×
20.03.2013
216.012.304d

СПОСОБ ОБРАБОТКИ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области сверхпроводимости и нанотехнологий, а именно к способу получения и обработки композитных материалов на основе высокотемпературных сверхпроводников (BTCП), которые могут быть использованы в устройствах передачи электроэнергии, для создания токоограничителей, трансформаторов, мощных магнитных систем. Способ обработки высокотемпературного сверхпроводника, представляющего собой композитную структуру, состоящую из материала подложки с нанесенными на нее буферными слоями из оксидов металлов, слоя сверхпроводящего материала из оксидов металлов, поверх которого нанесен защитный слой из серебра, заключается в облучении указанной структуры ионным пучком тяжелых благородных газов с энергией от 48 до 107 МэВ с флюенсом 2×10-5×10 ионов/см и плотностью ионного тока 2,6×10-6,5×10 А/см при поддержании температуры от 30°С до 100°С, с обеспечением снятия внутренних упругих напряжений в композитной структуре. 3 ил., 1 табл.
Основные результаты: Способ обработки высокотемпературного сверхпроводника, представляющего собой композитную структуру, состоящую из материала подложки с нанесенными на нее буферными слоями из оксидов металлов, слоя сверхпроводящего материала из оксида металлов, поверх которого нанесен защитный слой из серебра, заключающийся в облучении указанной структуры энергетическим потоком, отличающийся тем, что облучение композитной структуры осуществляют ионным пучком тяжелых благородных газов с энергией от 48 до 107 МэВ с флюенсом 2·10-5·10 ионов/см и плотностью ионного тока 2,6·10-6,5·10 А/смпри поддержании температуры от 30°С до 100°C с обеспечением снятия внутренних упругих напряжений в композитной структуре.
Реферат Свернуть Развернуть

Изобретение относится к области сверхпроводимости и нанотехнологий, а именно к технологии получения и обработки композитных материалов на основе высокотемпературных сверхпроводников (ВТСП), которые в перспективе могут быть применены для передачи электроэнергии, для создания токоограничителей, трансформаторов, мощных магнитных систем.

Технология получения ВТСП 2-го поколения предполагает послойное эпитаксиальное нанесение буферных слоев нанометровой толщины для согласования параметров кристаллической решетки ВТСП материала с подложкой, которая определяет механическую прочность композита.

Однако полного согласования параметров достичь невозможно, особенно при изготовлении длинномерного композита. Поэтому оказывается, что слой сверхпроводника имеет локальные упругие напряжения, которые могут постепенно привести к разрушению пленочного ВТСП слоя. Чем больше рассогласование параметров кристаллических решеток, тем при меньшей толщине пленки теряется ее морфологическая стабильность. Особенно это проявляется при изготовлении длинномерных композитных сверхпроводников.

В случае толстых пленок и объемных образцов упругие напряжения обычно снимаются долговременным тепловым отжигом, но в слоях нанометровых масштабов термический отжиг не применяется из-за диффузионного размытия, приводящего к резкому снижению функциональных параметров.

Известен способ обработки сверхпроводников (Wu Ming Chen, S.S.Jiang, Y.C.Guo, J.R.Jin, X/S.Wu, X.H.Wang, X.Jin, X.N.Xu, X.X.Yao, S.X.Dou. Effects of low-energy neutron irradiation on Bi-based superconductors. Physica С 299 (1998,) pp.77-82 [1]), заключающийся в облучении сверхпроводниковой композиции с висмутом Bi (2223) нейтронами низкой энергии. В результате такого облучения критический ток сверхпроводника увеличивается на 30%, а критическая температура увеличивается на 2,5-5,0 К.

Известен способ обработки сверхпроводников (D.H.Galvan, Shi Li, W.M.Yuhasz, JunHo Kim, M.B.Maple, E.Adem. Superconductivite of N0802 samples subjected to electron irradiation. Physica С 398 (2003), P.147-151 [2]), заключающийся в облучении сверхпроводника NbSe2 электронами на ускорителе Ван де Граафа различными дозами облучения 100, 200 и 500 Мрад. В результате такого облучения критический ток увеличился в два раза по сравнению с необлученными образцами.

Известен также способ обработки сверхпроводящих материалов (патент РФ №2404470, МПК Н01В 12/00 от 16.12.2009 [3]), основанный на формировании плазменного потока в газовой среде и воздействии им на твердотельную мишень, при котором формируют сфокусированную магнитным полем кумулятивную плазменную струю в импульсном режиме со скоростью истечения струи (4-10)·105 м/сек с обеспечением в импульсе давления струи на твердотельную мишень 105-106 атмосфер, температурой более 106°С и плотностью потока энергии в плазменной струе 108-1010 Вт/см2, причем при воздействии плазменным потоком на твердотельную мишень создают в ней ударную волну и передают энергию ударной волны через слой вязкой среды на сверхпроводящий материал.

Недостатками известных способов обработки сверхпроводников [1, 2, 3] является наличие в слоях сверхпроводника локальных упругих напряжений, которые постепенно приводят к разрушению пленочного ВТСП слоя.

Наиболее близким по технической сущности к предлагаемому изобретению является известный способ синтеза сверхпроводника с ионным ассистированием (Kidszun M., Huehne R., Holzapfel В., Schultz L. Ion-beam-assisted deposition oftextured NbN thin films. // Supercond. Sci. Technol. 2010. V.23. 025010 6pp.). Этот способ синтеза предусматривает одновременное осаждение ниобия и ионную имплантацию азота.

Существуют разные модификации применения методов обработки с ионным ассистированием, в зависимости от цели: в одних случаях происходит синтез нескольких компонент, в других - уплотнение пленки. В известном способе обработки сверхпроводника используют ионы низких энергий - десятки кэВ, что не обеспечивает желаемого результата - полного устранения локальных упругих напряжений в слоях и повышения механической прочности и долговечности длинномерного композитного сверхпроводника. Для низкоэнергетических ионов, как в прототипе, длина пробега оказывается меньше, чем толщина слоя серебра, поэтому требуются тяжелые ионы высоких энергий.

Технический результат, заключающийся в устранении отмеченного недостатка, в предлагаемом способе обработки высокотемпературного сверхпроводника, представляющего собой композитную структуру, состоящую из материала подложки с нанесенными на нее буферными слоями из оксидов металлов, слоя сверхпроводящего материала на основе купратов бария и редкоземельных элементов, поверх которого нанесен защитный слой из серебра, достигается тем, что облучение композитной структуры осуществляют ионным пучком тяжелых благородных газов с энергией от 48 до 107 МэВ с флюенсом 2×1010-5×1010 ионов/см2 и плотностью ионного тока 2,6×10-8-6,5×10-8 А/см2 при поддержании температуры от 30°С до 100°C с обеспечением снятия внутренних упругих напряжений в композитной структуре.

Сущность изобретения поясняется чертежами, где:

- на фиг.1 показан в изометрии разрез композитного ВТСП в увеличенном масштабе;

- на фиг.2 приведена микрофотография структуры композитного ВТСП, полученная на растровом электронном микроскопе;

- на фиг.3 приведена микрофотография композитного ВТСП, полученная на растровом электронном микроскопе: а) до обработки; б) после обработки;

Предлагаемый способ осуществляется следующим образом.

Для осуществления способа используется высокотемпературный сверхпроводник (ВТСП), представляющий собой композитную структуру (фиг. 1): слой 1 серебра (δ=2 мкм); слой 2 YB2C3O7-x (δ=1 мкм) - (в дальнейшем используем обозначение YBCO); слой 3 оксида Lа3О3 (δ=37 нм); слой 4 оксида МgО (δ=58 нм); слой 5 оксида Y2О3 (δ=10 нм); слой 6 оксида Аl2О3 (δ=93 нм); и подложка 7 из сплава хастеллой (δ=50-100 мкм).

Обработка ВТСП заключается в облучении указанной структуры энергетическим потоком - ионным пучком тяжелых благородных газов (Аr8+, Kr17+ с энергией от 48 до 107 МэВ с флюенсом 2×1010-5×1010 ионов/см2 и плотностью ионного тока 2,6×10-8-6,5×10-8 А/см2 при поддержании температуры от 30°С до 100°C с обеспечением снятия внутренних упругих напряжений в композитной структуре.

В исходных образцах сверхпроводника были обнаружены упругие напряжения. На фиг. 3а представлена микрофотография исходного ленточного ВТСП, на которой темная область является сверхпроводящим слоем YBCO 2, а косые линии 8 являются дефектами структуры - трещинами, возникшими в результате внутренних упругих напряжений.

Образец той же серии был облучен ионами криптона 84Кr17+ с энергией 107 МэВ и флюенсом 1×1010 ионов/см2. Затем он был изучен с помощью электронной микроскопии. На микрофотографии никаких дефектов структуры типа трещин не обнаружено (фиг.3б).

Таким образом, в результате обработки композитного ВТСП по предлагаемому способу происходит снятие внутренних напряжений в пленке сверхпроводника - см. фиг.3б.

Подтверждение описанных результатов было получено при рентгеноструктурных исследованиях облученных ионами образцов. Три другие образца той же серии были исследованы после облучения ионами аргона 40Аr8+ с энергией от 48 МэВ до 107 МэВ с помощью дифракции рентгеновских лучей. Была получена серия дифрактограмм этих образцов YBCO. Измерялась ширина пиков дифракционного отражения на половине их высоты при облучении ионами аргона при различных флюенсах.

Известно, что по ширине пиков отражения можно судить о наличии напряжений в кристаллической решетке. Результаты, полученные в предлагаемом способе, представлены в таблице.

№№ п/п Флюенс (Ф) ионов 40Аr8+ Плотность ионного тока, А/см2 Температура, °С Ширина на половине высоты, град
1 2 3 4 5
1 0 (облучения нет) - - 0.108
2 2.0×1010 ион/см2 2,6×10-8 30 0.096
3 5.0×1010 ион/см2 6,5×10-8 40 0.098
4 1.0×1011 ион/см2 1,3×10-7 80 0.107
5 5.0×1011 ион/см2 6,5×10-7 100 0.107

Как видно из приведенных данных (см. столбец 4 таблицы), минимальная ширина пика дифракционного отражения соответствует не исходному (необлученному) образцу (строка 1 таблицы), а образцу после облучения с флюенсами (2-5)×1010 ион/см2 (строки 2 и 3 таблицы).

Отметим, что при таких флюенсах было также обнаружено увеличение критического тока, связанное с генерацией дополнительных центров пиннинга, так называемых столбчатых дефектов. При выходе за пределы указанного диапазона значений флюенса и плотности ионного тока улучшения качества структуры не наблюдается - это доказывается значениями ширины на половине высоты дифракционного отражения (см. столбец 5, 4-я и 5-я строки таблицы). Таким образом, предлагаемый способ обработки высокотемпературного сверхпроводника позволяет устранить недостатки прототипа, поскольку обеспечивает снятие внутренних упругих напряжений композитных многослойных ВТСП и одновременно приводит к увеличению критического тока. Предлагаемый способ соответствует критерию промышленной применимости, поскольку был опробован на реальных, промышленно изготавливаемых ВТСП и неоднократно воспроизводился с получением стабильных результатов на ускорителе ионов типа ИЦ-100.

Способ обработки высокотемпературного сверхпроводника, представляющего собой композитную структуру, состоящую из материала подложки с нанесенными на нее буферными слоями из оксидов металлов, слоя сверхпроводящего материала из оксида металлов, поверх которого нанесен защитный слой из серебра, заключающийся в облучении указанной структуры энергетическим потоком, отличающийся тем, что облучение композитной структуры осуществляют ионным пучком тяжелых благородных газов с энергией от 48 до 107 МэВ с флюенсом 2·10-5·10 ионов/см и плотностью ионного тока 2,6·10-6,5·10 А/смпри поддержании температуры от 30°С до 100°C с обеспечением снятия внутренних упругих напряжений в композитной структуре.
СПОСОБ ОБРАБОТКИ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА
СПОСОБ ОБРАБОТКИ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА
СПОСОБ ОБРАБОТКИ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 16.
20.03.2013
№216.012.3070

Нейтронный генератор

Заявленное изобретение предназначено для использования в нейтронной технике для формирования потоков нейтронов высокой плотности, в частности в экспериментальной нейтронной физике, ядерной геофизике, при анализе материалов, в том числе нейтронно-активационном анализе. Заявленное устройство...
Тип: Изобретение
Номер охранного документа: 0002477935
Дата охранного документа: 20.03.2013
20.06.2013
№216.012.4c0d

Способ получения нанокомпозиций серебра на основе синтетических водорастворимых полимеров

Изобретение относится к способу получения композиций наночастиц серебра на основе водорастворимых синтетических сополимеров. Способ заключается в восстановлении ионов серебра в присутствии водорастворимого полимера. В качестве полимеров используют сочетающие одновременно свойства восстановителя...
Тип: Изобретение
Номер охранного документа: 0002485051
Дата охранного документа: 20.06.2013
27.05.2014
№216.012.c8da

Способ управляемого коллективного ускорения электрон - ионных сгустков

Изобретение относится к ускорительной технике. Способ включает формирование сильноточного трубчатого пучка вращающихся электронов в стационарном магнитном поле, захват электронов в магнитную ловушку, заполнение электронного сгустка ионами за счет ионизации газа в вакуумной камере ускорителя...
Тип: Изобретение
Номер охранного документа: 0002517184
Дата охранного документа: 27.05.2014
10.01.2015
№216.013.1bd3

Алмазный поликристаллический композиционный материал с армирующей алмазной компонентой

Изобретение относится к области получения поликристаллических материалов, а именно к композиционным материалам на основе алмаза, полученным путем спекания алмазных зерен и металлов с дисперсно-упрочняющими добавками и армирующей CVD алмазной компонентой в виде вставки, модифицированной в...
Тип: Изобретение
Номер охранного документа: 0002538551
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.202d

Способ генерации электромагнитного излучения в терагерцовом диапазоне и устройство для получения электромагнитного излучения в терагерцовом диапазоне

Изобретение относится к оптоэлектронике. Способ генерации электромагнитного излучения в терагерцовом диапазоне заключается во взаимодействии направленного возбуждающего излучения с активной средой образца и получении вторичного электромагнитного излучения. В качестве активной среды образца...
Тип: Изобретение
Номер охранного документа: 0002539678
Дата охранного документа: 20.01.2015
20.03.2015
№216.013.3413

Плазменная вибраторная антенна с ионизацией поверхностной волной

Изобретение относится к области антенной техники и предназначено для приема и передачи радиосигналов. Технический результат заключается в повышении надежности конструкции, снижении необходимой мощности ВЧ передатчика и расширении используемого диапазона частот. Плазменная вибраторная антенна...
Тип: Изобретение
Номер охранного документа: 0002544806
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3469

Способ получения микро- и наноструктур на поверхности материалов

Использование: для создания материалов с новыми свойствами и способа обработки поверхности твердого материала с получением на этой поверхности структур с чешуйками субмикронной толщины и микронными размерами и/или с субмикронными трещинами и щелями между упомянутыми чешуйками и/или участками...
Тип: Изобретение
Номер охранного документа: 0002544892
Дата охранного документа: 20.03.2015
10.05.2015
№216.013.49c7

Алмазный поликристаллический композиционный материал с дисперсно-упрочненной добавкой

Изобретение относится к области получения поликристаллических материалов, которые могут быть использованы, преимущественно, для изготовления бурового и правящего инструмента. Алмазный поликристаллический композиционный материал с дисперсно-упрочненной добавкой содержит оболочку толщиной...
Тип: Изобретение
Номер охранного документа: 0002550394
Дата охранного документа: 10.05.2015
20.01.2016
№216.013.a0f2

Способ получения микроволновых импульсов с непрерывным спектром излучения

Изобретение относится к области плазменной релятивистской СВЧ-электроники и может найти применение при создании источников широкополосного электромагнитного СВЧ-излучения, используемого в импульсной СВЧ-энергетике, радиофизических исследованиях, экспериментальной физике, в технологических...
Тип: Изобретение
Номер охранного документа: 0002572844
Дата охранного документа: 20.01.2016
10.04.2016
№216.015.306d

Импульсный источник трубчатой плазмы с управляемым радиусом в магнитном поле

Изобретение относится к плазменной электронике и может быть использовано при создании СВЧ-генераторов на основе взаимодействия электронных пучков с плазмой. Устройство содержит размещенные в однородном магнитном поле коаксиально расположенные в вакуумной камере кольцевой диск с центральным...
Тип: Изобретение
Номер охранного документа: 0002580513
Дата охранного документа: 10.04.2016
Показаны записи 1-10 из 19.
20.03.2013
№216.012.3070

Нейтронный генератор

Заявленное изобретение предназначено для использования в нейтронной технике для формирования потоков нейтронов высокой плотности, в частности в экспериментальной нейтронной физике, ядерной геофизике, при анализе материалов, в том числе нейтронно-активационном анализе. Заявленное устройство...
Тип: Изобретение
Номер охранного документа: 0002477935
Дата охранного документа: 20.03.2013
20.06.2013
№216.012.4c0d

Способ получения нанокомпозиций серебра на основе синтетических водорастворимых полимеров

Изобретение относится к способу получения композиций наночастиц серебра на основе водорастворимых синтетических сополимеров. Способ заключается в восстановлении ионов серебра в присутствии водорастворимого полимера. В качестве полимеров используют сочетающие одновременно свойства восстановителя...
Тип: Изобретение
Номер охранного документа: 0002485051
Дата охранного документа: 20.06.2013
27.05.2014
№216.012.c8da

Способ управляемого коллективного ускорения электрон - ионных сгустков

Изобретение относится к ускорительной технике. Способ включает формирование сильноточного трубчатого пучка вращающихся электронов в стационарном магнитном поле, захват электронов в магнитную ловушку, заполнение электронного сгустка ионами за счет ионизации газа в вакуумной камере ускорителя...
Тип: Изобретение
Номер охранного документа: 0002517184
Дата охранного документа: 27.05.2014
10.01.2015
№216.013.1bd3

Алмазный поликристаллический композиционный материал с армирующей алмазной компонентой

Изобретение относится к области получения поликристаллических материалов, а именно к композиционным материалам на основе алмаза, полученным путем спекания алмазных зерен и металлов с дисперсно-упрочняющими добавками и армирующей CVD алмазной компонентой в виде вставки, модифицированной в...
Тип: Изобретение
Номер охранного документа: 0002538551
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.202d

Способ генерации электромагнитного излучения в терагерцовом диапазоне и устройство для получения электромагнитного излучения в терагерцовом диапазоне

Изобретение относится к оптоэлектронике. Способ генерации электромагнитного излучения в терагерцовом диапазоне заключается во взаимодействии направленного возбуждающего излучения с активной средой образца и получении вторичного электромагнитного излучения. В качестве активной среды образца...
Тип: Изобретение
Номер охранного документа: 0002539678
Дата охранного документа: 20.01.2015
20.03.2015
№216.013.3413

Плазменная вибраторная антенна с ионизацией поверхностной волной

Изобретение относится к области антенной техники и предназначено для приема и передачи радиосигналов. Технический результат заключается в повышении надежности конструкции, снижении необходимой мощности ВЧ передатчика и расширении используемого диапазона частот. Плазменная вибраторная антенна...
Тип: Изобретение
Номер охранного документа: 0002544806
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3469

Способ получения микро- и наноструктур на поверхности материалов

Использование: для создания материалов с новыми свойствами и способа обработки поверхности твердого материала с получением на этой поверхности структур с чешуйками субмикронной толщины и микронными размерами и/или с субмикронными трещинами и щелями между упомянутыми чешуйками и/или участками...
Тип: Изобретение
Номер охранного документа: 0002544892
Дата охранного документа: 20.03.2015
10.05.2015
№216.013.49c7

Алмазный поликристаллический композиционный материал с дисперсно-упрочненной добавкой

Изобретение относится к области получения поликристаллических материалов, которые могут быть использованы, преимущественно, для изготовления бурового и правящего инструмента. Алмазный поликристаллический композиционный материал с дисперсно-упрочненной добавкой содержит оболочку толщиной...
Тип: Изобретение
Номер охранного документа: 0002550394
Дата охранного документа: 10.05.2015
20.01.2016
№216.013.a0f2

Способ получения микроволновых импульсов с непрерывным спектром излучения

Изобретение относится к области плазменной релятивистской СВЧ-электроники и может найти применение при создании источников широкополосного электромагнитного СВЧ-излучения, используемого в импульсной СВЧ-энергетике, радиофизических исследованиях, экспериментальной физике, в технологических...
Тип: Изобретение
Номер охранного документа: 0002572844
Дата охранного документа: 20.01.2016
10.04.2016
№216.015.306d

Импульсный источник трубчатой плазмы с управляемым радиусом в магнитном поле

Изобретение относится к плазменной электронике и может быть использовано при создании СВЧ-генераторов на основе взаимодействия электронных пучков с плазмой. Устройство содержит размещенные в однородном магнитном поле коаксиально расположенные в вакуумной камере кольцевой диск с центральным...
Тип: Изобретение
Номер охранного документа: 0002580513
Дата охранного документа: 10.04.2016
+ добавить свой РИД