×
27.02.2013
216.012.2c54

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ БЫСТРОГО КАЧЕСТВЕННОГО И КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ СЕРЫ В ОСАДОЧНЫХ ПОРОДАХ И В НЕФТЕПРОДУКТАХ

Вид РИД

Изобретение

№ охранного документа
0002476875
Дата охранного документа
27.02.2013
Аннотация: Группа изобретений относится к определению серы в различных материалах. В способе качественного и количественного определения серы в образце осадочных пород или нефтепродуктов, в котором осуществляют следующие этапы: - нагревание указанного образца в пиролизной печи в неокисляющей атмосфере, - перенос остатка пиролиза указанного образца в окислительную печь и непрерывное измерение количества SO в выходящих потоках, полученных в результате указанного окислительного нагрева, - окисление части потоков с пиролиза и непрерывное измерение количества SO в указанной части после окисления. Также представлено устройство аналогичного назначения. Достигается повышение информативности и надежности определения. 2 н. и 10 з.п. ф-лы, 6 ил.

Область применения настоящего изобретения относится к способу и устройству для осуществления измерений количества серы в образцах отложений, нефтепродуктах или других материалах. Изобретение позволяет, в частности, качественно и количественно определить серу в осадочных породах и нефтепродуктах (сырая нефть, нефтяные фракции, продукты рафинирования и т.д.), одновременно с определением количества углеводородов и углерода. Время анализа в стандартных условиях может составлять порядка полутора часов.

Развитие нефтяной промышленности все больше и больше направлено на получение сырой нефти, с большим количеством серы, чем в стандартной нефти. Вместе с этим, ограничения на содержание серы в продуктах рафинирования становятся все более строгими.

По этим причинам чрезвычайно важно уметь определять количество серы в нефтепродуктах и в породах геологических нефтяных систем, и как можно более тонко охарактеризовывать ее.

Однако эти тонкие измерения являются очень сложными, а в некоторых случаях даже невозможными. Например, невозможно определить разные молекулярные формы органической серы в органических соединениях, содержащих более 40 атомов углерода, которые являются, однако, самыми серосодержащими среди нефтей. С другой стороны, определение органической серы и минеральной серы в породе требует, при известных в настоящее время средствах, осуществления множества операций.

Настоящее изобретение позволяет получить информацию о типах серы, даже в случае очень тяжелой нефти, и позволяет различить органическую серу и минеральную серу в породе. Основной целью изобретения является применение в следующих областях.

Разведка нефти:

- для определения типа органического материала,

- для идентификации качества масла по содержанию серы,

- для поиска корреляции между нефтью и самой породой,

- для указания уровня биоразложения - процесса, следствием которого является накапливание серы.

Добыча нефти:

- для оценки риска добычи H2S в зависимости от типа присутствующей серы, в рамках рекуперации, поддерживаемой термическими процессами.

Рафинирование:

- в рамках обессеривания масел.

Итак, настоящее изобретение относится к способу качественного и количественного определения серы в образце осадочных пород или нефтепродуктов, в котором осуществляют следующие этапы:

- нагревание указанного образца в пиролизной печи в неокисляющей атмосфере,

- перенос остатка пиролиза указанного образца в окислительную печь и непрерывное измерение количества SO2, содержащегося в выходящих потоках, полученных в результате указанного окислительного нагрева,

- окисление части потоков с пиролиза и непрерывное измерение количества SO2, содержащегося в указанной части после окисления.

Согласно одному варианту способа, можно измерить:

- количества углеводородных продуктов, CO и CO2, содержащихся в потоках с пиролиза,

- количества CO и CO2, содержащихся в выходящих потоках, полученных в результате указанного окислительного нагрева.

Температура в пиролизной печи может составлять от 60 до 800°C.

Температура в окислительной печи может составлять от 100 до 1300°C.

Указанную часть потоков с пиролиза можно окислить в печи, содержащей катализатор.

Изобретение относится также к устройству для качественного и количественного определения серы в образце осадочных пород или нефтепродуктов, содержащему:

- печь для пиролиза указанного образца в неокисляющей атмосфере,

- средства переноса остатка от пиролиза указанного образца в окислительную печь,

- средства непрерывного измерения количества SO2, содержащегося в потоках, полученных в результате указанного окислительного нагрева,

- средства окисления части потоков с пиролиза,

- средства непрерывного измерения количества SO2, содержащегося в указанной части после окисления.

Устройство может содержать средства распределения потоков с пиролиза по трем маршрутам.

Распределительные средства могут быть нагреты до температуры в интервале от 400 до 600°C.

Один из маршрутов может привести поток с пиролиза в указанные средства окисления, чтобы окислить серосодержащие соединения до SO2.

Средства окисления части потоков с пиролиза могут содержать печь, катализатор и средство ввода воздуха.

Один из маршрутов может вести поток с пиролиза в средства измерения CO и CO2.

Один из маршрутов может вести поток с пиролиза в средства измерения углеводородных соединений.

Таким образом, способ согласно изобретению основан на измерении серосодержащих газов, выделенных образцом, который подвергается пиролизу, а затем окислению.

1. Фаза пиролиза

Образец подвергается пиролизу в соответствии с заранее заданной температурной программой, в печи, продуваемой потоком неокисляющего газа. Часть потоков с пиролиза увлекается в пламенно-ионизационный детектор, где определяется количество углеводородов. Другая часть увлекается к детектору CO2 и CO. Третья часть окисляется в окислительной печи в присутствии воздуха и, возможно, катализатора. Там серосодержащие газы окисляются до SO2. Этот SO2 затем непрерывно регистрируют, например, с помощью УФ- или ИК-спектрофотометра. Таким образом, получают результат измерения SO2 в зависимости от температуры пиролиза и времени.

2. Фаза окисления (высокотемпературное окисление)

Образец, прошедший через этап пиролиза, переносят после пиролизной печи в окислительную печь. Там остаток окисляется в потоке воздуха в соответствии с заранее заданной температурной программой. Потоки с окисления увлекаются к средствам обнаружения SO2, CO и CO2 для непрерывного измерения этих газов. Так получают замер SO2 в зависимости от температуры окисления и времени.

Определение серы

После этих термообработок получают два профиля для SO2: первый для зависимости от температуры пиролиза, а второй для зависимости от температуры окисления. Каждый профиль SO2 содержит различные пики и идентифицируется по числу этих пиков, температуре на вершине пика, их форме и их площади. Таким образом, совокупность этих двух профилей образует уникальный отпечаток, характеризующий серу в образце. С помощью такого отпечатка можно, в частности, различить типы сернистых соединений, такие как "нестабильная" органическая сера, "очень нестабильная" органическая сера, "жаропрочная" органическая сера и сера, происходящая из пирита FeS2.

Количественное определение содержания серы

Площадь пиков SO2, приведенная к площади эталонного образца, для которого содержание серы известно, позволяет рассчитать содержание серы в анализируемом образце. Таким образом, экспериментально определяется содержание в нем серы, называемой пиролизной, которая была выделена в ходе пиролиза, и содержание серы, называемой серой окисления, которая была выделена в ходе окисления пиролизного остатка. Сумма этих двух количеств равна общему количеству серы.

Настоящее изобретение обеспечивает следующие преимущества.

• Различные типы образцов.

Этот способ позволяет исследовать широкую гамму образцов, таких как:

- материнские породы,

- керогены,

- угли,

- породы-коллекторы,

- сырая нефть,

- нефтяные фракции, такие как асфальтены,

- дистилляты нефти,

- в частности, способ хорошо адаптирован для исследования тяжелых органических продуктов.

• Малое количество образца.

Для анализа необходимо иметь несколько миллиграммов для жидкостей и несколько десятков миллиграммов для пород.

• Малая продолжительность анализа.

Эта продолжительность может составлять от шестидесяти до девяноста минут, в зависимости от анализируемого образца.

• Легкость применения устройства.

После загрузки образца исследование осуществляется в автоматическом режиме.

• Ранее недоступная информация о типе серы.

Помимо количественного определения общего содержания серы, способ позволяет определить различные типы серы, что сложно и занимает много времени при других методах (двумерная газовая хроматография, исследование ближней тонкой структуры рентгеновского поглощения (XANES - X-ray Absorption Near Edge Structure) и др.) или даже невозможно, в зависимости от типа серы:

- "очень нестабильная" органическая сера,

- "нестабильная" органическая сера,

- негидролизуемая сера, называемая "жаропрочной" серой,

- пиритная сера,

- сульфаты.

• Получение уникального отпечатка серы для каждого образца.

Настоящее изобретение станет более понятным, а его преимущества выявятся более четко при изучении следующего, не имеющего ограничительного характера, описания одного варианта реализации и примеров воплощения, проиллюстрированных ниже на приложенных фигурах, на которых:

- фиг.1 схематически показывает устройство согласно изобретению,

- фиг.2-a показывает пример регистрации SO2, выделившегося в ходе пиролиза, для случая сырой нефти,

- фиг.2-b показывает пример регистрации SO2, выделившегося в ходе окисления, для случая сырой нефти,

- фиг.3-a показывает пример регистрации SO2, выделившегося в ходе пиролиза, для случая материнской породы,

- фиг.3-b показывает пример регистрации SO2, выделившегося в ходе окисления, для случая материнской породы,

- фиг.4 показывает общие количества серы для разного типа смешанных образцов, масел, тяжелых масел, керогенов, чистых сернистых соединений, измеренные посредством настоящего изобретения (по ординате) и кулонометрией (по абсциссе).

Устройство для осуществления способа состоит в основном из трех печей и трех детекторов.

Для термообработки образца используются две печи: одна, продуваемая потоком инертного газа, предназначена для пиролиза образца, а другая, продуваемая потоком воздуха или кислорода, предназначена для окисления пиролизного остатка.

Третья печь предназначена для окисления части потоков с пиролиза.

Тремя детекторами являются: пламенно-ионизационный детектор (FID) для углеводородов, происходящих с пиролиза, инфракрасный (ИК) спектрофотометр для CO и CO2, происходящих с пиролиза и окисления, и ультрафиолетовый (УФ) или инфракрасный (ИК) спектрофотометр для SO2, происходящего с пиролиза и окисления.

Фиг.1 показывает реализацию устройства согласно изобретению. Пиролизная печь 1 нагревает образец до температуры от 60°C до 800°C, в соответствии с заданной температурной программой. Скорость нагрева составляет от 1°C/мин до 50°C/мин. Печь продувается инертным газом, например азотом, со скоростью подачи, варьирующейся от 50 мл/мин до 200 мл/мин, который увлекает потоки с пиролиза к анализаторам. Азот подводится в печь по трубке 2. Ванночка 3 содержит образец. Печь может быть сделана из нержавеющей стали, оксида алюминия, фарфора, кварца или другого подходящего материала. Ванночка 3 может быть из нержавеющей стали. Однако в случае анализа серы и для высокотемпературного окисления ванночка предпочтительно будет сделана из оксида алюминия или фарфора, чтобы избежать осаждения серы на стенках, и чтобы она выдерживала высокие температуры. Эта ванночка вводится в пиролизную печь с помощью поршня 4. Он может быть из нержавеющей стали, но предпочтительно он будет сделан из оксида алюминия или фарфора, чтобы сопротивляться окислению при высоких температурах.

Окислительная печь 1' нагревает пиролизный остаток до температуры 100-1300°C в соответствии с заранее заданной температурной программой. Печь продувается воздухом или кислородом с постоянной скоростью подачи, составляющей от 50 мл/мин до 200 мл/мин. Газ-носитель подводится в печь через трубку 2' и увлекает продукты окисления к анализаторам. Ванночка 3 содержит образец после пиролиза. Она вводится в окислительную печь с помощью поршня 4'.

Печь окисления потоков с пиролиза 5 расположена между пиролизной печью и анализатором SO2. Она предназначена для превращения серосодержащих потоков с пиролиза в SO2. Окисление проводится при постоянной температуре, лежащей в интервале от 500°C до 1000°C, в присутствии воздуха или кислорода. Эта печь может работать, в зависимости от ее температуры, с катализатором 6 окисления, например трехокисью вольфрама (WO2), или без катализатора.

Делитель 10 газового потока, нагретый до температуры 400°C-600°C, находится на выходе пиролизной печи 1. Он соединен с двумя насосами и двумя весовыми расходомерами и позволяет разделить поток газа, который выходит из пиролизной печи 1, на три маршрута:

- один, направленный к детектору FID 7;

- второй, направленный к инфракрасному спектрометру 8;

- третий, ориентированный к инфракрасному или ультрафиолетовому спектрометру 9, после прохождения через окислительную печь 5.

Труба 11, находящаяся между делителем потока 10 и печью окисления потоков с пиролиза 5, позволяет доставлять воздух или кислород, которые будут служить для окисления потоков с пиролиза.

Электронная система регулирования расходов, соединенная с двумя насосами, позволяет контролировать скорость подачи газа к детекторам.

Пламенно-ионизационный детектор 7 (FID) измеряет углеводороды в потоке с пиролиза. Он доставляется течением инертного газа, скорость которого может составлять от 20 мл/мин до 70 мл/мин.

ИК-спектрофотометр 8 регистрирует CO, CO2.

ИК- или УФ-спектрофотометр 9 регистрирует SO2.

Водоотделитель 12, который может содержать перхлорат магния Mg(ClO4)2, установлен на выходе печи 5 окисления потоков с пиролиза.

Водоотделитель 12', который может содержать дриерит, расположен между делителем потока 10 и детектором 8 CO и CO2.

Водоотделитель 12", который может содержать перхлорат магния, находится на выходе окислительной печи 1'.

Потоки, выходящие из окислительной печи 1', проводятся к детекторам 8 и 9, для измерения соответственно CO, CO2 и SO2, по линиям, обозначенным позициями 13 и 14.

Работа устройства

1. Фаза пиролиза

Рассмотрим здесь подробно фазу пиролиза, обращаясь к фиг.1, которая схематически показывает элементы в связи с пиролизной печью 1.

В ванночку 3 помещают образец геологического осадка или нефтепродукта, например сырую нефть, масляную фракцию или нефтяной дистиллят. В зависимости от типа образца для анализа необходима следующая масса:

Породы 20-100 мг
Керогены и угли 2-20 мг
Нефть, масла, нефтяные дистилляты 2-10 мг

Ванночка 3 вводится в пиролизную печь 1 с помощью автоматизированного поршня 4. Инертный газ (азот, гелий и т.д.) вводится в печь через трубку 2 со скоростью от 50 мл/мин до 200 мл/мин. Этот газ, называемый газом-носителем, продувает печь и увлекает потоки, которые образуются там в ходе пиролиза.

Печь 1 нагревают до температуры в интервале от 60°C до 800°C, согласно заранее заданной программе повышения температуры. Фаза возрастания температуры осуществляется с постоянной скоростью, обычно составляющей от 1°C/мин до 50°C/мин. Образующиеся потоки непрерывно продуваются газом-носителем и увлекаются из печи на делитель 10 газового потока.

Выходящие потоки разделяют на три маршрута, скорости которых регулируются и контролируются электронными приборами:

- к FID 7, где измеряются углеводородные соединения,

- к инфракрасному спектрофотометру 8, где измеряются CO и CO2,

- к печи окисления потоков с пиролиза 5. Прежде чем дойти до этой печи, газ смешивается с потоком воздуха или кислорода, подводимого по трубке 11. Эта газовая смесь проникает в окислительную печь 5, которая нагрета до постоянной температуры, составляющей от 500°C до 1000°C. Эта печь может, смотря по удерживаемой температуре, содержать катализатор окисления, такой как трехокись вольфрама. Сернистые соединения, содержащиеся в газе, превращаются там в основном в SO2.

Газы проходят затем через водоотделитель 12, содержащий, например, перхлорат магния Mg(ClO4)2. Там задерживается основная часть воды, содержащейся в газе.

Газы поступают в детектор 9, адаптированный для непрерывной регистрации SO2.

2. Фаза окисления

Рассмотрим теперь подробно фазу окисления, обращаясь к фиг.1.

В конце фазы пиролиза ванночка 3 переносится автоматом (не показан) из пиролизной печи 1 в окислительную печь 1'.

Окислительная печь 1' нагревается в соответствии с программой повышения температуры, начиная со 100°C и до конечной температуры, которая может достигать 1300°C. Эта конечная температура подбирается в зависимости от типа исследуемого образца (масло, порода и т.д.). Фаза повышения температуры проводится с постоянной скоростью, обычно составляющей от 1°C/мин до 50°C/мин. Во время нагрева воздух или кислород впускаются в печь через трубку 2', со скоростью от 50 мл/мин до 200 мл/мин. Это газ, называемый газом-носителем, продувает печь и непрерывно увлекает продукты, образованные в ходе окисления.

В ходе этого этапа сера, оставшаяся после пиролиза, окисляется до SO2. Аналогично, углерод, оставшийся после пиролиза, окисляется до CO и CO2.

Выходящие потоки увлекаются из печи и проходят через водоотделитель 12", где задерживается основная часть воды, содержащейся в газе. SO2, CO и CO2 непрерывно регистрируются как функция времени детектором, особым для каждого вещества: спектрометром 8 для CO и CO2 и спектрометром 9 для SO2.

Для получения количественного результата необходима калибровка системы.

Примеры применения

Здесь представлены два примера применения, которые позволяют лучше понять тип информации о сере, предоставляемой настоящим изобретением. Один пример проводится на тяжелой сырой нефти, а другой - на типе материнской породы, содержащей пирит и сульфаты.

Фиг.2-a показывает сигнал SO2, записанный в ходе пиролиза, а фиг.2b показывает сигнал SO2, записанный в ходе окисления образца типа тяжелой сырой нефти. Ось абсцисс показывает время в секундах. Ось ординат слева показывает температуру в печи. Ось ординат справа показывает количество (в миллиграммах) SO2, измеряемое в секунду. При пиролизе нефть находится при температуре 300°C в течение 5 минут, затем температура возрастает со скоростью 25°C/мин до примерно 650°C (пунктирная кривая). Затем, при окислении (фиг.2-b), пиролизный остаток выдерживается при постоянной температуре 300°C в течение 1 минуты, затем температура возрастает с 300°C до 750°C со скоростью 25°C/мин (пунктирная кривая).

На фиг.2-a ясно видно два пика:

- пик A, соответствующий очень нестабильным сернистым органическим соединениям, содержащимся в сырой нефти,

- пик B, соответствующий нестабильным сернистым органическим соединениям, содержащимся в сырой нефти.

На фиг.2-b пик C соответствует SO2, полученному из жаростойких сернистых органических соединений.

Фиг.3-a и 3-b показывают типичные сигналы SO2, которые можно получить с помощью изобретения для случая материнской породы, содержащей серу в разных формах: органическая сера, содержащаяся в керогене и в нефти, пиритная сера и сульфатная сера. При пиролизе (фиг.3-a) материнская порода находится при температуре 300°C в течение 5 минут, затем температуру повышают со скоростью 25°C/мин до примерно 650°C (пунктирная кривая). Во время окисления (фиг.3-b) пиролизный остаток выдерживается при постоянной температуре 300°C в течение 1 минуты, затем температура возрастает с 300°C до 1200°C со скоростью 25°C/мин (пунктирная кривая).

Фиг.3-a показывает три пика:

- пик A, соответствующий очень нестабильным серосодержащим органическим соединениям,

- пик B, соответствующий нестабильным серосодержащим органическим соединениям,

- пик C, который соответствует пириту.

Фиг.3-b показывает три пика:

- пик D, соответствующий жаропрочным органическим серосодержащим соединениям,

- пик E, соответствующий пириту,

- пик F, соответствующий сульфатам.

Сравнение измерений содержания серы с помощью настоящего изобретения и с помощью кулонометрического измерения

Содержание серы измерялось на разных типах образцов, с одной стороны - с помощью настоящего изобретения, а с другой стороны - путем кулонометрии. Кулонометрия часто используется для количественного определения серы в породах и нефтепродуктах. Здесь она дает нам эталонное измерение.

Результаты, представленные на фиг.4, были получены на таких разных образцах, как масла, содержащие от 0,5% до 5 вес.% серы, породы и керогены, содержащие от 10% до 20% серы, и сернистые полимеры, содержащие от 15% до 30 вес.% серы. Ось абсцисс показывает весовое содержание серы, измеренное кулонометрией. Ось ординат показывает весовое содержание серы, измеренное согласно настоящему изобретению. Результаты показывают очень хорошее соответствие между двумя методами для диапазона содержаний серы от 0,5 до 30 вес.%.


СПОСОБ И УСТРОЙСТВО ДЛЯ БЫСТРОГО КАЧЕСТВЕННОГО И КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ СЕРЫ В ОСАДОЧНЫХ ПОРОДАХ И В НЕФТЕПРОДУКТАХ
СПОСОБ И УСТРОЙСТВО ДЛЯ БЫСТРОГО КАЧЕСТВЕННОГО И КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ СЕРЫ В ОСАДОЧНЫХ ПОРОДАХ И В НЕФТЕПРОДУКТАХ
СПОСОБ И УСТРОЙСТВО ДЛЯ БЫСТРОГО КАЧЕСТВЕННОГО И КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ СЕРЫ В ОСАДОЧНЫХ ПОРОДАХ И В НЕФТЕПРОДУКТАХ
СПОСОБ И УСТРОЙСТВО ДЛЯ БЫСТРОГО КАЧЕСТВЕННОГО И КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ СЕРЫ В ОСАДОЧНЫХ ПОРОДАХ И В НЕФТЕПРОДУКТАХ
СПОСОБ И УСТРОЙСТВО ДЛЯ БЫСТРОГО КАЧЕСТВЕННОГО И КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ СЕРЫ В ОСАДОЧНЫХ ПОРОДАХ И В НЕФТЕПРОДУКТАХ
СПОСОБ И УСТРОЙСТВО ДЛЯ БЫСТРОГО КАЧЕСТВЕННОГО И КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ СЕРЫ В ОСАДОЧНЫХ ПОРОДАХ И В НЕФТЕПРОДУКТАХ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 159.
09.09.2018
№218.016.853d

Гранулированный цеолитный материал со связной структурой

Группа изобретений относится к гранулированному цеолитному материалу с цеолитной структурой, связной во всем объеме материала, способу его получения и применения. Материал используют в качестве адсорбента в прямоточных или противоточных процессах разделения в жидкой фазе, обычно в...
Тип: Изобретение
Номер охранного документа: 0002666447
Дата охранного документа: 07.09.2018
13.09.2018
№218.016.86dd

Способ декарбонизации углеводородного газа

Изобретение относится к газообрабатывающей промышленности. Для декарбонизации углеводородного газа путем промывки растворителем газ приводят в контакт с поглотительным раствором для получения газа, обедненного CO, и поглотительного раствора, наполненного CO. Поглотительный раствор нагревают и...
Тип: Изобретение
Номер охранного документа: 0002666865
Дата охранного документа: 12.09.2018
22.09.2018
№218.016.8963

Адсорбент на основе цеолита и глины с высоким содержанием кремнезема и способ очистки углеводородного сырья, содержащего ненасыщенные молекулы

Изобретение относится к цеолитным адсорбентам. Предложен адсорбент для очистки углеводородного сырья. Адсорбент содержит цеолит типа NaX и связующее, содержащее глину с величиной массового отношения Si/Al, превышающей 2, причем связующее содержит глину типа монтмориллонит. Предложен также...
Тип: Изобретение
Номер охранного документа: 0002667292
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.89a3

Способ гидроочистки газойля в последовательных реакторах с рециркуляцией водорода

Изобретение относится к способу гидроочистки углеводородного сырья, содержащего сернистые и азотистые соединения, при котором осуществляют следующие стадии: а) разделяют (SEP) углеводородное сырье на фракцию, обогащенную тяжелыми углеводородными соединениями, и фракцию, обогащенную легкими...
Тип: Изобретение
Номер охранного документа: 0002666589
Дата охранного документа: 18.09.2018
05.10.2018
№218.016.8f78

Способ очистки синтез-газа путем промывки водными растворами аминов

Изобретение относится к способу очистки синтез-газа. Способ включает следующие стадии: a) стадия разделения синтез-газа на по меньшей мере один первый и по меньшей мере один второй поток синтез-газа одинакового состава, b1) стадия паровой конверсии моноксида углерода в первом потоке...
Тип: Изобретение
Номер охранного документа: 0002668925
Дата охранного документа: 04.10.2018
19.10.2018
№218.016.93f9

Пробоотборник среды под давлением для мониторинга использования геологических объектов

Изобретение относится к устройству для отбора проб среды, находящейся под давлением, и применению этого устройства для взятия пробы из контролируемой скважины. Устройство содержит камеру для отбора проб, внутри которой расположен верхний, нижний и промежуточный поршни, средства закрывания и...
Тип: Изобретение
Номер охранного документа: 0002669868
Дата охранного документа: 16.10.2018
27.10.2018
№218.016.974c

Способ мониторинга места разведки и разработки нетрадиционных углеводородов

Изобретение относится к способам мониторинга подземного образования, в котором добывают нетрадиционные углеводороды. Сущность: выбирают модель диффузии инертного газа и модель диффузии целевого углеводорода. Причем каждая модель описывает изменение концентрации в зависимости от времени, глубины...
Тип: Изобретение
Номер охранного документа: 0002670703
Дата охранного документа: 24.10.2018
21.11.2018
№218.016.9eba

Способ получения технического углерода из по меньшей мере одной фракции суспензии с установки каталитического крекинга fcc, включающий особую гидроочистку

Изобретение предназначено для лакокрасочной, резинотехнической, электротехнической, пищевой промышленности, а также может быть использовано при изготовлении адсорбентов. Фракцию С суспензии, полученную на установке каталитического крекинга (FCC или RFCC), направляют на стадию фильтрации (FILT)...
Тип: Изобретение
Номер охранного документа: 0002672751
Дата охранного документа: 19.11.2018
21.11.2018
№218.016.9f69

Способ получения бутадиена и водорода из этанола в две реакционные стадии при низком расходе воды и энергии

Изобретение относится к способу получения бутадиена из этанольного сырья, содержащего по меньшей мере 80 вес.% этанола, включающему по меньшей мере стадию A) превращения этанола в ацетальдегид, стадию B) превращения смеси этанол/ацетальдегид в бутадиен, стадию C1) обработки водорода, стадию D1)...
Тип: Изобретение
Номер охранного документа: 0002672877
Дата охранного документа: 20.11.2018
23.11.2018
№218.016.9fb1

Способ получения легких олефинов и втх с применением установки каталитического крекинга, обрабатывающей тяжелое сырье типа vgo глубокой гидроочистки, в комбинации с установкой каталитического риформинга и ароматическим комплексом, обрабатывающим сырье типа нафты

Изобретение относится к способу получения легких олефинов и BTX из первого сырья типа гидроочищенного VGO или неконвертированной нефти (UCO), выходящей с гидрокрекинга, или любой смеси этих двух видов сырья, и второго сырья типа нафты с начальной точкой кипения выше 30°C и конечной точкой...
Тип: Изобретение
Номер охранного документа: 0002672913
Дата охранного документа: 21.11.2018
Показаны записи 71-76 из 76.
20.01.2018
№218.016.1794

Пневматическая система плотной загрузки катализатора в байонетные трубы для реактора-теплообменника конверсии с водяным паром

Изобретение относится к устройству и способу загрузки каталитических труб, используемых в трубчатых реакторах-теплообменниках, которые могут быть использованы при конверсии с водяным паром природного газа или различных углеводородных фракций с целью получения синтез-газа. Для плотной и...
Тип: Изобретение
Номер охранного документа: 0002635601
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.1c2f

Катализатор, содержащий по меньшей мере один цеолит nu-86, по меньшей мере один цеолит usy и пористую неорганическую матрицу, и способ гидроконверсии углеводородного сырья с использованием этого катализатора

Изобретение относится к катализатору гидрокрекинга углеводородного сырья, содержащему по меньшей мере один металл, выбранный из группы, состоящей из металлов группы VIB и группы VIII периодической системы, используемых по отдельности или в смеси, и подложки, содержащей по меньшей мере один...
Тип: Изобретение
Номер охранного документа: 0002640585
Дата охранного документа: 10.01.2018
13.02.2018
№218.016.1f27

Способ дегидратации этанола с получением этилена с низким потреблением энергии

Изобретение относится к способу дегидратации этанольного сырья для получения этилена. Способ включает: a) стадию подогрева этанольного сырья до температуры в интервале от 100 до 130°C за счет теплообмена с потоком, выходящим со стадии e); b) стадию предварительной обработки этанольного сырья на...
Тип: Изобретение
Номер охранного документа: 0002641105
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.2185

Пневматическая система для плотной загрузки катализатора в байонетные трубы обменного реактора парового реформинга с использованием вспомогательной трубы для введения твердых частиц

Изобретение относится к загрузке катализатора в байонетные трубы обменного реактора парового реформинга с помощью потока газа, движущегося в направлении, противоположном падению частиц. Устройство загрузки включает, по меньшей мере, одну жесткую вспомогательную трубу (7), разделенную на...
Тип: Изобретение
Номер охранного документа: 0002641740
Дата охранного документа: 22.01.2018
13.02.2018
№218.016.2647

Высокопроизводительная структурированная насадка для контактной колонны для жидких сред

Изобретение относится к структурированной насадке для контактной колонны, осуществляющей массообмен или теплообмен между жидкими средами. Насадка состоит из пакета прямоугольных пластинок, содержащих складки, образующих последовательность каналов, которые содержат ребра, каждое из которых...
Тип: Изобретение
Номер охранного документа: 0002643961
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.30b2

Распределительная пластина для газожидкостной контактной колонны с системой вторичного распределения

Изобретение предназначено для тепло- и массообмена между газом и жидкостью. Распределительная пластина (2) колонны для тепло- и массообмена между газом и жидкостью содержит камеры (4) для прохода газа, средства прохода жидкости (6) и систему вторичного распределения (7), выступающую в нижней...
Тип: Изобретение
Номер охранного документа: 0002644918
Дата охранного документа: 14.02.2018
+ добавить свой РИД