×
27.02.2013
216.012.2be1

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ПОЖАРОТУШЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002476760
Дата охранного документа
27.02.2013
Аннотация: Изобретение относится к противопожарной технике и может быть использовано в качестве средства пожаротушения с высокоточным определением массы огнетушащего вещества, в частности диоксида углерода, в баллоне и ее уменьшения вследствие возможной утечки из баллона. Предлагаемое устройство для пожаротушения, имеющее баллон с огнетушащим веществом и устройство для определения его массы в баллоне, содержит датчик массы и электронный блок. Датчик массы выполнен в виде отрезка коаксиальной длинной линии, образованной совокупностью сифонной трубки и соосно по отношению к ней расположенной снаружи металлической трубы, между нижними концами которых подключено реактивное сопротивление. Реактивное сопротивление может быть выполнено равным нулю при замыкании накоротко нижних концов сифонной трубки и металлической трубы или индуктивным. Техническим результатом является повышение точности определения массы огнетушащего вещества. 2 з.п. ф-лы, 2 ил.

Изобретение относится к противопожарной технике и может быть использовано в качестве средства пожаротушения с высокоточным определением массы огнетушащего вещества, в частности диоксида углерода, в баллоне и ее уменьшения вследствие возможной утечки из баллона.

Известны различные устройства для пожаротушения, в которых возможное уменьшение массы газа вследствие его утечки из баллона определяют путем взвешивания баллона. Недостатками таких устройств являются их неудобство в эксплуатации, необходимость периодической поверки весов, высокая стоимость и ограниченная область применения, обусловленная невозможностью непрерывного контроля возможной утечки огнетушащего вещества из баллона. Устройства с поплавковыми уровнемерами (US 4560450, 24.12.1985) являются громоздкими, неточными и, более того, неработоспособными при реальных условиях эксплуатации баллонов, характеризуемых наличием жидкой и газовой фаз огнетушащего вещества, относительное содержание которых не является постоянным. Известные устройства с емкостными уровнемерами (US 5701932, 30.12.1997; DE 3731793, 03.03.1989) не являются высокоточными, поскольку применимы лишь при наличии четкой границы раздела жидкой и газовой фаз вещества, что не имеет место в реальных условиях эксплуатации баллонов с огнетушащими веществами.

Известно также техническое решение (RU 2266464 С2, 10.11.2004; аналог - US 6836217 В2, 28.12.2004), которое по технической сущности наиболее близко к предлагаемому устройству и принято в качестве прототипа. Это устройство-прототип имеет баллон с огнетушащим веществом (диоксидом углерода) и устройство для определения его массы в баллоне, содержащее емкостный датчик массы, образованный совокупностью сифонной трубки в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи металлической трубы в качестве второго проводника датчика, а также электронный блок.

Недостатком этого устройства-прототипа является невысокая точность измерения.

Это обусловлено следующим. В данном известном емкостном датчике массы огнетушащего вещества в баллоне при конструктивном исполнении требуется наличие малого зазора (1÷2 мм) между двумя внутренним и наружным проводниками коаксиальной линии для обеспечения значения электрической емкости 50÷150 пФ. Такая электрическая емкость необходима для получения достаточной чувствительности емкостного датчика, работающего на частотах килогерцового диапазона: погрешность электронного преобразователя емкости составляет ~ 0,1÷0,5 пФ, поэтому при использовании датчика с малой величиной электрической емкости возникает большая погрешность измерения (несколько процентов). Кроме того, при малом зазоре между проводниками емкостного датчика существует опасность замыкания этих проводников между собой примесями (металлической стружкой, каплями воды и др.).

Точность изготовления электродов (труб) датчика составляет по диаметру ~ 0,1 мм. Это значит, что на практике номинируемый зазор (1-2 мм) выполнить с отклонением <5% (т.е. 0,1 мм) технологически весьма трудно. Из-за разброса диаметров изготавливаемых труб (сифонной трубки, соосной с ней металлической трубы) имеет место соответствующий разброс значений погонной (т.е. на единицу длины) электрической емкости датчика (~ 5%). Кроме того, из-за неточности сборки конструкций датчиков может иметь место и смещение относительно продольной осевой линии данных проводников относительно друг друга. А это приводит к значительной погрешности измерения массы огнетушащего вещества в баллоне, поскольку зазор между данными проводниками имеет малую величину. Следовательно, чем больше указанный зазор, тем меньше погрешность измерения, обусловленная неточностью изготовления и сборки датчиков.

Техническим результатом предлагаемого изобретения является повышение точности определения массы огнетушащего вещества.

Технический результат достигается тем, что предлагаемое устройство для пожаротушения, имеющее баллон с огнетушащим веществом и устройство для определения его массы в баллоне, содержащее датчик массы, образованный совокупностью сифонной трубки и соосно по отношению к ней расположенной снаружи металлической трубы, и электронный блок, при этом между нижними концами сифонной трубки и металлической трубы подключено реактивное сопротивление. Реактивное сопротивление может быть выполнено равным нулю при замыкании накоротко нижних концов сифонной трубки и металлической трубы или индуктивным.

На фиг.1 изображена функциональная схема устройства. На фиг.2а, 2б, 2в - варианты эквивалентных электрических схем датчиков массы огнетушащего вещества.

Здесь введены обозначения: 1 - баллон, 2 - сифонная трубка, 3 - металлическая труба, 4 - диэлектрическая шайба, 5 - горловина, 6 - электронный блок, 7 и 8 - проводники, 9 - кран, 10 - трубопровод, 11 - короткозамыкатель.

Устройство работает следующим образом.

В баллоне 1 с огнетушащим веществом (диоксидом углерода и др.), содержащим металлическую сифонную трубку 2, вокруг последней и соосно с ней размещается металлическая труба 3. При этом сифонная трубка 2 и металлическая труба 3 являются соответственно внутренним и наружным проводниками отрезка коаксиальной длинной линии - датчика массы огнетушащего вещества. Жесткость конструкции коаксиального датчика, т.е. соосность металлической трубы 3 и сифонной трубки 2, обеспечивается с помощью нескольких (1÷4) диэлектрических шайб 4 (изготовленных из полиамида или фторопласта; в этих шайбах имеются сквозные отверстия для прохождения жидкости с целью обеспечения значения уровня жидкости в датчике равным его значению в баллоне), устанавливаемых равномерно вдоль длины датчика (на рисунке показана только одна такая шайба). Баллон 1 имеет в верхней части горловину 5, через герметичные отверстия в них с помощью проводников 7 и 8 соответственно верхний конец металлической трубы 3 и сифонная трубка 2 подсоединены к электронному блоку 6. Электронный блок 6 содержит генератор высокочастотных электромагнитных колебаний, микропроцессор для измерения и преобразования резонансной частоты электромагнитных колебаний отрезка длинной линии, а также микропроцессор для функциональной обработки информативного сигнала от коаксиального датчика массы огнетушащего вещества. Электронный блок 6 имеет разъем для подсоединения к этому блоку источника питания, последовательного интерфейса, сигнализации предельных значений массы огнетушащего вещества. На верхнем конце баллона имеется кран 9 на трубопроводе 10 для выпуска вещества. Нижние концы проводников 2 и 3 отрезка данной длинной линии соединены посредством реактивного сопротивления. В частном случае величина этого сопротивления может быть равным нулю, и в этом случае эти нижние концы замкнуты накоротко с помощью короткозамыкателя 11, как это показано на фиг.1.

Уровень жидкой фазы диоксида углерода в баллоне зависит от температуры: чем выше температура, тем выше и уровень жидкости, вплоть до полного заполнения баллона при некоторой температуре, близкой к критической температуре, и ее более высоких значениях.

Переход к более высоким частотам (мегагерцевого диапазона частот) работы датчика, являющегося в этом случае радиочастотным датчиком, обеспечивает возможность увеличения зазора между проводниками радиочастотного датчика массы огнетушащего вещества.

В отличие от емкостного датчика в данном случае имеет место процесс распространения электромагнитной волны вдоль отрезка длинной линии, являющегося высокочастотным резонатором, с образованием в нем стоячей волны.

В предлагаемом радиочастотном датчике его электрическая емкость может быть достаточно малой, составляя ~ 10÷40 пФ, поскольку абсолютная погрешность электронного блока составляет ~ 0,01÷0,03 пФ. Это позволяет иметь зазор 4÷5 мм между сифонной трубкой 2 и металлической трубой 3 (наружный электрод коаксиального датчика, которым является металлическая труба 3, имеет диаметр 34÷36 мм). При таком большом зазоре между металлической трубой 3 и сифонной трубкой 1 возможные загрязнения не могут приводить к закорачиванию этих проводников между собой, обеспечивая необходимую точность измерения и надежность датчика массы.

На нижнем конце отрезка длинной линии можно подключать различные реактивные сопротивления Zн. Так, такое сопротивление может быть равным нулю (Zн=0) при замыкании накоротко проводников отрезка длинной линии, т.е. сифонной трубки и соосной с ней металлической трубы. При этом обеспечивается повышенная жесткость конструкции датчика. Реактивное сопротивление Zн на нижнем конце отрезка длинной линии может быть выполнено, в частности, и в виде сосредоточенного индуктивного сопротивления (катушки индуктивности) Lн (т.е Zн=Lн) и др. Выбор того или иного реактивного сопротивления Zн и его величины позволяет управлять поведением выходной характеристики - зависимостью резонансной частоты f электромагнитных колебаний рассматриваемого отрезка длинной линии от массы М огнетушащего вещества. Например, такая выходная характеристика f(M) может быть линейной.

Датчики, изображенные на фиг.2а, 2б, 2в, представляют собой, отрезки коаксиальной длинной линии, соответственно нагруженной на одном (нижнем) конце на реактивное сопротивление Zн; короткозамкнутой на одном (нижнем) из концов и нагруженной на одном (нижнем) конце на индуктивное сопротивление Lн. Одним из концов каждый из этих отрезков линии подключен к электронному блоку, осуществляющему возбуждение в отрезке линии электромагнитных колебаний и измерение его информативного параметра - резонансной частоты f как функции уровня z огнетушащего вещества (диоксида углерода и др.) в баллоне.

Приведем соотношения, описывающие зависимость f(z) для отрезков длинной линии с различными реактивными нагрузками, а именно короткозамкнутого на одном из концов и имеющего на конце отрезка длинной линии индуктивность (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1989. 280 с.).

1. Для отрезка длинной линии, короткозамкнутого на одном из концов (в этом случае zн=0) - в данном случае нижнем конце (фиг.2б), будем иметь следующее выражение для зависимости f(z):

Здесь ε - диэлектрическая проницаемость жидкой фазы огнетушащего вещества; l - длина отрезка длинной линии, определяемая в данном случае длиной сифонной трубки и соосной с ней металлической трубы; эту длину можно считать равной практически высоте баллона; f0 - начальное значение резонансной частоты f при номинальном значении ε, например, ε=1 (это соответствует отсутствию огнетушащего вещества в баллоне).

В соответствии с этой формулой датчик имеет минимальную чувствительность к уровню (и массе) в нижней части баллона; эта чувствительность монотонно возрастает с высотой баллона и достигает максимума при полном заполнении баллона огнетушащим веществом. То есть максимальная чувствительность обеспечивается именно там, где и необходимо контролировать наличие утечки вещества из баллона - в его верхней части.

Если отрезок длинной линии полностью заполнен контролируемой жидкостью, то z=l и данная формула выражает в этом случае зависимость f(z): .

Для короткозамкнутого на одном из концов отрезка

значения f0 резонансной частоты f (при ε=1): , где с=3·108 м/с - скорость света. Отрезок длинной линии является в данном случае четвертьволновым (то есть вдоль его длины укладывается четверть длины стоячей электромагнитной волны в рассматриваемом резонаторе).

2. Подключение на конце отрезка длинной линии индуктивности Lн (фиг.2в) эквивалентно удлинению короткозамкнутого на одном конце отрезка длинной линии на некоторую величину. Вследствие этого происходит изменение распределения напряженности электрического и магнитного полей стоячей волны вдоль отрезка длинной линии. Эквивалентное удлинение lэ погруженной в контролируемую жидкость части отрезка длинной линии равно . С учетом этого значения lэ формулу для случая полного заполнения баллона огнетушащим веществом можно записать в следующем виде:

Решая данное уравнение, можно найти зависимость f(ε). Выбором Lн можно управлять поведением кривой f(z) и, в частности, кривой f(ε), соответствующей полному заполнению баллона огнетушащим веществом; например, можно получить линейную зависимость f(z).

С учетом вышеприведенных соотношений возможно осуществлять синтез датчиков массы с заданной выходной характеристикой.

Таким образом, в предлагаемом устройстве датчик массы выполнен в виде отрезка коаксиальной длинной линии, который образован совокупностью сифонной трубки и соосно по отношению к ней расположенной снаружи металлической трубы; между нижними концами проводников отрезка длинной линии подключено реактивное сопротивление, выполняемое равным нулю при замыкании накоротко нижних концов сифонной трубки и металлической трубы или индуктивным. В предлагаемом устройстве возможно существенно увеличить зазор между внутренним и внешним проводниками отрезка длинной линии - сифонной трубкой и соосной с ней металлической трубой, возможно управлять выходной характеристикой датчика массы.

Предлагаемое устройство позволяет существенно повысить точность измерения массы огнетушащего вещества. Данное устройство применимо при использовании в качестве огнетушащего вещества как диоксида углерода, так и других веществ.


УСТРОЙСТВО ДЛЯ ПОЖАРОТУШЕНИЯ
УСТРОЙСТВО ДЛЯ ПОЖАРОТУШЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 142.
23.02.2019
№219.016.c6ad

Способ управления движением судна по заданной траектории

Изобретение относится к области судовождения, в частности к автоматическому управлению движением судна. В способе используют сигналы текущего путевого угла и заданного значения путевого угла, которые совместно с сигналами угловой скорости судна и угла перекладки руля используют для формирования...
Тип: Изобретение
Номер охранного документа: 0002465169
Дата охранного документа: 27.10.2012
23.02.2019
№219.016.c6bb

Оптико-электронный расходомер потока газа или жидкости

Изобретение относится к области тепловой меточной расходометрии и может быть использовано для определения объемного или массового расхода газа или жидкости. Сущность: расходомер содержит измерительный трубопровод (1) с выравнивателем потока (2) на входе, управляемый генератор (3) тепловой метки...
Тип: Изобретение
Номер охранного документа: 0002460047
Дата охранного документа: 27.08.2012
01.03.2019
№219.016.cf3e

Способ определения плотности диэлектрических жидких веществ

Предлагаемое изобретение относится к области измерительной техники. Способ определения плотности диэлектрических жидких веществ, протекающих по диэлектрическому трубопроводу, при котором зондируют вещество электромагнитными колебаниями и принимают распространяющиеся по трубопроводу колебания....
Тип: Изобретение
Номер охранного документа: 0002404421
Дата охранного документа: 20.11.2010
08.03.2019
№219.016.d4b5

Счетчик-расходомер

Изобретение может быть использовано для измерения объемного и массового расхода в технологических трубопроводах, а также измерения плотности и количества газа или жидкости в узлах учета энергоресурсов для коммерческого расчета. Расходомер содержит сужающее устройство (2), датчик перепада...
Тип: Изобретение
Номер охранного документа: 0002396517
Дата охранного документа: 10.08.2010
08.03.2019
№219.016.d4b8

Способ измерения сопротивления и устройство для его реализации

Изобретение относится к области измерительной техники. Последовательно осуществляют три такта измерения периода колебаний, зависящего от значения измеряемого сопротивления при различной конфигурации частотно-зависимой цепи. В первом такте формируют измеряемую величину , где R - первое эталонное...
Тип: Изобретение
Номер охранного документа: 0002395098
Дата охранного документа: 20.07.2010
08.03.2019
№219.016.d525

Способ преобразования непрерывного сигнала в частоту и устройство для его осуществления

Изобретение относится к способам и устройствам преобразования сигнала. Техническим результатом является линеаризация преобразований от входного параметра до частотного выхода. Предложено устройство преобразования непрерывного сигнала в частоту, содержащее измерительное устройство с квадратичным...
Тип: Изобретение
Номер охранного документа: 0002413269
Дата охранного документа: 27.02.2011
08.03.2019
№219.016.d54d

Измеритель частоты резонаторного датчика технологических параметров

Изобретение относится к измерительной технике. Измеритель частоты резонаторного датчика технологических параметров содержит первый сумматор, соединенный соответственно первым и вторым плечами с резонаторным датчиком и выходом перестраиваемого по частоте генератора электромагнитных колебаний, и...
Тип: Изобретение
Номер охранного документа: 0002456556
Дата охранного документа: 20.07.2012
08.03.2019
№219.016.d563

Способ обработки и анализа изображений кометоподобных объектов, полученных методом "днк-комет"

Способ заключается в том, что в компьютер с биологического препарата, установленного на флуоресцентный микроскоп с видеокамерой, вводят изображение с кометоподобными объектами - «кометами», представляющими собой набор слитых и отдельностоящих флуоресцирующих точек разной яркости. Затем...
Тип: Изобретение
Номер охранного документа: 0002404453
Дата охранного документа: 20.11.2010
08.03.2019
№219.016.d598

Датчик малых расходов жидкости

Изобретение относится к области расходометрии и может быть использовано для определения расхода слабых (порядка десятков - сотен миллилитров в секунду) потоков жидкости. Сущность: устройство содержит резистивный нагреватель, установленный на трубе с потоком жидкости, калориметрический...
Тип: Изобретение
Номер охранного документа: 0002469277
Дата охранного документа: 10.12.2012
08.03.2019
№219.016.d5b2

Устройство для получения электрической энергии при механических колебаниях

Изобретение относится к электротехнике, к устройствам для получения электрической энергии от двух расположенных рядом элементов при их механическом колебании относительно друг друга и может быть использовано, в частности, для получения энергии во время движения железнодорожных составов за счет...
Тип: Изобретение
Номер охранного документа: 0002468491
Дата охранного документа: 27.11.2012
Показаны записи 71-80 из 99.
09.06.2018
№218.016.5c88

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность заявленного технического решения заключается в том, что в...
Тип: Изобретение
Номер охранного документа: 0002656007
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5cac

Устройство для измерения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002656021
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d0f

Способ измерения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002656016
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d10

Способ определения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность...
Тип: Изобретение
Номер охранного документа: 0002656023
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d15

Способ определения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность...
Тип: Изобретение
Номер охранного документа: 0002656012
Дата охранного документа: 30.05.2018
04.07.2018
№218.016.6a73

Способ измерения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002659569
Дата охранного документа: 03.07.2018
18.07.2018
№218.016.7182

Способ определения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Расширение...
Тип: Изобретение
Номер охранного документа: 0002661349
Дата охранного документа: 16.07.2018
09.08.2018
№218.016.7a52

Способ измерения давления

Изобретение относится к промышленной метрологии и может быть использовано для высокоточного измерения статического и динамического давления. Способ измерения давления, при котором в объемном резонаторе в виде отрезка волновода с одной из торцевых стенок в виде металлической мембраны,...
Тип: Изобретение
Номер охранного документа: 0002663552
Дата охранного документа: 07.08.2018
26.10.2018
№218.016.969e

Способ измерения скорости потока диэлектрического вещества

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрического вещества (жидкости, газа, сыпучего вещества), перемещаемого по трубопроводу. Техническим результатом настоящего изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002670707
Дата охранного документа: 24.10.2018
09.11.2018
№218.016.9b55

Способ измерения количества каждой компоненты двухкомпонентной жидкости в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема, массы) каждой компоненты двухкомпонентной диэлектрической жидкости в металлической емкости произвольной конфигурации. Технический результат: повышение точности измерения каждой компоненты....
Тип: Изобретение
Номер охранного документа: 0002672038
Дата охранного документа: 08.11.2018
+ добавить свой РИД