсат 18, который затем направляют на смешение с циркулирующим водным конденсатом 3, который нагревают в подогревателе 15 циркулирующего водного конденсата 3 и направляют в сатуратор 2. Осушенный таким образом газовый поток 4, представляющий собой в итоге метановодородную смесь, характеризуемую поддерживаемым на выходе объемным содержанием метана в диапазоне 33-48%, водорода - 35-44% в расчете на сухой газ, по выводящему трубопроводу 17 направляют потребителю.

В используемых адиабатических реакторах 7, 9, 11 могут применяться катализаторы, изготовленные на основе активных металлов, выбранных из группы: родий, платина, иридий, палладий, железо, никель, кобальт, рений, рутений, медь, цинк, железо, их смеси или соединения.

В качестве теплоносителя применяют гелий или жидкий металл, нагретый в ядерном реакторе, или расплав жидкого металла, или соли, нагретые в солнечном концентраторе.

Пример 1.

Очищенный от соединений серы природный газ под давлением 4.0 МПа подают по трубопроводу 1 в сатуратор 2, в котором газ насыщают циркулирующим водным конденсатом 3. Полученный таким образом смешанный газовый поток 4 затем насыщают перегретым водяным паром 5 с поддержанием объемного содержания водяного пара, в 6 раз превышающего объемное содержание метана. Затем поток 4 направляют в теплообменник 6, в котором его нагревают до температуры 450°С, и далее направляют в адиабатический реактор 7, заполненный насадкой катализатора. В качестве теплоносителя применяют жидкий металл, нагретый в солнечном концентраторе, а в качестве катализатора адиабатических реакторов 7, 9, 11 - смесь никеля и кобальта. В адиабатическом реакторе 7 производят частичную конверсию высших гомологов метана (этан, пропан, бутан и др.) до их объемной доли, не превышающей 0.00001-0.00002% (по сухому газу). После этого поток 4 с температурой около 400°С направляют в теплообменник 8, где нагревают до температуры 650°С и пропускают через второй адиабатический реактор 9. После выхода из реактора 9 поток 4 с содержанием метана около 30% (по сухому газу) направляют в теплообменник 10, в котором нагревание потока 4 ведут до температуры 670°С, после чего осуществляют более глубокую конверсию метана в третьем адиабатическом реакторе 11, на выходе из которого поток 4 охлаждают атмосферным воздухом с выделением тепла потоком, расходуемом для перегрева водяного пара 5. После этого поток 4 направляют в пароперегреватель 12, в котором перегревается поток водяного пара, производимый в парогенераторе 13 из питательной воды 14. Охлажденный смешанный газовый поток 4 направляют в подогреватель циркулирующего конденсата 15, а затем в узел охлаждения и сепарации воды 16, где поток 4 охлаждают вначале до температуры 220°С, а затем окончательно - до 40°С, после чего из потока 4 выводят водный конденсат 18, который направляют на смешение с циркулирующим конденсатом 3, нагревают в подогревателе циркулирующего конденсата 15 и направляют в сатуратор 2.

Осушенный газовый поток 4 в виде метановодородной смеси по выводящему трубопроводу 17 направляют потребителю с поддержанием на выходе объемного содержания метана в потоке в диапазоне 33-48%, водорода - 35-44% в расчете на сухой газ.

При необходимости, целесообразно в начале процесса смешивать природный газ, подаваемый по трубопроводу 1 под давлением 6.0 МПа, с рециркулируемым газом (на фигуре не показан), содержащим водород. Полученную газовую смесь подогревают до температуры около 400°С и затем образовавшийся газовый поток направляют на стадию очистки от сернистых соединений (если они содержатся в виде примесей в метане), которую проводят в две ступени: сначала на алюмокобальтмолибденовом катализаторе ведут гидрирование органических соединений серы, в частности меркаптанов в сероводород, а затем газовый поток направляют на поглощение образовавшегося сероводорода активированным оксидом цинка в реакторах поглощения, включенных в работу последовательно или параллельно. Очищенный (в пересчете на серу) до массовой концентрации серы менее 0.5 мг/нм3 газовый поток направляют в сатуратор 2, после чего дальнейший процесс получения метановодородной смеси проводят аналогично вышеописанному: очищенный от соединений серы газовый поток смешивают после выхода его из сатуратора 2 с перегретым потоком водяного пара до соотношения пар/газ, равного 4.0. Получаемый смешанный газовый поток 4 направляют в теплообменник 6, где нагревают до температуры 510°С, и затем пропускают через адиабатический реактор 7, заполненный насадкой родиевого катализатора. Конверсия протекает без образования сажи, снижающей работоспособность используемого катализатора.

Пример 2.

Природный газ под давлением 4.0 МПа подают по трубопроводу 1, смешивают его с перегретым паром 5, поддерживая объемное содержание водяного пара, в 8 раз превышающее объемное содержание метана. Полученный смешанный газовый поток 4 направляют в теплообменник 6, в котором поток 4 нагревают до температуры 500°С, затем направляют в адиабатический реактор 7, заполненный насадкой платинового катализатора. В первом адиабатическом реакторе 7 производят частичную конверсию высших гомологов метана, после чего поток 4 с температурой около 400°С направляют в теплообменник 8, где нагревают до температуры 640°С, а затем пропускают через второй адиабатический реактор 9. На выходе из адиабатического реактора 9 смешанный газовый поток 4 охлаждают атмосферным воздухом. Выделенное потоком 4 тепло используют для получения циркулирующего водного конденсата 3. В качестве теплоносителя используют гелий, нагретый в ядерном реакторе.

Перед следующим этапом конверсии смешанного газового потока 4 последний направляют в теплообменник 10, где поток 4 нагревают до температуры 680°С, а затем, с целью более глубокой конверсии метана, - в третий адиабатический реактор 11. На выходе из адиабатического реактора 11 поток охлаждают атмосферным воздухом. При этом из охлаждаемого потока 4 выводят и конденсируют водяной пар, для чего поток 4 направляют в пароперегреватель 12, в котором перегревается поток водяного пара, производимый в парогенераторе 13 из питательной воды 14. Часть водяного пара, извлеченного из потока 4, расходуют на получение дополнительных объемов исходного смешанного газового потока 4. В итоге осушенный газовый поток 4, исходящий в виде метановодородной смеси с поддерживаемым на выходе объемным содержанием метана в диапазоне 33-48%, водорода - 35-44% в расчете на сухой газ по выводящему трубопроводу 17 направляют потребителю.


СПОСОБ ПОЛУЧЕНИЯ МЕТАНОВОДОРОДНОЙ СМЕСИ
Источник поступления информации: Роспатент

Показаны записи 141-150 из 167.
09.06.2019
№219.017.7c84

Способ прогнозирования изменения коэффициента сверхсжимаемости пластового газа в процессе разработки газоконденсатных месторождений

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам проектирования разработки газоконденсатных месторождений (ГКМ) с высоким содержанием конденсата в пластовом газе (ПГ). Техническим результатом изобретения является повышение точности и получение исходных данных...
Тип: Изобретение
Номер охранного документа: 0002326242
Дата охранного документа: 10.06.2008
09.06.2019
№219.017.7cad

Способ регулирования параметров катодной защиты участков подземных трубопроводов

Изобретение относится к области защиты подземных сооружений от коррозии, в частности, к регулированию потенциалов катодной защиты участков подземных трубопроводов. Способ включает снятие катодной поляризационной кривой, подбор и поддержание выбранного потенциала катодной защиты, при этом подбор...
Тип: Изобретение
Номер охранного документа: 0002327821
Дата охранного документа: 27.06.2008
09.06.2019
№219.017.7d0f

Способ получения одоранта для природного газа

Изобретение относится к способу получения одоранта для природного газа из меркаптансодержащих углеводородов. Получение одоранта для природного газа осуществляют таким образом, что смесь природных меркаптанов подвергают фракционированию в две стадии с получением паровой и жидкой фаз, при этом...
Тип: Изобретение
Номер охранного документа: 0002419479
Дата охранного документа: 27.05.2011
09.06.2019
№219.017.7f12

Буровой раствор на синтетической основе

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологическим жидкостям и составам, используемым при строительстве скважин в солевых отложениях при повышенных температурах. Технический результат - сохранение реологических и фильтрационных параметров раствора в...
Тип: Изобретение
Номер охранного документа: 0002445336
Дата охранного документа: 20.03.2012
09.06.2019
№219.017.7f16

Буровой раствор на углеводородной основе

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологическим жидкостям и составам, используемым при строительстве скважин в солевых отложениях в присутствии сероводорода при высоких температурах. Технический результат - сохранение реологических и фильтрационных...
Тип: Изобретение
Номер охранного документа: 0002445337
Дата охранного документа: 20.03.2012
09.06.2019
№219.017.7f3b

Безглинистый буровой раствор для вскрытия пластов бурением наклонно-направленных и горизонтальных скважин в условиях аномально высоких пластовых давлений

Изобретение относится к бурению нефтяных и газовых скважин. Технический результат - обеспечение высокой плотности бурового раствора, необходимой выносной и удерживающей способности, снижение гидравлических сопротивлений при движении, высокие смазочные и гидрофобизирующие свойства бурового...
Тип: Изобретение
Номер охранного документа: 0002440397
Дата охранного документа: 20.01.2012
09.06.2019
№219.017.7f43

Полимерглинистый раствор для бурения в многолетнемерзлых и высококоллоидальных глинистых породах

Изобретение относится к области бурения скважин в высококоллоидальных глинистых породах, в частности к полимерглинистым растворам. Полимерглинистый раствор для бурения в многолетнемерзлых и высококоллоидальных глинистых породах содержит, мас.%: глинопорошок - 1,000-3,000, биополимер КК Робус -...
Тип: Изобретение
Номер охранного документа: 0002440398
Дата охранного документа: 20.01.2012
10.07.2019
№219.017.ac92

Насосно-вакуумное устройство для очистки скважины от песчаной пробки

Изобретение относится к эксплуатации и ремонту скважин и может быть использовано для очистки скважин от песчаных пробок и шлама с применением колтюбинговых труб в условиях аномально низких пластовых давлений. Обеспечивает повышение эффективности разрушения и выноса песчаной пробки с...
Тип: Изобретение
Номер охранного документа: 0002314411
Дата охранного документа: 10.01.2008
10.07.2019
№219.017.ad69

Теплоизолированная колонна

Изобретение относится к нефтегазодобывающей промышленности, а именно к теплоизолированным колоннам, и может быть использовано для добычи нефти, газа и термальных вод, закачки теплоносителя в пласт. Техническим результатом является расширение функциональных возможностей путем снижения тепловых...
Тип: Изобретение
Номер охранного документа: 0002352750
Дата охранного документа: 20.04.2009
10.07.2019
№219.017.adb8

Способ определения содержания углеводородов в керне

Изобретение относится к аналитической химии применительно к решению ряда прикладных геологических задач, включая выполнение геолого-поисковых работ на нефть и газ. Способ включает в себя измельчение керна до размера зерен 0,25-0,5 мм, пятикратную экстракцию углеводородных соединений с помощью...
Тип: Изобретение
Номер охранного документа: 0002377564
Дата охранного документа: 27.12.2009
Показаны записи 111-118 из 118.
12.10.2019
№219.017.d4ef

Способ определения эффективности массообменных аппаратов

Изобретение относится к способам определения эффективности массообменного оборудования с механическим перемешиванием. Способ определения объемного коэффициента массопередачи массообменных аппаратов с механическим перемешиванием по эмпирическим уравнениям, которые представлены в виде: K=А*N*ϕ,...
Тип: Изобретение
Номер охранного документа: 0002702539
Дата охранного документа: 08.10.2019
10.11.2019
№219.017.e04b

Газовая горелка

Изобретения относится к области энергетики и химической промышленности. Газовая горелка содержит корпус, внутри которого размещен смеситель, имеющий первый и второй входные патрубки и выпускное устройство, трубопроводы для подвода горючего газа и окислителя и снабженный двумя кольцевыми...
Тип: Изобретение
Номер охранного документа: 0002705536
Дата охранного документа: 07.11.2019
15.11.2019
№219.017.e23e

Штамм бактерий methylococcus capsulatus concept-8 - продуцент белковой биомассы

Изобретение относится к микробиологической промышленности и может быть использовано для получения белковой биомассы. Предлагается штамм бактерий Methylococcus capsulatus, депонированный во Всероссийской коллекции микроорганизмов ИБФМ им. Г.К. Скрябина РАН под регистрационным номером ВКМ...
Тип: Изобретение
Номер охранного документа: 0002706074
Дата охранного документа: 13.11.2019
06.02.2020
№220.017.fffe

Комплекс по производству, хранению и распределению водорода

Изобретение относится к сооружению и эксплуатации подземных резервуаров и хранилищ в отложениях каменной соли и может быть использовано в нефтяной, газовой, химической и других отраслях промышленности. Комплекс по производству, хранению и распределению водорода включает в себя по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002713349
Дата охранного документа: 04.02.2020
31.07.2020
№220.018.39a6

Штамм methylococcus capsulatus вкпм в-13479 - продуцент микробной белковой массы, устойчивый к агрессивной среде

Изобретение относится к микробиологической промышленности и может быть использовано для получения микробной белковой массы. Штамм метанокисляющих бактерий Methylococcus capsulatus ЛБТИ 028 обладает способностью продуцировать микробную белковую массу. Штамм депонирован во Всероссийской...
Тип: Изобретение
Номер охранного документа: 0002728345
Дата охранного документа: 29.07.2020
21.04.2023
№223.018.5045

Пористый композитный адсорбент для селективного разделения газов и способ его получения

Группа изобретений относится к технологии получения адсорбентов и может найти применение для сорбции и селективного разделения газовых смесей, в том числе для очистки природного газа от углекислого газа, концентрирования выхлопного или промышленного углекислого газа. Представлен способ...
Тип: Изобретение
Номер охранного документа: 0002794181
Дата охранного документа: 12.04.2023
24.05.2023
№223.018.6fc9

Способ получения 1,3,3,3-тетрафторпропилена

Изобретение относится к способу получения 1,3,3,3-тетрафторпропилена. Способ включает: (a) получение ССlСНСНВr при реакции СClВr с этиленом, отличающийся тем, что последовательно осуществляют: (b) дебромирование CClCHCHBr в этилцеллозольве или спирте с получением ССlСН=СН, (h) хлорирование...
Тип: Изобретение
Номер охранного документа: 0002795964
Дата охранного документа: 15.05.2023
17.06.2023
№223.018.8024

Комплекс по производству и поставке водородосодержащего топлива в заправочные станции для транспортных средств

Изобретение относится к комплексу по производству и поставке водородсодержащего топлива в заправочные станции для транспортных средств, а именно к обслуживанию и работе заправочных станций, производству и хранению водородсодержащего топлива и его доставки в заправочные станции для раздачи по...
Тип: Изобретение
Номер охранного документа: 0002760879
Дата охранного документа: 01.12.2021
+ добавить свой РИД