×
27.03.2013
216.012.30cc

Результат интеллектуальной деятельности: ПОРОШКОВАЯ ПРОВОЛОКА ДЛЯ НАПЛАВКИ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано для дуговой наплавки инструмента и деталей, работающих при больших удельных давлениях и повышенных температурах. Порошковая проволока состоит из малоуглеродистой стальной оболочки и порошкообразной шихты при следующем соотношении компонентов, мас.%: хром 20,0…23,0; никель 6,0…8,0; ферромолибден 8,0…9,0; ферротитан 0,2…0,6; азотированный хром 2,0…3,0; ультрадисперсный порошок (УДП) карбонитрида титана 0,2…0,6; кремнефтористый натрий 0,8…1,0; железо 1,3…9,3; малоуглеродистая сталь оболочки остальное. УДП карбонитрида титана имеет размер частиц 0,01-0,1 мкм. Изобретение позволяет повысить термостойкость и жаростойкость наплавленного металла за счет формирования в нем мартенситно-аустенитной структуры с дисперсными упрочняющими фазами, а также обеспечивает снижение ресурсоемкости процесса наплавки за счет получения указанного структурно-фазового состава металла уже в первом слое. 2 ил., 2 табл., 1 пр.
Основные результаты: Порошковая проволока для наплавки, состоящая из малоуглеродистой стальной оболочки и порошкообразной шихты, содержащей хром, никель, ферросплавы молибдена и титана, отличающаяся тем, что шихта дополнительно содержит азотированный хром, ультрадисперсный порошок (УДП) карбонитрида титана с размером частиц 0,01-0,1 мкм и кремнефтористый натрий при следующем соотношении компонентов, мас.%:

Изобретение относится к наплавочным материалам, в частности к порошковым проволокам для дуговой наплавки в защитных газах инструмента и деталей, работающих при больших удельных давлениях и повышенных температурах.

Известна порошковая проволока (патент RU №1769481, В23К 35/368, опубл. 30.08.1994 г.) для наплавки деталей, работающих в условиях термомеханического циклического нагружения, состоящая из малоуглеродистой оболочки и порошкообразной шихты, содержащей графит, никель, алюминий, железо, а также ферросплавы хрома, молибдена, вольфрама, ванадия, кремния, марганца, титана и церия при следующем соотношении компонентов, масс.%:

графит 0,4…0,7
феррохром 15,8…19,6
ферромолибден 8,1…10,3
ферровольфрам 1,1…1,8
феррованадий 2,8…3,5
ферросилиций 1,3…2,1
ферромарганец 1,3…2,7
ферротитан 2,4…3,4
ферроцерий 1,6…2,2
никель 2,8…3,8
алюминий 0,9…1,2
железо остальное

При этом коэффициент заполнения порошковой проволоки составляет 41%.

Недостатком данной порошковой проволоки является относительно низкое сочетание прочностных и пластических свойств наплавленного ей металла и его малая термостойкость, что в сочетании с повышенным содержанием в шихте проволоки дорогостоящих легирующих элементов, обусловливает низкую эффективность ее применения.

Известна порошковая проволока (патент RU №2350448, В23К 35/368, опубл. 27.03.2009 г.) для электрошлаковой наплавки деталей дробильно-размольного оборудования, работающих в условиях ударно-абразивного изнашивания, состоящая из стальной оболочки и шихты, включающей графит, марганец, хром, а также ультрадисперсный порошок (УДП) карбида кремния с размером частиц 0,01-0,1 мкм при следующем соотношении компонентов, масс.%:

графит 0,5…1,5
марганец металлический 13,0…14,5
хром металлический 6,5…11,0
УДП карбида кремния 15,0…22,0
лента стальная остальное

Металл, наплавленный известной порошковой проволокой, имеет недостаточную термостойкость, поскольку содержит в своем составе значительное количество углерода, связанного в карбиды, что снижает сопротивление наплавленного металла возникновению трещин термической усталости, а также его жаростойкость. Отсутствие в составе шихты проволоки легирующих элементов, образующих дисперсные упрочняющие фазы в наплавленном металле, не позволяет обеспечить его высокие эксплуатационные свойства при больших удельных давлениях и повышенных температурах. Содержащийся в шихте проволоки в большом количестве УДП карбида кремния частично растворяется в процессе наплавки и легирует кремнием наплавленный металл, что снижает его пластичность и термостойкость.

Наиболее близкой к заявленному объекту является порошковая проволока для наплавки (патент RU №2294273, В23К 35/368, опубл. 27.02.2007 г.) деталей, работающих при больших удельных давлениях и повышенных температурах, а также деталей химической аппаратуры, которая состоит из малоуглеродистой стальной оболочки и порошкообразной шихты, следующего состава, масс.%:

хром 12,0…14,0
флюорит 4,0…7,0
ферромолибден 1,5…2,9
никель 1,0…4,5
полевой шпат 2,0…4,0
феррохром 1,0…4,0
ферротитан 0,3…3,0
марганец 0,7…1,6
феррованадий 0,2…1,0
криолит 0,5…0,7
феррониобий 0,16…0,56
ферросилиций 0,2…1,2
железо 0,2…1,84
малоуглеродистая сталь оболочки остальное

Недостатком данной проволоки является относительно низкая термостойкость получаемого при ее плавлении металла вследствие образования в нем мартенситной структуры, обладающей пониженной пластичностью. Низкое содержание легирующих элементов в составе шихты проволоки не позволяет обеспечить высокий уровень эксплуатационных свойств наплавленного металла в первом слое, что требует многослойной наплавки, предопределяющей повышенную ресурсоемкость процесса получения износостойкого покрытия. Выполнение проволоки в самозащитном варианте не позволяет обеспечить качественной металлургической защиты сварочной ванны, что снижает технологические и эксплуатационные свойства наплавленного металла. Также, металл, наплавленный данной порошковой проволокой, обладает сравнительно низкой жаростойкостью.

Технический результат заявляемого изобретения заключается в повышении термостойкости и жаростойкости наплавленного металла за счет формирования в процессе дуговой наплавки в инертных газах мартенситно-аустенитной структуры наплавленного металла, дополнительно упрочненного дисперсными нитридами, карбонитридами и интерметаллидами, а также снижении ресурсоемкости формируемого износостойкого покрытия за счет получения указанного структурно-фазового состава металла уже в первом слое.

Технический результат достигается за счет того, что в порошковой проволоке для наплавки, состоящей из малоуглеродистой стальной оболочки и порошкообразной шихты, содержащей хром, никель, ферросплавы молибдена и титана, шихта дополнительно содержит азотированный хром, УДП карбонитрида титана с размером частиц 0,01-0,1 мкм и кремнефтористый натрий при следующем соотношении компонентов, масс.%:

хром 20,0…23,0
никель 6,0…8,0
ферромолибден 8,0…9,0
ферротитан 0,2…0,6
азотированный хром 2,0…3,0
УДП карбонитрида титана 0,2…0,6
кремнефтористый натрий 0,8…1,0
железо 1,3…9,3
малоуглеродистая сталь оболочки остальное

Указанный состав порошковой проволоки обеспечивает уже в первом слое (при доле участия основного металла 30-35%) следующий химический состав наплавленного металла, масс.%: углерод 0,12…0,16; хром 13,5…16; никель 4,0…5,0; молибден 2,0…3,0; титан 0,1…0,3; азот 0,15…0,18, с повышенными термостойкостью и жаростойкостью.

Введение в шихту проволоки азотированного хрома, наряду с другими легирующими элементами, присутствующими в ее составе, позволяет стабилизировать γ-фазу вследствие дополнительного легирования матрицы наплавленного металла азотом. Это обеспечивает оптимальное соотношение твердого мартенсита и пластичного аустенита в структуре наплавленного металла, обусловливая его высокую термостойкость в условиях термосилового циклического нагружения. Кроме того, при легировании азотом повышается прочность наплавленного металла и способность к деформационному упрочнению в результате снижения энергии дефектов упаковки. Также, при повышенном содержании в металле азота, хрома и молибдена замедлены процессы распада мартенсита при нагреве, обеспечивая повышенную износостойкость металла при высоких (до 800°С) температурах эксплуатации.

Увеличение содержания азотированного хрома более 3 масс.% приводит к повышению содержания азота в твердом растворе выше предела растворимости, что вызывает образование пор в наплавленном металле. При снижении содержания азотированного хрома менее 2 масс.%, основная часть азота будет связана в нитриды, что не позволит обеспечить требуемый фазовый состав матрицы металла.

Введение в состав порошковой проволоки УДП карбонитрида титана с размером частиц 0,01…0,1 мкм позволяет повысить эксплуатационные свойства наплавленного металла. Частицы карбонитрида титана, обладающие высокой термодинамической стабильностью, подвергаясь незначительному растворению в металлическом расплаве, переходят из шихты проволоки в сварочную ванну, воздействуя на кинетику кристаллизации наплавленного металла. В результате обеспечивается эффект модифицирования металла, что приводит к уменьшению размера зерна (балл зерна увеличивается с 11 до 13, см. фиг.1 и 2 соответственно), обусловливая, согласно уравнению Холла-Петча, зернограничное упрочнение, сопровождающееся повышением предела текучести, а также пластичности и термостойкости наплавленного металла. Высокая дисперсность порошка тугоплавких частиц значительно усиливает модифицирующий эффект.

Наличие равномерно распределенных в матрице металла ультрадисперсных частиц карбонитрида титана, дисперсных нитридов и карбонитридов титана, кристаллизовавшихся из расплава, а также интерметаллидов Fe2Mo и нитридов хрома Cr2N, выделяющихся из твердого раствора при высоких температурах, создает повышенное сопротивление движению дислокации в металле при его пластическом деформировании, реализуя эффект упрочнения наплавленного металла по механизму Орована.

Доля УДП карбонитрида титана в процентах от массы проволоки составляет 0,2… 0,6 масс.%, причем введение в шихту проволоки свыше 0,6 масс.%. УДП карбонитрида титана уже не приводит к существенному повышению эффекта модифицирования, одновременно вызывая увеличение стоимости порошковой проволоки. Введение в шихту проволоки менее 0,2 масс.% УДП карбонитрида титана не обеспечивает достаточного эффекта модифицирования и повышения термостойкости наплавленного металла.

Содержание хрома в шихте проволоки в пределах 20…23 масс.% обеспечивает (при содержании других компонентов шихты проволоки, в том числе азотированного хрома, в указанных диапазонах) количество остаточного аустенита в наплавленном металле в диапазоне от 20 до 60 об.%, что обусловливает его повышенную пластичность и термостойкость. С повышением содержания хрома в шихте проволоки также возрастают жаростойкость наплавленного металла и растворимость азота в твердом растворе. Уменьшение содержания хрома в шихте проволоки менее 20 масс.% приводит к снижению жаростойкости и увеличению доли мартенситной составляющей в структуре металла, что снижает его пластичность. Содержания хрома в шихте проволоки более 23 масс.% ограничено появлением в структуре металла δ-феррита, вызывающего понижение термостойкости и жаропрочность наплавленного металла.

Содержание в порошковой проволоке никеля в пределах 6… 8 масс.% обеспечивает повышение вязкости и жаростойкости наплавленного металла. Увеличение содержания никеля в шихте проволоки более 8 масс.% приводит к снижению точки мартенситного превращения наплавленного металла и повышению количества аустенитной составляющей, снижая жаропрочность наплавленного металла. Кроме того, чрезмерное содержание никеля в шихте порошковой проволоки снижает растворимость азота в наплавленном ей металле. Снижение содержания никеля в шихте порошковой проволоки менее 6 масс.%, не оказывая существенного влияния на соотношение аустенитной и мартенситной составляющих, вызывает образование в структуре δ-феррита,

Вводимый в шихту проволоки ферромолибден позволяет обеспечить высокую термостойкость, жаропрочность, твердость и износостойкость наплавленного металла, что обеспечивается при выделении в нем дисперсных карбидов МоС и интерметаллидов Fe2Mo. Данные фазы обеспечивают повышенное сопротивление движению дислокации при высокотемпературном пластическом деформировании наплавленного металла, а также существенно повышают его усталостную прочность. В то же время чрезмерное содержание ферромолибдена (свыше 9 масс.%) приводит к появлению δ-феррита в структуре наплавленного металла. Оптимальное содержание молибдена в наплавленном металле, обеспечивающее высокий уровень указанных свойств, достигается при введении в шихту порошковой проволоки 8…9 масс.% ферромолибдена.

Наличие в составе шихты порошковой проволоки ферротитана в количестве 0,2…0,6 масс.% позволяет, наряду с марганцем и кремнием, поступающими из расплавленного основного металла и ферросплавов, обеспечить раскисление наплавленного металла, а также реализовать механизм дополнительного его упрочнения дисперсными выделениями нитридов и карбонитридов титана. Введение ферротитана в шихту проволоки в количестве менее 0,2 масс.% не оказывает значительного влияния на технологические и эксплуатационные свойства наплавленного металла. Повышение содержания ферротитана в шихте проволоки свыше 0,6 масс.% приводит к существенному обеднению твердого раствора наплавленного металла азотом в результате образования нитридов титана. При этом образующиеся нитриды титана относительно крупные, что нивелирует их роль в качестве барьеров при движении дислокации, снижая жаропрочность наплавленного металла, также повышается уровень микронапряжений в наплавленном металле при его нагреве, что вызывает снижение его термостойкости.

Введение в состав порошковой проволоки кремнефтористого натрия Na2SiF6 в количестве 0,8…1,0 масс.% позволяет значительно снизить содержание водорода в наплавленном металле, вследствие образования при его термическом разложении тетрафторида кремния SiF4, связывающего водород во фтороводород HF, нерастворимый в металле и дегазирующийся из сварочной ванны. Низкое содержание водорода снижает вероятность образования пор в наплавленном металле и повышает его стойкость к образованию трещин. Введение в шихту проволоки менее 0,8 масс.% кремнефтористого натрия повышает вероятность образования пор и «водородных» трещин, а содержание кремнефтористого натрия в шихте проволоки свыше 1,0 масс.% приводит к снижению устойчивости сварочной дуги и повышению разбрызгивания электродного металла.

Использовать предлагаемую порошковую проволоку наиболее рационально при дуговой наплавке в среде аргона. Наплавка в аргоне, инертном по отношению к расплавленному металлу, позволяет обеспечить качественную металлургическую защиту реакционной зоны сварки и получить высококачественный наплавленный металл. При этом значительно снижается степень окисления легирующих элементов, что повышает их коэффициенты перехода в наплавленный металл и исключает необходимость использования большого количества раскислителей в составе шихты порошковой проволоки. Снижение количества сульфидных, фосфидных, оксидных и силикатных соединений в наплавленном металле, по сравнению с наплавкой самозащитными порошковыми проволоками, повышает его механические свойства и сопротивление к образованию трещин. Также отпадает необходимость удаления шлаковой корки и зачистки поверхности металла при многослойной наплавке.

На фиг.1 показана микроструктура наплавленного металла, полученного с использованием заявленной порошковой проволоки, содержащей в шихте 0,2 масс.% УДП карбонитрида титана (×1000); на фиг.2 - микроструктура наплавленного металла, полученного с использованием заявленной порошковой проволоки, содержащей в шихте 0,6 масс.% УДП карбонитрида титана (×1000).

Пример. Опытные образцы проволок диаметром 2,6 мм трех различных составов (табл.1) изготавливали с использованием ленты размером 0,5×12 мм из стали 08кп по известной в технике технологии. Коэффициент заполнения проволок порошкообразной шихтой составлял 46…47%.

Таблица 1
Компоненты шихты порошковой проволоки Номер состава порошковой проволоки, масс.%
прототип 1 2 3
Хром 13 20,0 21,5 23,0
Никель 2,75 6,0 7,0 8,0
Ферромолибден 2,2 8,0 8,5 9,0
Ферротитан 1,65 0,2 0,4 0,6
Азотированный хром - 2,0 2,5 3,0
УДП карбонитрида титана - 0,2 0,4 0,6
Кремнефтористый натрий - 0,8 0,9 1,0
Железо 1,05 9,3 5,3 1,3
Флюорит 5,5 -
Криолит 0,6 -
Полевой шпат 3,0 -
Марганец 1,25 -
Феррованадий 0,6 -
Феррониобий 0,36 -
Ферросилиций 0,7 -
Малоуглеродистая сталь оболочки остальное
Коэффициент заполнения 35,16 46,5

Дуговую наплавку на пластины из стали Ст3пс (по ГОСТ 380-2005) осуществляли колеблющимся электродом в среде аргона. Размеры пластин составляли 80×150 мм при толщине 14 мм (в соответствие с ГОСТ 26101-84). Основные параметры режима: сварочный ток (постоянный, полярность обратная) - 220-250 А, напряжение на дуге - 25-27 В, скорость поперечных перемещений электрода - 4,2 см/с, размах колебаний электрода - 25-30 мм, скорость наплавки - 0,2-0,3 см/с, вылет электрода - 35…40 мм, расход аргона - 15…18 л/мин. В процессе наплавки формировали слои металла толщиной 4-5 мм с долей участия металла основы 32-35%. Получали хорошо сформированный наплавленный металл без пор, трещин, отслоений.

Стойкость наплавленного металла к высокотемпературной (800°С) пластической деформации определяли путем склерометрических испытаний образцов, нагретых проходящим током, в атмосфере инертного газа, а за критерий стойкости I принимали величину, обратную объему металла трека, выдавленного индентором Роквелла при скрайбировании по полированной поверхности образца. Термостойкость наплавленного металла оценивали по количеству циклов нагрев-охлаждение N (термических ударов), приводящих к появлению трещин термической усталости. Жаростойкость G наплавленного металла (при 800°С) оценивали по привесу окалины на единицу площади при выдержке 10 ч в печи. Результаты сравнительных испытаний представлены в таблице 2.

Таблица 2
Состав Твердость, HRC Стойкость к пластической деформации (при 800°С) I, 103 мм-3 Термостойкость N,циклов Жаростойкость G, г/м2
прототип 42 5,73 915 6,5
1 44 5,51 1130 6,1
2 43 7,14 1280 4,9
3 41 6,63 1240 4,1

Анализ полученных данных показывает, что наилучшим комплексом свойств обладает металл, полученный наплавкой порошковой проволокой состава 2. При содержании компонентов в шихте проволоки в заявляемых пределах обеспечивается формирование мартенситно-аустенитной структуры, упрочненной дисперсными выделениям TiN, TiCN, Cr2N, Fe2Mo. Модифицирование наплавленного металла ультрадисперсными частицами карбонитрида титана позволило обеспечить формирование мелкозернистой структуры, обладающей высокой пластичностью и вязкостью. Твердость наплавленного металла составляет 41-44 HRC, причем в процессе работы остаточный метастабильный аустенит способен претерпевать мартенситное превращение, обеспечивая дополнительный прирост твердости до 50-52 HRC.

Повышенные коэффициент заполнения предлагаемой порошковой проволоки и коэффициенты перехода легирующих элементов позволили получить наплавленный металл, обладающий высокими эксплуатационными свойствами, уже в первом слое. Это позволяет снизить себестоимость изготовительной и восстановительной наплавки деталей оборудования и инструмента, работающих в условиях высокотемпературного термосилового воздействия. Возможность однослойной наплавки уменьшает проблему появления отпускной хрупкости наплавленного металла, связанную с термическим воздействием на него при наплавке последующих слоев.

Предложенная порошковая проволока позволяет на 30% повысить термостойкость и жаростойкость наплавленного металла по сравнению с прототипом, а также позволяет снизить ресурсоемкость формируемого наплавленного покрытия за счет получения указанных эксплуатационных свойств металла уже в первом слое.

Порошковая проволока для наплавки, состоящая из малоуглеродистой стальной оболочки и порошкообразной шихты, содержащей хром, никель, ферросплавы молибдена и титана, отличающаяся тем, что шихта дополнительно содержит азотированный хром, ультрадисперсный порошок (УДП) карбонитрида титана с размером частиц 0,01-0,1 мкм и кремнефтористый натрий при следующем соотношении компонентов, мас.%:
ПОРОШКОВАЯ ПРОВОЛОКА ДЛЯ НАПЛАВКИ
ПОРОШКОВАЯ ПРОВОЛОКА ДЛЯ НАПЛАВКИ
Источник поступления информации: Роспатент

Показаны записи 191-200 из 219.
13.01.2017
№217.015.7fc4

Способ получения адамантилсодержащих изотиоцианатов

Изобретение относится к химии производных адамантана, а именно к способу получения адамантилсодержащих изотиоцианатов, которые являются полупродуктами для синтеза биологически активных веществ. Предлагаемый способ получения адамантилсодержащих изотиоцианатов заключается во взаимодействии...
Тип: Изобретение
Номер охранного документа: 0002599993
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7fcd

Способ получения 2-алкил-2-имидазолинов

Изобретение относится к области органической химии, а именно к способу получения 2-алкил-2-имидазолинов, заключающемуся во взаимодействии карбоновой кислоты с этилендиамином при нагревании в присутствии катализатора, согласно изобретению в качестве карбоновой кислоты используют уксусную,...
Тип: Изобретение
Номер охранного документа: 0002599989
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.802d

Способ получения производных имидоилхлоридов

Изобретение относится к области синтеза имидоилхлоридов, которые являются интермедиатами в синтезе биологически активных химических соединений, используемых в синтезе лекарственных препаратов, а именно к новому способу получения производных N-арилбензимидоилхлорида. Способ получения производных...
Тип: Изобретение
Номер охранного документа: 0002599991
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8094

Состав для огнезащитных покрытий резин

Изобретение относится к области получения огнезащитных покрытий на основе полимерного связующего и может найти применение в резинотехнической промышленности. Состав для огнезащитных покрытий резин включает связующее на основе хлоропренового каучука и технологическую добавку. В качестве...
Тип: Изобретение
Номер охранного документа: 0002602135
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.80e5

Способ получения модифицированных металлами наполнителей для резин

Изобретение относится к получению эластомерных композиционных материалов. Осуществляют приготовление насыщенного водного раствора формиата металла с добавлением наполнителя. Металл выбирают из меди, никеля или кобальта. Наполнитель выбирают из аэросила, коллоидной кремнекислоты или технического...
Тип: Изобретение
Номер охранного документа: 0002602129
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8121

Состав для огнезащитных покрытий резин

Изобретение относится к области получения огнезащитных покрытий на основе полимерного связующего и может найти применение в резинотехнической промышленности. Состав для огнезащитных покрытий включает хлорсульфированный полиэтилен, толуол и модификатор. В качестве модификатора содержит...
Тип: Изобретение
Номер охранного документа: 0002602138
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83cc

Способ получения 4'-фторспиро[циклопропан-1,3'-индол]-2'(1'н)-она

Изобретение относится к способу получения 4′-фторспиро[циклопропан-1,3′-индол]-2′(1′)-она путем алкилирования 2-(2,6-дифторфенил)ацетонитрила 1,2-дибромэтаном, с последующим частичным гидролизом полученного продукта реакции до 1-(2,6-дифторфенил)циклопропан-1-карбоксамида и его...
Тип: Изобретение
Номер охранного документа: 0002601749
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83e5

Рецептурная композиция рассола для инъецирования цельномышечного копчено-вареного мясного сырья

Изобретение относится к мясоперерабатывающей промышленности и может быть использовано для приготовления рассолов для инъецирования мясного сырья при производстве копчено-вареного цельномышечного изделия. Рецептурная композиция рассола для инъецирования мясного сырья содержит в количестве на 100...
Тип: Изобретение
Номер охранного документа: 0002601566
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.852c

Творожный продукт на основе козьего молока

Изобретение относится к молокоперерабатывающей промышленности. Пастеризуют козье молоко. Вводят 40% раствор хлористого кальция, сычужный фермент и закваску из Streptococcus thermophilus, Lactococcus lactis и Bifidobacterium lactis в количестве 3-5% от объема молока. Смесь перемешивают с...
Тип: Изобретение
Номер охранного документа: 0002603077
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8616

Резиновая смесь на основе бутадиен-метилстирольного каучука

Изобретение относится к резиновой промышленности, в частности к разработке резиновой смеси на основе бутадиен-метилстирольного каучука, изделия из которой характеризуются повышенной тепло- и огнестойкостью. Резиновая смесь на основе бутадиен-метилстирольного каучука включает вулканизирующий...
Тип: Изобретение
Номер охранного документа: 0002603366
Дата охранного документа: 27.11.2016
Показаны записи 191-200 из 295.
20.08.2015
№216.013.6fc0

Способ получения 3-замещенных 2-(3-феноксифенил)акрилонитрилов

Изобретение относится к способу получения 3-замещенных-2-(3-феноксифенил)акрилонитрилов указанной ниже общей формулы. Предлагаемый способ заключается во взаимодействии карбонильного соединения с производным ацетонитрила в присутствии раствора щелочи в среде растворителя с последующим выделением...
Тип: Изобретение
Номер охранного документа: 0002560178
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.728d

Способ получения композиционного материала медь-титан

Изобретение может быть использовано для получения сваркой взрывом композиционных материалов с особыми тепловыми свойствами, например, при изготовлении теплообменной аппаратуры, электроэнергетических установок и т.п. Между пластинами из титана размещают медную пластину с заданным соотношением...
Тип: Изобретение
Номер охранного документа: 0002560895
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.728e

Способ получения композиционных изделий с внутренними полостями сваркой взрывом

Изобретение относится к технологии получения изделий с внутренними полостями с помощью сварки взрывом. Способ включает составление двух трехслойных пакетов с размещением в каждом из них между пластинами из титана медной пластины с соотношением толщин пластин титан-медь-титан 1:(0,75-1,0):1 при...
Тип: Изобретение
Номер охранного документа: 0002560896
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.728f

Способ получения композиционного материала медь-титан

Изобретение может быть использовано для получения сваркой взрывом композиционных материалов с особыми тепловыми свойствами, например, при изготовлении теплообменной аппаратуры, электроэнергетических установок и т.п. Составляют два трехслойных пакета с размещением в каждом из них между...
Тип: Изобретение
Номер охранного документа: 0002560897
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7292

Способ упрочнения стальных пластин

Изобретение относится к машиностроению, в частности к способам поверхностного пластического деформирования деталей дробью. Осуществляют обработку стальной пластины дробью с получением интенсивности пластической деформации в центре отпечатков дроби, равной предельной равномерной деформации при...
Тип: Изобретение
Номер охранного документа: 0002560900
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.72c5

Способ производства колбасы ливерной

Изобретение относится к мясоперерабатывающей промышленности, а именно к производству колбасы ливерной. Способ предусматривает подготовку субпродуктов 1 и 2 категории и подготовку добавки, приготовление фарша из подготовленного сырья, введение соли поваренной пищевой, лука репчатого, специй и...
Тип: Изобретение
Номер охранного документа: 0002560951
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7351

Способ модификации поверхности нити полиэтилентерефталата

Изобретение относится к области химии полимеров, а точнее к новому способу модификации нити полиэтилентерефталата (ПЭТФ) функциональными добавками, и может быть использовано в текстильном отделочном производстве, в самолето-, автомобилестроении и резиновой промышленности. Способ модификации...
Тип: Изобретение
Номер охранного документа: 0002561091
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7488

Способ изготовления двухслойных листовых металлополимерных материалов

Изобретение относится к технологии получения композиционных материалов с помощью энергии взрывчатых веществ для изготовления слоистых металлополимерных материалов с антикоррозионными, антифрикционными и антиобледенительными покрытиями и касается способа изготовления листовых металлополимерных...
Тип: Изобретение
Номер охранного документа: 0002561407
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.7ac3

Способ приготовления резиновой смеси на основе этиленпропилендиенового каучука

Изобретение относится к способу приготовления резиновой смеси на основе этиленпропилендиенового каучука, изделия из которой могут использоваться в шинной и резинотехнической промышленности. Способ получения резиновой смеси на основе этиленпропилендиенового каучука включает введение в каучук...
Тип: Изобретение
Номер охранного документа: 0002563016
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7ac4

Способ приготовления резиновой смеси на основе хлоропренового каучука

Изобретение относится к резиновой промышленности, в частности к разработке способа приготовления резиновой смеси на основе хлоропренового каучука, изделия из которой могут быть использованы в качестве уплотнителей в строительстве, покрытий в шинной и резинотехнической промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002563017
Дата охранного документа: 10.09.2015
+ добавить свой РИД